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Essential climate variables such as LAI or FAPAR are required for the monitoring, understanding and modeling
of land surfaces at the global scale. While several products were already developed from the current medium
resolution sensors, the few validation exercises currently achieved highlighted significant discrepancies and
inconsistencies. The objective of this study is to develop improved global estimates of LAI, FAPAR and FCOVER
variables by capitalizing on the development and validation of already existing products. In a first step, the
performances of the MODIS, CYCLOPES, GLOBCARBON and JRC-FAPAR products were reviewed. The MODIS
and CYCLOPES products were then selected since they provide higher level of consistency. These products
were fused to generate the improved LAI, FAPAR and FCOVER values that were later scaled to closely match
their expected range of variation. Finally, neural networks were trained to estimate these fused and scaled
products from SPOT-VEGETATION top of canopy directionally normalized reflectance values. The resulting
GEOV1 products are associated to quality control flags as well as quantitative estimates of uncertainties.
Performances of the GEOV1 products are finally evaluated in a companion paper. The GEOV1 products are
freely available to the community at www.geoland2.eu from 1999 up to present, globally at 1/112° spatial
sampling grid at the dekadal time step.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

The importance of continuously monitoring the Earth's surface was
recently recognized by Global Climate Observing System (GCOS)
(GCOS, 2006). Essential climate variables (ECVs) related to land
surfaces such as LAI (leaf area index) and FAPAR (fraction of absorbed
photosynthetic active radiation) may be derived from observations in
the reflective solar domain. These vegetation biophysical variables
play a key role in several surface processes, including photosynthesis,
respiration and transpiration. LAI is defined as half the total developed
area of green elements per unit horizontal ground area (Chen and
Black, 1992). FAPAR is defined as the fraction of radiation absorbed by
the green vegetation elements in the 400–700 nm spectral domain
under specified illumination conditions. FAPAR is one of the main
inputs in light use efficiency models (McCallum et al., 2009). In
addition to LAI and FAPAR variables, FCOVER, the fraction of green veg-
etation as seen from nadir, is requested by some users for vegetation
monitoring (Lacaze et al., 2009) aswell as for partitioning contributions
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between soil and vegetation within specific models for numerical
weather prediction, regional and global climate modeling, and global
change monitoring (Avissar and Pielke, 1989). FCOVER is independent
from the illumination conditions as opposed to FAPAR while showing
sensitivity to vegetation amount intermediate between FAPAR and LAI.

Few global LAI, FAPAR and FCOVER products have already been gen-
erated from VEGETATION, SEAWIFS, MODIS and MERIS sensors with a
spatial sampling distance close to 1 km. Improved atmospheric correc-
tion, radiometric calibration andmodel formulation have incrementally
enhanced the retrieval accuracy of the successive reprocessing. Recent
validation activities have shown however that significant discrepancies
were existing between these global products as well as with ground
measurements (Garrigues et al., 2008; McCallum et al., 2010; Weiss
et al., 2007), calling thus for the development of new products that
would reconcile these differences.

The FP7 Geoland2 project (http://www.gmes-geoland.info) intends
to implement the Global Monitoring for Environment and Security
(GMES) LandMonitoring Core Service that corresponds to the European
contribution to Group of Earth Observation System of Systems (GEOSS).
An operational system is developed to provide biophysical products
that meet the users' needs (Lacaze et al., 2009) for monitoring natural
ecosystems and managed lands. The main requirements correspond to
mate variables and FCOVER global time series capitalizing over existing
.doi.org/10.1016/j.rse.2012.12.027

http://www.geoland2.eu
http://www.gmes-geoland.info
http://dx.doi.org/10.1016/j.rse.2012.12.027
mailto:baret@avignon.inra.fr
http://dx.doi.org/10.1016/j.rse.2012.12.027
http://www.sciencedirect.com/science/journal/00344257
http://dx.doi.org/10.1016/j.rse.2012.12.027


Product 1 Product 2 Product 3

Selection

Product i Product j

Fusion

Best
Estimates

reflectance Neural Net
Training

NNT Coefs Neural Net
run

GEOV1
Algorithm
calibration

Smoothing

Interpolation

Smoothing

Interpolation

Scaling

reflectance

Application

Generation of
the training
dataset

Fig. 1. Schematic description of the principle used to develop the GEOV1 product.
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1 km spatial sampling, 10 days (dekadal) frequencywith products gen-
erated in near real time (less than 1 week), for a time period as long as
possible (Ganguly et al., 2008b), and associated with quantitative un-
certainties. These requirements are partly answering the recently
updated GCOS ones for LAI and FAPAR ECVs with 250 m spatial resolu-
tion relaxed to 2 km for near term products, 2-weekly temporal
frequency and accuracy better than max(20%, 0.5) for LAI, max(10%,
0.05) for FAPAR and a stability better than max(10%, 0.25) for LAI and
max(3%, 0.02) for FAPAR (GCOS-138). The resulting products will thus
eventually contribute to fulfill one of the GCOS tasks dedicated to the
operationalization of the generation of LAI ECVs.

The objective of this paper is to describe the first version of
Geoland2 LAI, FAPAR and FCOVER products called GEOV1. The principles
used to derive the products will first be presented. Then, the algorithm
development will be described. A companion paper (Camacho et al., in
press) will finally report the validation results derived according to the
CEOS/LPV guidelines (Baret et al., 2009; Morisette et al., 2006).

2. Algorithm development

2.1. General principles

Since significant efforts have already been made to develop and val-
idate biophysical products as stated in the Introduction, it is thus pro-
posed to capitalize on the existing products and associated validation
results for the development of the GEOV1 products. Previous works
(Verger et al., 2008) have demonstrated the capacity of learning
machines such as neural networks to estimate biophysical products
including LAI from several sensors. This property will be exploited
here, allowing to use several sensors in order to build a long time series
of products. The algorithm is made of three main steps as sketched in
Fig. 1:

(1) Generation of the training dataset: Already existing products are
first combined to provide the ‘best estimates’ of the biophysical
variables that will constitute the training dataset.
(2) Neural network calibration: A neural network is trained to
estimate these ‘best estimates’ from the input reflectance values
as observed by specific sensors and the associated geometrical
configuration. Quality flags and quantitative uncertainties are
also derived.
(3) Application of the network: Once the network is calibrated, it is
run to provide estimates of the biophysical variables for each of the
sensors considered, along with the quality flags and quantitative
uncertainties.

Note that it would have been possible to follow more formally the
scheme proposed by Verger et al. (2008) and later developed in
Verger et al. (2011). However this would need to use concurrently
and in real time two (or more) sensors. This was not compatible
with the available processing capacity for GEOV1. Further, the use of
a single product in the learning database as proposed in Verger et
al. (2011) such as MODIS collection 5 would not allow improvement
of the biases sometimes observed, but would mainly decrease the
frequency of missing data and smooth the temporal series. Finally,
the proposed GEOV1 algorithm is designed to work with no prior
information on the vegetation type since Verger et al. (2008) showed
that a single training across all biomes was performing similarly as
multiple specific training for each biome type.

2.2. Generation of training dataset

The way the training dataset is generated from already existing
products is sketched in Fig. 1, top box. Four main steps are identified:
(1) selecting the most relevant products, (2) setting the products on
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consistent spatial and temporal supports, (3) fusing the products
and (4) eventually scaling the fused products. Details of each of
these steps are given in the following.

2.2.1. Selection of products
The available candidate global products listed in Table 1 are first

evaluated to select the most relevant ones. For this purpose, the
results from previous validation exercises are used here.

The validation exercise achieved by Garrigues et al. (2008) for LAI
products was showing few missing values for the GLOBCARBON LAI
product, in relation to its monthly temporal resolution. However,
many artifacts were observed, including unexpected outliers and shifts
in the phenology due to its coarse temporal resolution and low
sampling frequency. Garrigues et al. (2008) and Weiss et al. (2007)
demonstrated that CYCLOPES was providing very smooth temporal
course while showing a saturation for LAI values larger than 4. For
MODIS collection 5 LAI products, only few local validation activities
were reported (De Kauwe et al., 2011; Kraus, 2008; Sprintsin et al.,
2009) while Yuan et al. (2011) presented some results of a global val-
idation exercise focusing on the evaluation of a smoothed version of
MODIS LAI to reduce the spatial and temporal inconsistencies observed
at the local spatial or temporal scales. Ganguly et al. (2008a) validated
an adaptation of MODIS LAI products for AVHRR (Advanced Very High
Resolution Radiometer) data, showing fair consistency with CYCLOPES
LAI product over the sites considered. However, Verger et al. (2011)
demonstrated that MODIS was showing more shaky temporal LAI pro-
files as compared to the CYCLOPES ones.

Among the global FAPARproducts available,MODIS andGLOBCARBON
correspond roughly to the same definition, i.e. black-sky values at the
time of the satellite overpass, i.e. around 10:35 for MODIS aboard Terra
and 10:30 for VEGETATION. However, if JRC-FAPAR corresponds also to
black-sky FAPAR at the time of the satellite overpass, SEAWIFS is crossing
the equator around12:20, i.e. for significantly smaller sun zenith angles as
compared to MODIS and VEGETATION. The CYCLOPES FAPAR product
mate variables and FCOVER global time series capitalizing over existing
.doi.org/10.1016/j.rse.2012.12.027

http://dx.doi.org/10.1016/j.rse.2012.12.027


Table 1
The currently LAI, FAPAR and FCOVER products available globally at approximately 1 km spatial sampling distance.

Products Sensors LAI FAPAR FCOVERR Spatial sampling distance at equator Temporal sampling (days) Time period Reference

MODIS C5 MODIS ✓ ✓ 1 km 8 2000–present (Yang et al., 2006b)
CYCLOPES V3.1 VEGETATION ✓ ✓ ✓ 1 km 10 1999–2007 (Baret et al., 2007)
GLOBCARBON VEGETATION ✓ ✓ 1 km 30 1999–2007 (Deng et al., 2006)
JRC-FAPAR SEAWIFSa ✓ 2.17 km 1 1997–2006 (Gobron et al., 2006)

a JRC-FAPAR may be derived from several sensors including SEAWIFS, MERIS, MODIS and VEGETATION but produced globally over a long time period only from SEAWIFS.
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corresponds to black-sky FAPAR at 10:00 illumination conditions which is
a close approximation of the daily integrated black-sky FAPAR value
(Baret et al., 2005, 2007). Therefore, MODIS aboard Terra, GLOBCARBON
and CYCLOPES FAPAR products share very similar definitions, while
JRC-FAPAR derived from SEAWIFS is expected to show lower values be-
cause of the smaller sun zenith angles experienced close to solar noon.
Further, it is limited to sun zenith angles lower than 50° which may
pose a problem for thehigher latitudes and/or part of the season. Compar-
ison between MODIS collection 5 and CYCLOPES FAPAR products was
showing a good agreement, with however some overestimation of
MODIS for the low FAPAR values (McCallum et al., 2010). GLOCARBON
and JRC-FAPAR were found much lower in magnitude, while a good
consistency in spatial and temporal trends was found between
CYCLOPES and JRC-FAPAR (McCallum et al., 2010). GLOBCARBON prod-
ucts were showing the largest discrepancies with all the other products.

The MODIS and CYCLOPES FAPAR products were therefore selected
ensuring a good consistency between LAI and FAPAR values since both
MODIS and CYCLOPES provide concurrently LAI and FAPAR products.
However, CYCLOPES and MODIS products are based on different as-
sumptions and inversion techniques. CYCLOPES considers canopies as a
turbidmedium for all the biome types, while allowing pixels to be amix-
ture of pure bare soil and pure vegetation patches, i.e. including some
possible clumping at the landscape level. The inversion of the radiative
transfer model is achieved using a neural network. Conversely, MODIS
algorithm is biome dependent and assumes some clumping at the
plant level for some biomes including savanna and forests. The retrieval
of LAI is achieved using a look-up-table inversion technique.

Apart from CYCLOPES FCOVER products, no other global FCOVER
product is currently available apart from the SAF-LAND products cover-
ing theMETEOSAT disk (Camacho-de Coca et al., 2006). However, sever-
al studies have pointed out thatNDVI (Normalized Difference Vegetation
Index) could be a good proxy for FCOVER (Baret et al., 1995; Carlson and
Ripley, 1997; Gutman, 1991). Camacho-de Coca et al. (2006) compared
several regional FCOVER products over Africa and showed that the
Fig. 2. The 420 BELMANIP2 sites used to sa
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CYCLOPES FCOVER product was very consistent with other products al-
though a significant and systematic biaswas observed. Thiswas also con-
firmed by Verger et al. (2009). It is therefore proposed to select the
CYCLOPES FCOVER original product while rescaling it to provide values
more consistent with ground measurements as detailed later.

2.2.2. Spatial and temporal sampling for the training dataset
The training dataset is generated over a sample of sites represen-

tative of the global distribution of vegetation types and conditions.
For this purpose, the BELMANIP2 set of sites was used. It corresponds
to 420 sites located in relatively flat and homogeneous areas (at a
kilometric resolution over 10 × 10 km2 domains). BELMANIP2 differs
from the original BELMANIP set of sites (Baret et al., 2006) by improv-
ing the global representativeness and homogeneity. Fig. 2 shows the
distribution of sites and their coordinates are available at WWW1.
Years 2003 and 2004 were selected to represent the whole seasonal-
ity as well as significant inter-annual variability.

The same spatial and temporal supports are required to allow com-
bining several products together. The MODIS LAI and FAPAR products
selected were thus re-projected onto the cylindrical projection system
with 1/112° sampling grid used as a reference for the VEGETATION,
CYCLOPES and GEOV1 products. Because of the point spread function
of the several products considered as well as the possible geometrical
uncertainties on pixel localization, a 3 × 3 pixels spatial support was
used. Note that the algorithm is trained over 3 × 3 pixels although
it will ultimately apply to single pixels. This scale discrepancy is accept-
able because of the homogeneity of the BELMANIP2 sites.

The temporal sampling used to fuse MODIS and CYCLOPES prod-
ucts will be that of the CYCLOPES original products, i.e. dekadal
(10 days). It will allow using directly the normalized reflectance
values derived from VEGETATION based on the CYCLOPES prepro-
cessing algorithm (Baret et al., 2007) that will also constitute the
GEOV1 temporal sampling. The values to be fused at a given GEOV1
dekad were computed as follows: For CYCLOPES, the product values
mple vegetation types and conditions.

mate variables and FCOVER global time series capitalizing over existing
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Fig. 3. Variation of the weight (w) as a function of the LAICYC value.
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corresponding to the GEOV1 dekad are considered; for MODIS 8 days
products, all the values available within ±10 days around the GEOV1
dekad are first gathered resulting in a maximum of 27 values (3 MODIS
dates times 9 pixels). Note that the CYCLOPES 30 days temporal reso-
lution (with Gaussian weighing) is still larger than that of the
16 days (2 times 8 days) of the MODIS selected values. However,
widening the temporal window for MODIS resulted in artifacts on
the seasonality. Then the 3 × 3 aggregated values for each GEOV1
dekad are computed only if at least 5 valid individual values (over
the 9 for CYCLOPES and 27 for MODIS) are available. Valid pixels
are defined by the main and main + saturation quality control
(QC) for MODIS, and valid input reflectance QC for CYCLOPES. For
MODIS, because of the relatively large variability observed over
time and space, values were further filtered using the difference
Δ = LAIf = 90% − LAIf = 70% between the f = 90% and f = 70%
percentiles (f) computed over the valid LAI values: When Δ > 0.2
corresponding to an unexpectedly large scattering of the data over
homogeneous sites and during a short time period, the cases were
rejected. Finally, for the GEOV1 dates fulfilling the above criterions
both for CYCLOPES and MODIS products, the LAI and FAPAR values
corresponding to the 70% percentile were computed for CYCLOPES
andMODIS. This allowsminimizing the influence of possible residual
cloud contamination and atmospheric effects that negatively biased
the product values (Chen et al., 2006). However, because of the ho-
mogeneity of the sites and the short time period considered, the
values once filtered as described earlier, should be closely distribut-
ed around the median, i.e. LAI or FAPAR values at 50% and 70% fre-
quencies should be very close together for a given date and site.

2.2.3. Fusing the products
No fusion process was applied for FCOVER since GEOV1 will derive

only from CYCLOPES FCOVER products. Conversely, for LAI and FAPAR,
MODIS and CYCLOPES products were fused to benefit from their
complementarities. An optimal fusion scheme would be a weighted
average between the two products, with weights, wFAPAR and wLAI

respectively for FAPAR and LAI, being driven by the uncertainties asso-
ciated to each product:

FAPARfused ¼ FAPARMODwFAPAR þ FAPARCYC 1−wFAPARð Þ
LAIfused ¼ LAIMODwLAI þ LAICYC 1−wLAIð Þ

(
ð1Þ

where the subscripts fused, MOD, and CYC correspond respectively
to the fused, MODIS and CYCLOPES products. However, the uncer-
tainties attached to the CYCLOPES and MODIS products only refer to
the theoretical performances, and model assumptions as well as the
structure of the uncertainties were not accounted for. Uncertainties
may be also derived from the comparison with groundmeasurements
as already achieved for MODIS and CYCLOPES. However, these ground
measurements are not very numerous (Camacho et al., in press;
Garrigues et al., 2008). Further, it is not advisable to use the validation
data to calibrate an algorithm in order to preserve the required inde-
pendency between the calibration and the validation processes. For
these reasons, the weight used in the fusion between MODIS and
CYCLOPES was based on heuristic arguments.

Garrigues et al. (2008) and Weiss et al. (2007) reported that
CYCLOPES LAI was showing some saturation for LAI values around 4.
Conversely, MODIS LAI and FAPAR values were generally higher than
expected for the very low vegetation amounts (Fig. 4). Further, the
MODIS algorithm assigns zero values for LAI and FAPAR over pixels clas-
sified as bare, which may pose problems in case of misclassification. It
was thus proposed to fuse the products by reducing the contribution of
MODIS products for low LAI and FAPAR values and enhancing the
MODIS contribution for the larger LAI and FAPAR values as sketched

in Fig. 3 with wLAI ¼ wFAPAR ¼ min 1; LAICYC4

� �
. The weight, w, is driven

by LAICYC (Fig. 3) since LAICYC appears more stable as compared to
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MODIS LAI (Verger et al., 2011). The threshold of LAICYC = 4 corre-
sponds to the value when LAICYC starts to saturate. The parallel process-
ing applied to both LAI and FAPAR (Eq. 1) is expected to keep a good
consistency between these two variables.

2.2.4. Scaling the fused products
The fused FAPAR products showed that the maximum values (at

99% percentile) are around 0.90 (Fig. 4b, dashed black line) although
the maximum values are expected to be close to 0.94 (Baret and
Guyot, 1991) corresponding to full cover dense vegetation with albe-
do in the PAR domain close to 0.06. Therefore, the fused values were
scaled according to

FAPARscaled ¼ 0:94
0:90

FAPARfused ð2Þ

The highest FCOVERCYC value was approximated by the 99% percen-
tile value, i.e. FCOVERCYC(99%) = 0.69 (Fig. 4c). This is in agreement
with results obtained by Verger (2008) showing that CYCLOPES
FCOVER product was underestimating actual values, although being
strongly linearly correlated with other regional products including
the SAF-Land one. It is thus proposed to correct for this systematic
underestimation by applying a scaling factor. This factor was computed
considering the highest FCOVERCYC values observed that should
correspond to full coverage (FCOVER = 1). The ‘scaled’ FCOVER prod-
uct, FCOVERscaled used later to train the neural network will thus be
computed according to

FCOVERscaled ¼ 1
0:69

FCOVERCYC ð3Þ

Note that oppositely to FCOVER and FAPAR products, no specific the-
oretical upper limit exists for LAI since values larger than 10 are often
reported at least at the local scale (Scurlock et al., 2001). Regarding
the theoretical lower bound (LAI = FAPAR = FCOVER = 0) corre-
sponding to bare soil, the cumulated frequencies displayed in Fig. 4b
do not show particular problems for the fused product. However
MODIS products show an offset of 0.25 for LAI (Fig. 4a) and 0.18
(Fig. 4b) for FAPAR values, confirming the previous observations of
McCallum et al. (2010). This bias was corrected by the fusion process
used for deriving GEOV1 where CYCLOPES LAI and FAPAR products
contribute the most for these low vegetation amounts.
mate variables and FCOVER global time series capitalizing over existing
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Fig. 4. Cumulated frequency of CYCLOPES (green solid line), MODIS (red solid line) fused (dashed black line for FAPAR) and scaled (black solid line) LAI (a), FAPAR (b) and FCOVER
(c) products as observed over the 420 BELMANIP2 sites during years 2003–2004.
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2.3. Training the neural networks

The inputs and outputs of the training dataset and the neural net-
work architecture and learning process are described in this section.

2.3.1. Inputs
The inputs of the neural network correspond to the bidirectional

reflectance factor (BRF) as measured by VEGETATION aboard SPOT.
They correspond to directionally normalized top of canopy reflec-
tance in the red, NIR and SWIR bands as derived from the CYCLOPES
L3a products. The preprocessing steps include cloud screening, atmo-
spheric correction based on a climatology of aerosols, and BRDF (Bi–
directional Reflectance Distribution Function) normalization using a
robust fit of Roujean's model (Hagolle et al., 2004; Roujean et al.,
1992). Details about the processing from L0 (raw signal) to L3a can
be found in the literature (Baret et al., 2007). However, the original
CYCLOPES L3a products were reprocessed to benefit from updated ra-
diometric calibration coefficients for the VEGETATION sensors. The
blue band was not considered here since it brings only little extra in-
formation on the surface as compared to the red, NIR and SWIR bands,
while being very sensitive to errors in the atmospheric correction
(Bacour et al., 2006). To match the spatial support used for the ‘best
estimates’ described earlier, the median was computed over the
valid pixels within the 3 × 3 = 9 potential ones. The median for
each band was preferred here, since the use of the 70% percentile
for each band would result in possible spectral inconsistencies
because the sensitivity of reflectance to canopy variables is different
between bands. Note however that the CYCLOPES L3a products
show a good stability over the BELMANIP2 sites which are relatively
homogeneous as earlier demonstrated by Verger et al. (2008).

In addition to the BRF in the red, NIR and SWIR bands, the algorithm
used the cosine of the median value of the sun zenith angle (θs) corre-
sponding to the valid observations during the 30 days window over
which the directionally normalized top of canopy reflectance values
were composited.

2.3.2. Outputs
The outputs correspond to the targeted LAI, FAPAR and FCOVER

variables. To further verify that the resulting ‘best estimates’ were
consistent, they were plotted against NDVI = (BRFNIR – BRFRed) /
(BRFNIR + BRFRed) values computed from the CYCLOPES BRF prod-
ucts in the red (BRFRed) and in the near infrared (BRFNIR). Cases
with NDVI b 0.05 were rejected since these values are not expected
over bare soil or vegetation pixels (results derived from NDVI values
computed for VEGETATION sensor bands based on a large database
of soil reflectance available at WWW2 and described in Liu et al.
Please cite this article as: Baret, F., et al., GEOV1: LAI and FAPAR essential cli
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(2002). Then, for each class of NDVI values (20 classes over the [0,
1] domain of variation), the cases with FAPAR or LAI values lower (re-
spectively higher) than the 5% percentile (respectively 95%) were
rejected. This allowed to further improve the consistency of outputs
with input reflectance values through NDVI as attested by Fig. 5.
Relatively few cases were observed for LAI between 3 and 4. This is
explained by the fact that forests that are the more likely to show
such median to high LAI values (Weiss et al., 2007) represent only
25% of the global land surfaces. Further, many forest sites are fre-
quently covered by clouds in addition to snow cover and poor illumi-
nation conditions that are frequently observed in winter for the high
northern latitudes. Although this situation is not ideal, the neural net-
works should be able to interpolate efficiently between the cases
available on both sides of this area.

The consistency of the output variables was further evaluated. As
expected, the relationship between LAI and FAPAR was keeping very
consistent as compared to the original CYCLOPES and MODIS prod-
ucts (Fig. 6). The same consistency is observed between LAI and
FCOVER as well as between FAPAR and FCOVER (results not presented
for the sake of brevity).

2.3.3. Neural network architecture and learning process
The previously described dataset is finally made of 14,200 cases

where consistent top of canopy directionally normalized reflectance
values are paired with ‘best estimates’ of LAI, FAPAR and FCOVER
values. This represents roughly 47% of the total 30,200 data potential-
ly existing over the 420 sites during the 2003–2004 period (72
dekads). The available data were randomly split into a training
dataset made of 90% of the data available, and a test dataset (10% of
the data) used for testing the hyper-specialization of the training pro-
cess and evaluating the theoretical performances. The large fraction
of data used for the training process allows getting a better represen-
tativeness of surface types and conditions considering the limited
time period (2 years) and sites considered (420 sites) and the large
fraction of missing data. The inputs and outputs are normalized to
prevent possible numerical problems during the training process.
Normalization is achieved by scaling between −1 and +1 the
range of variation of input and output values according to

xnorm ¼ 2
x−xmin

xmax−xmin
−1 ð4Þ

where x represents either the inputs or outputs, xmin and xmax are re-
spectively the minimum and maximum values of x and xnorm is the
corresponding normalized value.
mate variables and FCOVER global time series capitalizing over existing
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Fig. 5. Relationships between NDVI and both FAPAR (a) and LAI (b) ‘best estimates’. The red points correspond to the cases rejected that are outside the [5% 95%] percentile range.
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A back-propagation network architecture has been used since it
proves very efficient in similar problems (Baret et al., 2007; Verger
et al., 2010a). It is made of one hidden layer of 5 tangent-sigmoidal
neurons, and one output layer made of a single linear neuron. This
architecture includes 31 coefficients to be adjusted (25 synaptic
weights and 6 biases) providing more than 400 cases per coefficient
to be adjusted. The Levenberg–Marquardt optimization algorithm
(Ngia and Sjoberg, 2000) is used for adjusting the synaptic weights
and neuron bias to get the best agreement between the output
simulated by the network and the corresponding value of canopy
biophysical variable in the training dataset. The initial values of the
weights and biases were set to a random value between −1.0 and
+1.0. Three networks were trained in parallel for each targeted var-
iable with variation in the initial values. The one providing the best
performances over the test dataset was selected. Results obtained
during the training process showed that the three parallel networks
were performing very similarly, indicating a robust training process.
A dedicated neural network for each variable was preferred here to
using a unique network for estimating concurrently the three output
variables because the associated architecture is simpler, leading to an
easier training process while still providing very good consistency
between LAI, FAPAR and FCOVER estimated variables, similarly to
what is observed on the training dataset (Fig. 7).

The theoretical performances were evaluated over the test
dataset. It shows that the training was very efficient for the three vari-
ables. The dispersion around the 1:1 line is very small and no bias is
observed over the whole range of variation of the three variables
Fig. 6. Relationship between LAI and FAPAR for CYCLOPES (CYCV31 a), MODIS (MODC5 b)
period (14200 points).
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(Fig. 8). Note that LAI shows less accurate estimates for 3 b LAI b 4
because of the slightly lower number of data available for this LAI
range as seen in Fig. 5.

Further evaluation was achieved to check the specific perfor-
mances of the network for the main great vegetation types. Results
show (Fig. 9) that no biases are observed in the estimated LAI, except
a slight underestimation (LAIest – LAItrain ≈ 0.1). The positive and
negative residuals are always well balanced. The residuals are in-
creasing in absolute value from the low LAIs (Non-Forest) up to the
largest one (EBF). In case of EBF, most of the variability is imputed
to the remaining cloud contamination.

2.4. Associated uncertainties and quality assessment

All the QC flags associated to the top of canopy reflectance values
are available along with the products. They describe the nature of the
surface (land/sea), the presence of snow, the possible contamination
by clouds or cloud shadow, the aerosol characteristics used for the at-
mospheric correction, and the possible saturation of the radiometric
signal. Two additional qualitative assessment criterions more directly
dedicated to the biophysical products are provided along with a
quantitative estimation of the associated uncertainties. The way
they are computed is described hereafter.

2.4.1. Input out of range
Since the algorithm is based on a learning machine approach, it is

important to verify whether the inputs of a given observation keep
and ‘best estimates’ (c) as observed over the 420 BELMANIP2 sites during 2003–2004
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Fig. 7. Structure of the neural network used to derive LAI, FAPAR and FCOVER (the ‘Var’
box) from VEGETATION input reflectance in red (B2), NIR (B3) and SWIR as well as
illumination geometry (cos(θs)).

Fig. 9. Difference between the LAI estimated from the NNT (LAIest) and the ‘best esti-
mates’ LAI value used for the training (LAItrain) for the four main vegetation types:
Evergreen Broadleaf Forest (EBF), Needle leaf Forest (ENF), Deciduous Broadleaf Forest
(DBF) and Non-Forest. The red line, blue box and black whiskers represent respectively
50%, [25%,75%] and [5%-95%] percentiles. Outliers are indicated by stars.
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within the range of variation of the training dataset called here the
definition domain. If this condition is not fulfilled, the network will
run in extrapolation mode, with no warranty about the realism of
the outputs. The definition domain is limited by the convex hull
formed in the BRF feature space by the cases used in the training pro-
cess (Fig. 10). For the sake of simplicity and ease of implementation,
the 3D feature space formed by B2, B3 and SWIR bands was gridded
by dividing the range of variation of each band (Fig. 10 and Table 2)
into 10 equally spaced classes. The ensemble of cells containing data
used for the training form the definition domain. When the input
BRF values are outside the definition domain, i.e. outside cells
containing data used for the training, an ‘input out of range’ flag is
raised. Note that the sun zenith angle was not included in the descrip-
tion of the definition domain. This would have induced increased
complexity for marginal gain since the definition domains corre-
sponding to several sun zenith angles are largely overlapping.
2.4.2. Output out of range
The physical limits for the three variables are described in Table 3.

However, for LAI, the upper limit is not a physical limit, but a value
just slightly higher than the maximum value that can be reached by
the MODIS and CYCLOPES original products. Because of the several
sources of uncertainties associated to the inputs, the algorithm cali-
bration process including uncertainties attached to the original
MODIS and CYCLOPES products, a tolerance is set for the extreme
values: When the neural network provides biophysical variable esti-
mates outside their definition range the value will be always set to
the closest bound of the range, i.e. either the minimum or the
Fig. 8. Comparison between the ‘best estimates’ of LAI (a), FAPAR (b) and FCOVER (c) produ
The solid thick line corresponds to the median value. Dark, medium and light gray areas corr
class of actual values (20 classes are considered, from 0 to the maximum of actual values).
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maximum values (Table 3). The product uncertainty value will be
also set to its maximum value. However, the output status flag is
thus raised only when the output is outside the output range enlarged
by the tolerance values [Ptol

min , Ptol
max] as defined in Table 3.

2.4.3. Product uncertainties
The uncertainties associated to each biophysical variable are com-

puted over the training dataset: For each case in the training dataset,
an RMSE value is computed over the biophysical variables that have
their corresponding input BRF values within the uncertainty domain
(Fig. 11). Further, the sun zenith angles selected have also to be with-
in ±5° around the direction of the case considered. Uncertainties on
reflectance are derived from Baret et al. (2007): The standard devia-
tion, σ, is computed for each waveband according to the uncertainty
model reported in Table 4:

σ ¼ aþ b⋅BRF ð5Þ

where a and b are coefficients.
cts and the values estimated from the trained neural networks (called NNT estimates).
espond respectively to [25% 75%] [10% 90%] and [1% 99%] of the estimated cases for each
The data correspond to the test dataset (n = 1420).
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Fig. 10. Definition domain for input VEGETATION Top of canopy directionally normalized BRF values in B2, B3 and SWIR bands. Axes are scaled between 1 to 10, corresponding to
the 10 classes of reflectance values ranging between the minimum value (class 1) and the maximum value (class 10). The cells containing data from the training dataset are
represented in black. They form the definition domain.
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A neural network is then trained to relate these computed RMSE
values to the corresponding input variables. This learning process is
similar to what was previously achieved for the product estimation
itself and the network has the same architecture as the one used for
the derivation of the products (Fig. 7). The same normalization as
used for the variables is also applied for the inputs and outputs of
the neural network dedicated to uncertainties. Results (Fig. 12)
show that the model of uncertainties is relatively robust for LAI,
FAPAR and FCOVER, with however some degradation of performances
for the larger values of the biophysical variables.
3. Operational production and dissemination

The GEOV1 processing line was derived from the CYCLOPES V3.1
processing line which has been used to generate the 1999–2007 time
series of CYCLOPES products (WWW3). It has been adapted to consider
the specificities of the GEOV1 products in terms of algorithm, and out-
put format requested by the users. It has also been consolidated to fit
the software conventions (general coding rules, computer platform is-
sues, filename and directory conventions) defined by the operational
processing center. At different stages of the development process,
reviews have been carried out to check that the several input specifica-
tions were answered in the design of the processing line. Further, a
rigorous methodology of validation based upon unit and integration
tests, as well as scientific analysis of the output using tools including
visual control and statistical metrics has been applied.

Before its integration in the operational processing center, the pro-
cessing line has been run to generate 2 years (2003–2004) of GEOV1
Table 2
Range of variation of BRF values (minimum and maximum) observed in the training
dataset and used to compute the definition domain.

Minimum Maximum

B2 0.000 0.429
B3 0.036 0.547
SWIR 0.000 0.648

Table 3
Minimum, maximum, resolution and tolerance values used to raise the output out of
range flag.

Minimum Maximum Resolution Tolmin Tolmax

LAI 0 7.0 0.01 −0.2 7.20
FAPAR 0 1.0 0.01 −0.05 1.05
FCOVER 0 1.0 0.01 −0.05 1.05
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demonstration products used to perform the validation exercise
presented in Camacho et al. (in press). They have also been supplied
to Geoland2 users who checked the consistency with their require-
ments before starting the operational production of real time and the
whole 12 years time series processing of observations. The processing
line has been optimized to ensure operational management with per-
manent QC while benefiting from the variable computation resources
available for parallel processing.

The GEOV1 products are generated in multi-band hdf5 format
(the variable, its uncertainty, the quality flag, the number of input ob-
servations, and the land–sea mask) and in tiles of 10° × 10° covering
the land surfaces of the whole globe. They are available in open access
through the Geoland2 web platform (WWW4) where users can
browse the catalogue, order the products after registration, and
subscribe to receive the products. The GEOV1 products are also dissem-
inated via the Eumetcast system to African and South American users.
4. Conclusion

The GEOV1 LAI, FAPAR and FCOVER products capitalize on the ef-
forts undertaken this last decade in the development and validation
of biophysical products from medium resolution observations. The
pragmatic approach used here is based on the fusion of CYCLOPES
Fig. 11. Scheme showing how the uncertainties attached to the products were computed.
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Table 4
Values of the uncertainty model used for the input BRFs.
From Baret et al. (2007).

B2 B3 SWIR

a 0.005 0.003 0.005
b 0.05 0.03 0.03
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and MODIS products that were demonstrated to perform the best.
However, their deficiencies observed respectively for low LAI values
for MODIS and high LAI values for CYCLOPES have been corrected in
the fusion process. Further, the resulting FAPAR and FCOVER products
have been scaled to reach the theoretical upper limit expected for
high vegetation amounts. Finally, one of the main advantages of the
GEOV1 algorithm is that it did not explicitly use a biome classification
that introduces some spatial inconsistencies and sometimes temporal
inconsistencies (when class assignment change unexpectedly) as
outlined by Yang et al. (2006a) for MODIS.

The approach undertaken here was not calibrated using ground val-
idationmeasurements, preserving the required independency between
calibration and validation processes. However, this led to use a more
pragmatic approach based on heuristic arguments that explains the
sometimes subjective selection of criterions used in the development
of the GEOV1 algorithm and several alternative solutions could have
been proposed. Nevertheless the GEOV1 products resulting from the
largely inductive approach undertaken yield robust, consistent and ac-
curate estimates of these key biophysical variables as demonstrated in
Camacho et al. (in press). The validation shown in the companion
paper demonstrates that GEOV1 significantly improved the perfor-
mances of currently existing products, both regarding accuracy and
spatial as well as temporal consistency. It provides quantified estimates
of uncertainties, although these are simply derived from the training
dataset that reflects mostly the sensitivity of the product to input re-
flectance values. Further investigations should be directed towards a
better quantification of the uncertainties, including ‘model’ assump-
tions since both MODIS and CYCLOPES are based on radiative transfer
model inversion.

A clear understanding of the actual definition of the retrieved vari-
ables and their consistency with application requirements is one of
the key aspects to consider when deriving biophysical variables
from remote sensing observations. For FCOVER, no particular question
is raised since the FCOVER definition is simple and clear if restricted to
the green vegetation elements including overstory and understory.
For FAPAR, because of the good consistency between MODIS and
CYCLOPES definitions, the output product is also well defined:
black-sky FAPAR (green element including over and understory) at
Fig. 12. Theoretical performances of the neural network model used to describe RMSE valu
observation.
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10:15 (actually between 10:00 and 10:30). For LAI, the question is
more complex since the original MODIS and CYCLOPES LAI products
are defined differently, at least with regards to the assumptions em-
bedded in the radiative transfer models used. For MODIS, clumping
at the tree scale is accounted for, but not at the shoot, nor at the land-
scape scales. For CYCLOPES, clumping is accounted for at the land-
scape scale only. However, its effect will be significant mainly for
the larger LAI values as discussed by Garrigues et al. (2006). There-
fore, GEOV1 LAI product will marginally account for landscape
clumping as demonstrated by the good consistency between MODIS
and CYCLOPES LAI products for low to medium LAI values (Camacho
et al., in press). However there is a special case of savannas with rel-
atively low LAI values and significant clumping (Ryu et al., 2010). In
this case, the radiation interaction between plants that are separated
by significant distances is minimal, and clumping described at the
plant level in MODIS may be approximated at the landscape scale as
in CYCLOPES. Clumping at the shoot scale will not be accounted for
in GEOV1 LAI product since neither MODIS, nor CYCLOPES account
for it. Conversely, clumping at the plant scale was accounted mainly
for forests and savannas in the original MODIS product but not in
the CYCLOPES ones. However, clumping is mainly observed for the
higher LAI values (overlap between leaves within the tree volume
when the number of leaves increases) (Rochdi, 2003). Therefore,
clumping at the plant scale as described in MODIS products should
be partly preserved in the GEOV1 LAI product. The validation
achieved in the companion paper (Camacho et al., in press) over a
limited number of sites demonstrates that the GEOV1 LAI products
are close to the values estimated from indirect techniques and that in-
clude the clumping effect.

These products may thus be used in a range of applications includ-
ing those targeted for the ECVs and fulfill the needs for GMES and the
GCOS task dedicated to the operationalization of the generation of
FAPAR and LAI products. The GEOV1 products initiate a service whose
sustainability is planned within the GMES Land Monitoring Core Ser-
vice by adapting the algorithm, and the processing chain, to AVHRR/
Metop, PROBA-V, and Sentinel-3 missions. Further, it will be completed
backward using the AVHRR data as processed by Vermote et al. (2010)
to get a long and consistent time series of more than 30 years.

Although the development of this series of biophysical products
should represent an important step towards a more effective use of
remote sensing observations, improvements are expected mainly
through several aspects. Clouds constitute obviously the major limita-
tion of optical systems that suffer from large areas and periods with-
out data. Recent studies demonstrate that the fusion between several
sensors improves data continuity (Hagolle et al., 2005; Verger et al.,
2010b; Yang et al., 2006b). Alternative approaches based on enhanced
es for LAI (a) FAPAR (b) and FCOVER (c) from input reflectance values and geometry of
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time series processing may help removing outliers, filling gaps due to
missing observations and smoothing the temporal profiles (Kandasamy
et al., 2013; Verger et al., in press). However, the main limitation in
such global products comes mainly from the little a priori information
available and required to regularize the inversion process (Combal et
al., 2002). The use of global classification is likely to be insufficient be-
cause of its limited accuracy (Defourny et al., 2009; Herold et al., 2008;
Yang et al., 2006a) and because the variability in canopy architecture
and optical propertieswithin a given class is probably as large as between
classes when the seasonal variability is considered. Further, the often
mixed nature of kilometric pixels poses both a scaling issue and the diffi-
culty to identify the several co-existing surface patches. These problems
call for an improved spatial resolution that will allow resolving most of
the vegetation patches and will authorize identifying the corresponding
vegetation type from the past observations and use it as prior informa-
tion. Such systems are currently being available with hectometric reso-
lutions, such as the PROBA-V (300 m daily), Sentinel-3 (300 m every
2 days), and VIIRS (370 m daily). However, decametric systems such
as Sentinel-2 or LDCM (Landsat Data Continuity Mission) in combina-
tion with the previous hectometric ones would probably provide the
most efficient observation system.
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