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From top-of-atmosphere (TOA) observations, atmospheric correction for ocean color inversion aims at
distinguishing atmosphere and water contributions. From a methodological point of view, our approach relies
on a Bayesian inference using Gaussian Mixture Model prior distributions on reference spectra of aerosol and
water reflectance. A reference spectrum for the aerosol characterizes the specific signature of the aerosols on
the observed aerosol reflectance. A reference spectrum for the water characterizes the specific signature of
chlorophyll-a, suspended particulate matters and colored dissolved organic matters on the observed sea surface
reflectance. In our Bayesian inversion scheme, prior distributions of the marine and aerosol variables are set con-
ditionally to the observed values of covariates, typically acquisition geometry acquisition conditions and pre-
estimates of the aerosol and water reflectance in the near-infrared part of the spectrum. The numerical inversion
exploits a gradient-based optimization from quasi-randomized initializations.
We evaluate our estimates of the sea surface reflectance from the MERIS TOA observations. Using the MERMAID
radiometric in-situ dataset, we obtain significant improvements in the estimation of the sea surface reflectance,
especially for the 412, 442, 490 and 510 nm bands, compared with the standard ESA MEGS algorithm and the a
state-of-the-art neural network approach (C2R). The mean gain value on the relative error for the 13 bands be-
tween 412 and 885 nm is of 57% compared with MEGS algorithm and 10% compared with the C2R. The water
leaving reflectances are used in Ocean Color for the estimation of the chl-a concentration, the colored dissolved
organic matters absorption and the suspended particulate matters concentration underlying the potential of such
approach to improve the standard level 2 products in coastal areas. We further discuss the potential of MEETC2
for the incoming OLCI/Sentinel 3 mission that will be launched in December 2015.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

900 nm) is an issue as many algorithms expect these reflectances to
be null. This assumption is called the black pixel hypothesis and relies

The inversion of Ocean Color signal in coastal areas from top-of-
atmosphere (TOA) measurements remains a scientific challenge. This is
a crucial point for the ocean color community as many governmental
policies such as the European Water Framework directive (WFD)
rely on estimation of coastal water quality, itself possibly derived
from space-based ocean color measurements (http://ec.europa.eu/
environment/water/water-framework/index_en.html). Hence, ocean
color inversion is certainly among the highest priority research topics
for ocean color community. Different aspects may explain the difficul-
ties encountered in this inversion process. Firstly, the contribution of
suspended matters to the reflectance in the near infrared range (700-
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on the strong natural absorption of the water in this domain (Antoine
et al,, 2006, be Gordon & Wang, 1994). Secondly, bio-optical modeling,
i.e. the estimation of the water-leaving reflectance from the Inherent
Optical Properties (IOPs, namely the absorption and backscattering of
the sea water constituents) in complex coastal waters is also challeng-
ing. Despite accurate physical models exist for open clear waters that
cover 85% of the oceans, their derivation for coastal waters is more com-
plex (IOCCG Report 3&5, 2000; Maritorena, Siegel, & Peterson, 2002).
Lastly, aerosol and water reflectance spectra may show important cor-
relation in the near infrared, a spectral domain typically used by the
standard algorithms to distinguish the two contributions.

As a consequence, available operational standard level-2 reflectance
products may perform poorly in coastal areas, and consequently these
products are often flagged as anomalous values for such areas (MERIS
DPM, 2005). The result for end users is typically that very few
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observations are available in coastal areas if the standard flags are ap-
plied. For available pixels in coastal turbid waters, reflectances in the
blue and green bands are often underestimated and may involve
physically-meaningless negative values (Goyens, Jamet, & Schroeder,
2013; Jamet et al.,, 2011). Park, De Cauwer, Nechad, and Ruddick
(2004) show this strongly affects the relevance of level-2 products for
the end users, which typically use water-reflectance spectra as inputs
to estimate the chlorophyll-a and the suspended particulate matter
concentrations (SPM, Doxaran, Froidefond, Lavender, & Castaing,
2002), or the vertical light attenuation (Jamet, Loisel, & Dessailly,
2012; Morel, Gentili, Chami, & Ras, 2006; Saulquin et al., 2013; Wang,
Son, & Harding, 2009).

Over the last fifteen years, many coastal water algorithms have been
developed to address user's needs for reliable water-reflectance data in
coastal areas. Among them, the Schiller and Doerffer (1999) MERIS
Case2-Regional (C2R) is based on a non-linear machine learning
model, namely a Neural Networks (NN, Krasnopolsky & Schiller, 2003;
Schiller & Doerffer, 1999), and estimates water reflectance over turbid
areas. The learning paradigm relies on the calibration of a non-linear
model to relate the available satellite-derived observations to the geo-
physical quantity of interest from a training dataset. This training
dataset typically consists of a collection of in-situ measurements along
with the satellite-derived measurements. This learning-based strategy
may suffer from two major drawbacks: weak geophysical and biological
interpretability of this ‘black-box’ model and the assumption on the rep-
resentativity of the training dataset. They may restrict the applicability
of the model to a specific region and question its validity with respect
to the generally unknown variability of the atmospheric and water
conditions.

Here, we develop a Bayesian latent class approach to address these
limitations. To our knowledge, Bayesian model mixtures have been sel-
dom explored for ocean color inversion (Frouin & Pelletier, 2014). The
key feature of our model is the inversion of water and atmospheric sig-
nals from TOA observations using a multi-hypothesis setting. Rather
than considering a single model, linear or not, we develop a Bayesian
framework where the priors stated as mixture of models. Mixture
models are trained both for water and aerosol contributions and lead

to the identification of the reference spectrum families characterized
by their mean spectrum and the associated covariance matrices. This
training phase exploits in-situ data or radiative transfer simulations in
the atmosphere and the water (Barker et al., 2008; Berk et al., 1999;
Deuzé, Herman, & Santer, 1989). Contrary to the machine learning ap-
proaches (NN, or Support Vector Regressions, SVR; Burges, 1998), the
identified a priori distributions of the water and aerosol variables are
directly linked to interpretable water types or atmospheric spectra.

Our inversion scheme, referred to hereafter as MEETC2, is applied to
the estimation of water reflectances from the MEdium Resolution Imag-
ing Spectrometer (MERIS) TOA observations. Nevertheless the method-
ology is generic and may be directly applied to other sensors such as the
incoming OLCI sensor embedded onto the sentinel 3 platform. Model
calibration and validation involve the MEris MAtchup In-situ Database
(MERMAID) radiometric in-situ dataset (Barker et al., 2008). Quantita-
tive comparisons with the standard MEGS v8 (Antoine et al., 2006)
and the MERIS C2R Neural Network outputs clearly demonstrate the
relevance of our approach.

2. Review of the standard ocean color inversion method
2.1. Atmospheric correction principles

Ocean color sensor measures at TOA the upwelling radiance (L) in
mW.m ™~ 2.sr~ ! backscattered by the ocean-atmosphere system. This ra-
diance originates from photons scattered by air molecules and/or aero-
sols, which may also have been reflected directly at the sea surface
(glint effect, Cox & Munk, 1954a,b), and may potentially have penetrat-
ed into the ocean. The measured TOA reflectance (proa) is the ratio be-
tween the upwelling radiance L, and the downwelling irradiance Eg, i.e.
L, integrated over the solid angle [0;2m]. The water reflectance contri-
bution measured at TOA, i.e. transmitted through the atmosphere, is
generally lower than 20% of the signal (Robinson, 2004). Due to this
low signal/noise ratio, the unmixing of the atmospheric contribution
from the water one reveals particularly complex. This inversion proves
even more complex in coastal areas where the spectral water contribu-
tion may be correlated with the aerosol contribution.

1/ Estimation of ¢:
geometry conditions and Bright Pixel Estimation (BPE)

2/ Updates of the a priori distribution
of xa& x given ¢ (Eq 6)

3/ 25 random initializations given the a priori distribution. For each initialization

X = [ )
X X =argmin "a-"wf (xa. X td(m w);pgc)

N

s B
4/ Optimal solution for X, X,
(i.e. the maximum posterior likelihood for the 25 initializations)

A 4
/> N
V4 PV

-

Level 2 py, Paer ] [ Uncertainties apy, Opaer
7

Fig. 1. Operational scheme for the atmospheric correction MEETC2 bayesian inversion.
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The traditional signal decomposition expresses measured TOA re-
flectance for each wavelength \ as a sum of elementary contributions:

pgc()\) = pRay ()\) + Paer (}\) +1q (}\)‘pw ()\) + pcoupl(}\) + 8()\) (])

where pg. is the observed TOA reflectance proa corrected from the
glint and gaseous absorption, prqy (known) the reflectance of a purely
molecular atmosphere (no aerosol), pger (unknown) the reflectance of
the aerosols, peoupr (unknown) the coupling between air and aerosol
molecules, ty (unknown) the diffuse transmittance of the atmosphere,
pw (unknown) the water reflectance which is here the main quantity
of interest to be estimated. All the considered reflectances are dimen-
sionless in Eq. (2). We consider a multivariate normal (MVN) distribut-
ed noise € with null mean and spectral covariance matrix 3. The
Rayleigh-corrected reflectance variable prc(A) (Antoine & Morel,
1999; Gordon, Du, & Zhang, 1997; Santer, Carrere, Dubuisson, & Roger,
1999) is expressed as:

PRC(}\) = pgc(}\) - pRay()\) = paer()\) + td()\)-pw ()\) + pcoupl()\) + 8()\) (2)

The diffuse transmittance tq is the product of both air molecules and
aerosol particles scattering:

tg(A) = e~ [05 TN +(1-Wa(d). Fa()).7a(A) |- M 3)

where 7,4,(A) is the Rayleigh optical thickness, 74(A) the aerosol op-
tical thickness, M the air mass factor, w, the aerosol single scattering al-
bedo, and F, the forward probability scattering. 7, is linked with the
estimated aerosol reflectance for primary scattering (MERIS DPM,
2005):

P(A).wa(N) TN
c0s(0s) + cos(0v)) (] —e ) ()

paer()\) = 4(

where P(\) is the aerosol phase function and Wa(A) the single scat-
tering albedo for the current scattering angle, ©s and v are respectively
the sun and the view zenith angles. For a fixed geometry, aerosols con-
tributions in the NIR are often assumed to follow an exponential decay
(Gordon & Wang, 1994):

paer()\) = Paer ()\O)ec(hi}\o) (5)
where A\g =865 nm and c is the exponential decay of the aerosol

spectrum, i.e. representative of the aerosol type. Though relevant in
the NIR domain, the assumption of an exponential decay appears

In-situ p,, () radiometric dataset

reflectance

(2\)+pmupl(?s.) reference spectra

Paer
005

004

reflectance

A (nm)

Fig. 3. The 25 aerosol modes reconstructed from the GMM and Eq (6).

too restrictive in the 400-700 nm range where multiple scattering
between aerosol and air molecules may become significant. Follow-
ing Steinmetz, Deschamps, and Ramon (2011), a polynomial model
is considered to provide a more general model of aerosol contribu-
tions. Using our training dataset (cf § 4) a polynomial model of
order 3 was found as relevant to estimate the aerosol contributions:

Paer(X) = Paer(No) + a1(A—Ag) + az(A—Ag)? + a3 (A-Ao)? (6)

2.1.1. The MERIS standard processing atmospheric correction scheme

In the standard Level 2 processing of MERIS, the following four-step
scheme is applied to estimate the water-leaving reflectances (Antoine &
Morel, 2005):

1/The signal is corrected from absorbing gaseous such as ozone,
oxygen, water vapor and nitrogen dioxide.

2/The estimated contribution of suspended matter particles in the
NIR is removed from TOA observations after single scattering transmit-
tance through the atmosphere. This step is known as the Bright Pixel At-
mospheric Correction (BPAC, Aiken & Moore, 2000) and detailed in the
next section.

3/A mixture of two aerosol models among 34 (for MERIS) is estimat-
ed from the values of ratio Ppeth = Pgc/Pray (EQ. (2)) at 779 and 865 nm,

MERIS TOA Py.(A) radiometric dataset

o
&
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reflectance
o
o
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Fig. 2. Left, the 5976 in-situ water reflectance spectra. Right, the corresponding (matchups) pgc (TOA) observed from the MERIS sensor.
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Fig. 4. Left, the reference spectral signature basis, W(\), estimated using NNMF with projected gradients. Right, the 35 reference water models reconstructed using the GMM centers and

Eq. (7).

leading to the estimation of both the aerosol reflectance pge(A) and the
multiple scattering transmittance ty(\) (Eq. (3)).

4/Water reflectance contribution is estimated by subtracting the
estimated aerosol contribution from pge(A) using Eq. (2).

2.1.1.1. The Bright Pixel Atmospheric Correction (BPAC). Whereas, in
open ocean waters, one can exploit null contribution of water reflec-
tance in the near infrared (NIR) range to infer aerosol contributions,
no such simple inversion scheme applies in coastal waters, which
are characterized by a non-null contribution in this domain
(Ruddick et al., 2005; Ruddick, De Cauwer, Park, & Moore, 2006)
and possible correlations between atmospheric and water spectra.
This is a major issue to be dealt with in the atmospheric corrections
in coastal waters. BPAC is an iterative algorithm which aims at re-
moving the water contribution, caused by suspended matters, of
the TOA observed reflectance (Moore, Aiken, & Lavender, 1999).
This step is essential in the standard MERIS level 2 processing as
the estimation of the aerosols is performed using the NIR bands
under the assumption p,,(NIR)=0. Moore proposed for MERIS
a two-steps algorithm which iterates: i) the estimation of
Paer(709,865), c and pger(779) using Ppain(779,865), ii) using the es-
timated residuals p,, in the NIR from Eq. (2) and a parametric model,
the estimation of the SPM concentration and related p,, at TOA. This
converging algorithm suffers from important drawbacks for very
turbid waters. In such areas, the considered water model does not
allow retrieving high concentrations of SPM (Goyens et al., 2013).
It typically leads to an over-correction of the blue water-
reflectance, i.e. an underestimation of p,, at 412 and 442 nm with
the standard Level 2 processing, and may resort to geophysically-
meaningless negative reflectance values.

3. Method

3.1. Spectral reference signatures of the sea water using Non-negative
matrix factorization

Given the spectral overlap of water and aerosol contributions espe-
cially in coastal areas, inversion of (Eq. (1)) requires some prior knowl-
edge on water contributions. We propose here to determine from the
training dataset a parametric spectral representation of water contribu-
tions. We use here a Non-Negative Matrix Factorization (NNMF) with
projected gradients (Lin, 2007). Similarly to PCA, it relies on an additive
decomposition on a basis learnt from the data. In contrast to PCA, it does
not involve orthogonality constraints but imposes non-negativity for
both the basis function and the projection coefficients. NNMF is
among the most popular approaches in multispectral and hyperspectral

remote sensing as a mean to unmix contributions issued from various
sources in a sensed environment (Jia & Qian, 2009). Formally, NNMF
leads to the following parametric representation of a given water spec-
trum py, (A):

Pw (N) = 2 h(m). WA, ) ()

where W(A,n)>0 is the spectral reference signature basis identified
by NNMF using the training data, and h(n)>0 refer to the coordinates of
the spectrum p,, in the decomposition space. It may be noticed that
NNMF decomposition could also be replaced here by a bio-optical
model. Nevertheless, to our knowledge none of this model is today
performant enough to estimate, in coastal areas, the water leaving re-
flectance spectrum from the water's constituents. The NNMF decompo-
sition, by imposing non-negativity of both the coordinates and the
reference spectral signatures appropriately constrains our inversion to
converge toward physically-realistic solutions (cf § 4.3.1) conversely
to the standard Level-2 processing (ESA and NASA). In our case, four
spectral reference signatures were needed to address the training in-
situ spectrum variability (cf 4.2).

3.2. Bayesian setting

From Eq. (1), the variables to be estimated are X,, = {h;}, i.e. the coor-
dinates of p,, in the basis W (Eq. (7)), and X, = {a;} i.e. the polynomial co-
efficients of the aerosol models (Eq. (6)). Conversely to a standard least
square estimation framework, Bayesian inversion does not only rely on
the minimization of the residuals 6pg-_prc — Prc but also the likelihood
of the estimated X, and X,, compared the priors. Formally, we consider
the Maximum A Posteriori estimation (MAP, Harold & Sorenson, 1980)
which aims at maximizing the posterior probability P(X,, Xw|Prc,®)

P(Xa, XwlPrc, @) & P(PpclXa, Xw, @).P(Xa, Xw| @)
We suppose here that x, and x,, are independent i.e. : (8)

P(Xa, Xw|pPre, @) @ P(Pre[Xa, Xw, @).P(Xa| ©).P(Xw| )

The first term P(pgc|Xa,Xw, @) is the likelihood of the observation
model (Eq. (1)) with respect to variables X,, X,y and ¢. ¢ is here a vector
of covariates composed of the observation geometry values and pre-
estimates of the water and aerosol contributions in the NIR performed
in the bright pixel estimation step (BPE, § 4.3). P( X,| ©) and P( X,y| @)
refer to the priors on X, and X,, variables given the covariates.

In the proposed Bayesian framework, P(prc | Xa,Xw,© ) is modeled
with a multivariate normal distribution with a null mean vector and
full covariance matrix 3. As detailed in the next sections, P(X,| ¢)
and P(X,y| ©) a priori distributions are modeled using a mixture of
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Fig. 5. Comparisons between the estimated p,, at 412, 442, 490, 560, 665 and 681 nm using MEETC2 vs in-situ (red), MEGS 8 vs in-situ (blue) and C2R (NN) vs in-situ (green).

MVN distributions, namely a Gaussian Mixture Models (GMM,
Reynolds, 1995). The MAP criterion cost function is finally expressed
using the log likelihood:

C = — log(P(Xa, XuulPrc, ©)) ©)

3.2.1.1. Covariates and non-homogeneous prior distributions.

Covariates are geophysical parameters significantly correlated with
the variables of interest. From a physical point of view, the observed
shape of aerosol reflectance spectrum pge(\), i.e. a; coefficients of
Eq. (6), is correlated with the variables which describe geometry of ac-
quisition conditions (©s, the sun zenith angle, ©v, the view zenith angle,
and &5, the delta azimuth), and the variables which describe the aerosol
type and quantity, pq.-(865) and c (Eq. (5)), estimated using the NIR

part of the spectrum (cf § 4.3). To characterize the correlation between
variables and possible covariates, we use a linear discriminant analysis
(McLachlan, 2004) and the training dataset.

The selection of the significant contributors led to consider ¢, =
{Paer(865),c,06v,06s} for the aerosol variable X, and ¢,=
{pw(780),c,6v,0s,6Us} for the water variable X,,. To derive the priors
of X, and X,,, we model the joint distributions P(X,,©,,) and P(X,,®4)
as GMMs. These models are fitted using the training dataset and the Ex-
pectation Maximization algorithm (Dempster, Laird, & Rubin, 1977):

P, @) = > Aigsy (K@ wd—Hix,o,,)
Zw=i (10)

P(Xa, @) = ZAj o) ({Xm‘Pa}_lJ{xa,@ﬂ}j)
Za=j J
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Table 1

Statistical analyses of the estimated water reflectances vs. in-situ data for the proposed
Bayesian model (MEETC2), the standard MEGS processor and the neural-net-based
algorithm C2R. For each wavelength, we report the mean error (bias), the slope of the
regression with the in situ data, the associated R? score and standard deviation, 6. We
report in bold the algorithms which provided the best performance.

N(nm) Mean error Slope R? (Pearson) o
412.5 MEETC2 —0.0004 1.14 0.70 0.0039
MEGS —0.0083 0.44 0.16 0.0149
C2R —0.0023 0.42 0.15 0.0075
4425 MEETC2 —0.0002 113 0.75 0.0041
MEGS —0.0060 0.39 0.38 0.0128
C2R —0.0031 0.31 0.60 0.0060
490 MEETC2 0.0004 0.97 0.77 0.0049
MEGS —0.0033 0.92 0.76 0.0098
C2R —0.0022 0.77 0.57 0.0046
510 MEETC2 0.0007 0.96 0.85 0.0046
MEGS —0.0020 091 0.65 0.0085
C2R —0.0013 0.72 0.78 0.0040
560 MEETC2 0.0007 1.04 0.88 0.0049
MEGS —0.0007 0.95 0.81 0.0056
C2R —0.0007 0.88 0.90 0.0050
620 MEETC2 0.0006 1.00 0.93 0.0038
MEGS —0.0014 1.05 0.85 0.0050
C2R —0.0012 0.97 0.90 0.0039
665 MEETC2 1.1809e — 03 0.97 0.88 0.0033
MEGS —0.8881—-03 1.07 0.85 0.0043
C2R 0.2650-03 1.02 0.88 0.0033
681 MEETC2 0.0657e —03 0.99 0.92 0.0033
MEGS —0.6257e—03 1.06 0.85 0.0041
C2R 0.5037e —03 1.02 0.89 0.0033
708 MEETC2 —0.0136e — 03 094 0.87 0.0030
MEGS —0.6400e — 03 1.13 0.83 0.0039
C2R 0.7668e —03 1.10 0.87 0.0037
753 MEETC2 0.2656e —03 0.90 0.90 0.0014
MEGS —0.4222e—03 135 0.78 0.0027
778 MEETC2 0.2418e — 04 0.90 0.89 0.0014
MEGS —0.4084e — 04 1.21 0.74 0.0029
865 MEETC2 0.3793e — 04 0.94 0.88 0.0009
MEGS —0.2259e — 04 1.02 0.75 0.0017
885 MEETC2 0.2794e — 04 0.95 0.88 0.0007
MEGS —0.2269e — 04 1.02 0.88 0.0014

We use subscript i (resp. j) for the water-specific (resp. Aerosol-
specific) GMM. /; is the prior probability of mode i in the GMMs. It refers
to the probability of the hidden state variable Z,, to be in mode i, i.e.
P(Zy =1) (resp. P(Za=]))- 8s,,.. . (TESP- 85, ;) IS @ zero-mean MVN
distribution with covariance matrices 3x, ¢ 3, (resp. 2x, ¢ ,3,) and
mean Vector fx, o 3, (resp. tx, o ) for the joint variables {Xu,¢ w}
(resp. {X,,© 4}) for mode i (resp. j).

Given the covariate values and the a priori distributions of Eq. (10)
we derive the conditional a priori distributions:

POXIew) = 3 Ao Es, (Kot o)
Zw=i

P(Xﬂ|(‘Pa) = ZA]'\%gExa\%} (Xa_yxa\‘PaJ)
Za—j '

These non-homogeneous priors on X, and X,, involve conditional
means, covariances and priors given the covariates and the initial
GMM model estimated onto the joint variables. For instance, for mode
i of the aerosol prior, the conditional parameters are given by Petersen
and Pedersen (2008):

B oj = EXal® 0, Za = J) = iy, j + Exa-npavj-zgl,j '(‘P “_“m)
—1
3%l 0 = 2Xaf T 2Xa® 0rf 2 g1f 20 o Xaj (12)
Moo i = N PXal@ 0.Za = )/ D Aj - PXal® 4, Za = 1)
1

3.3. Functional scheme

Fig. 1 summarizes the functional scheme for the proposed Bayesian
inversion given the calibrated model parameters, i.e. means and covari-
ance matrices for the GMM models and the MVN distribution of the re-
siduals, pgc(A) — pre(N), of Eq. (1). In the first step, the Bright Pixel
Estimation (BPE) is based on the water similarity spectrum (Ruddick
et al,, 2005) to estimate p,,(780), Pqer(865) and c the slope of the aero-
sol. An iterative convergent algorithm is used. Given the estimated co-
variates, we update in step 2 the GMM for X, and X,, conditionally to
the covariates (Eq. (12)). Steps 1 & 3 involve gradient descent based in-
versions and a taylor series of Eq. (4) (Levenberg, 1944). As the MAP cri-
terion may not be a concave criterion, the initialization of the gradient
descent, step 3, is a key issue as gradient-based maximization may con-
verge toward local minima. We proceed as follows: 25 aerosol parame-
ters are randomly generated using the updated distributions. X,y
initialization is performed using the estimated p,, (780), X, initialization
and Eq. (2). Overall, among the 25 computations, we select in step 4 the
solution corresponding to the highest value of the MAP criterion
(Eq. (9)).

4. Numerical Experiments

To validate the proposed methodology, the 5976 radiometric in-situ
profiles have been randomly split into two sets of equal size: a training
and a validation dataset. Model parameters are estimated using the
training dataset. The optimal number of clusters, k, used in the GMM
to estimate X, and X,y a priori distributions, is determined using the
Bayes Information Criterion (BIC) (Bhat & Kumar, 2010) and the
explained variance criterion (Saulquin et al., 2015). Validation is per-
formed with the validation dataset, using scatter plots between estimat-
ed and in-situ p,,(A), histograms, and related regression statistics. We
evaluate type-II regression statistics, i.e. a regression model that ac-
counts for uncertainties for both y and x as the in-situ measurements
also involves uncertainties (Laws, 1997).

4.1. The in-situ MERMAID dataset

The MERMAID (http://hermes.acri.fr/mermaid/home/home.php)
in-situ matchup database is a comprehensive dataset that gathers in-
situ measurements of sea surface reflectances, IOPs, and MERIS TOA re-
flectances measured at the same location. Many sites are available and
among them, the most known are the NASA bio-Optical Marine Algo-
rithm Dataset (NOMAD, Werdell & Bailey, 2005), the “BOUée pour
l'acquiSition d'une Série Optique a Long termE” (BOUSSOLE, Antoine
et al., 2006) mooring program, the Aerosol Robotic Network (AERONET;
Zibordi et al., 2009; Holben et al., 1998) stations, the Helgoland transect
(Petersen, Wehde, Krasemann, Colijn, & Schroeder, 2008) that provides
a full dataset of radiometric in-situ measurements in the Baltic Sea com-
plex waters, and the MUMM Trios dataset (Ruddick et al., 2006). Our
initial dataset gathers 5976 matchups (without glint) measured at the
MERIS wavelengths: 412.5, 442.5, 490, 510, 560, 630, 665, 681, 708,
753.75, 778.75, 865 and 885 nm. For each in-situ measurement of Fig.
2 (left), we use the corresponding 3 by 3 MERIS pixels (Bailey &
Werdell, 2006).

4.2. Calibrated priors

A 25-mode mixture model (cf § 3.3) was selected to model the joint
distribution of {X, ¢ 4}. Fig. 3 shows the 25 aerosol modes reconstructed
from the GMM centers for pg.-(865) = 0.01.We remind that the estimat-
ed distribution of {X,, © 4} involves a full covariance matrix 30y, for
each mode that is accounted for in the maximization of Eq. (8).

From the NNMF applied to the in-situ water spectra, a four reference
spectral signatures was needed to reconstruct 99% of the variance of the
in-situ spectra training dataset (Eq. (7), Fig. 4a). The NNMF reference
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Fig. 6. Comparison of the distributions of the estimated water reflectances p,, at 412, 442, 510, 560 nm for in-situ measurements (blue) and the proposed inversion (MEETC2 model, red).
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MAP criterion reduces to the Maximum Likelihood criterion.
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MEETCZ p(412) MEETCZ p(442) MEETCZ p,,(560) MEETCZ p, (681)

Fig. 8. Estimated p,,(412,442,560,680 ) (left to right) from the MERIS FR Level 1 image of the 20040730 over the French river La Gironde's estuary. Top, MEETC2 retrievals, middle, MEGS
v8 and bottom C2R retrievals. In pink are highlighted the negative reflectances.

MEETC2 p, (412) MEETC? p, (442) MEETC2 p, (S60) MEETC2 p, (681)

MEGS p, (S60)

C2Rp,(412) C2R p,(442)

Fig. 9. Estimated p,,(412,442,560,680 ) (left to right) from the MERIS FR Level 1 image of the 20040209 over the French river La Seine's estuary. Top, MEETC2 retrievals, middle, MEGS v8
and bottom C2R retrievals. In pink are highlighted negative reflectances.
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Fig. 10. normalized projection coefficients of the MEETC2 estimated p,, in the four NNMF reference spectral signature basis.

spectral signatures characterize the influence of the optically active con-
stituents of the water column onto the observed water leaving
reflectance spectra:

= Reference no 1 (dark blue) is a typical spectral signature observed in
presence of SPM (Doxaran et al., 2002; Bricaud, Morel, Babin, Allali,
& Claustre, 1998).

= Reference no 2 (green) highlights the spectral signature of CDOM
absorption with its typical decrease toward the blue.

= Reference no 3 (red) is the typical spectral signature of the chl-a, i.e.
absorption in the blue and the resulting pick observed in the green
(560 nm, Morel, 2007a,b).

m Reference no 4 (light blue) is the spectral signature of the pure water
(Pope & Fry, 1997).

A 35-mode GMM is optimal to fit the prior distribution of {X,,,© ,,}.
Fig. 4 shows the 35 water reflectance reference spectra. Similarly to
the prior distribution of aerosol contributions, a full covariance matrix
30xwi is estimated for each mode i.

4.3. Ocean color inversion results

4.3.1. Inversion performance for the mermaid dataset

We perform a quantitative evaluation of the performance of the pro-
posed Bayesian inversion model, MEETC2, for the Mermaid dataset and
coastal waters. For the validation dataset, i.e. the half of the 5976 spec-
tra, we analyze for each wavelength the estimated water reflectances
P, against in-situ measurements (Fig. 5, red). In addition to the pro-
posed Bayesian inversion, we also report on Fig. 5 the inversion per-
formed with MEGS v8 (blue), and C2R (green). Table 1 summarizes
the corresponding statistical results for the 13 wavelengths.

On this validation dataset, MEETC2 clearly outperforms MEGS and
C2R at bands 412, 442, 490 and 510 nm in term of mean-bias, mean

absolute error, slope, R? coefficient and o. From 620 to 885 nm
MEETC2 slightly outperforms the two other models. Overall, the gain
on the relative absolute error over the 12 bands is of 57% compared
with MEGS and 10% compared with C2R.

We further analyze the extent to which we recover realistic water
reflectances from the proposed Bayesian inversion MEETC2. To this
end, we compared for each wavelength, the distribution of in-situ mea-
surements to the MEETC2 estimates. Fig. 6 shows a global agreement
between the distributions of p,,(\), compared to the reference in-situ
distributions, for wavelengths 412, 442, 510 and 560 nm.

To illustrate the added value of the introduction of priors on both
water and aerosol spectra, we implement model (Eq. (8)) without priors
on X, and X, In this case, the cost function in the inversion cost of Eq. (9)
is directly comparable with the one of a Generalized Least Square Model
(GLS) with error covariance matrix 3. Fig. 7 shows the corresponding re-
sults obtained, using the same validation dataset. We clearly see in Fig. 7a
smoothing effects for bands 412, 442, 510 and 560 nm on the estimated
distributions of p,,. The resulting bias with the in-situ is lower using the
MAP estimator and a priori knowledge (Fig. 6).

4.3.2. Example of estimated water reflectance on a very turbid area

Fig. 8 shows the estimated p,,, using the 20040730 MERIS Full Reso-
lution (FR) level 1 observations over the French La Gironde's estuary,
using the three algorithms. In this area, nutrients brought by the river
typically lead to observed chl-a concentrations of magnitude from 5 to
15 mg-m~ 3. At the same time, the river outflow involves high, SPM con-
centrations and CDOM absorption (Doxaran, Froidefond, Castaing, &
Babin, 2009). In the same manner, Fig. 9 shows the estimated p,,,
using the 20040209 MERIS Full Resolution (FR) level 1 observations
over the French La Seine's estuary.

4.3.3. Estimated water types associated with the MEETC2 inversion
The NNMF reference spectral signatures in Fig. 4 (left) characterize
the influence of the optically active constituents of the water onto the
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observed water leaving reflectance spectra. This reference basis may be
used to validate indirectly, using oceanographic knowledge, the spatial
coherency of the estimated p,,. Fig. 10 depicts the normalized projection
coefficients of the estimated MEETC2 p,, onto the reference spectral
signatures. Fig. 10c depicts the presence of chl-a over the all area as ex-
pected for this spring period and region. We observe the typical clear
contrasted situation in an estuary between waters whose spectral
shape is mainly constrained by SPM (Fig. 10a) and clearer waters (Fig.
10d) in the oceanic part of the estuary. This spatial consistency of the
distribution of the water types from the estimated p,,, relatively to our
knowledge of the seasonal behavior in this area, contributes to validate
the shapes of our estimated spectra.

5. Discussion
5.1. A significant improvement of ocean color inversion in coastal waters

Retrieving reliable Ocean Color reflectances from space in coastal
areas remains a major challenge for a number of operational and scien-
tific issues, including for instance the delivery of reliable satellite-
derived products in coastal areas for the space agencies, bio-optical
and biological modeling, as well as environmental monitoring policies
such as the WFD. Using the MERMAID satellite/in-situ collocated obser-
vation database, a Bayesian latent class model was shown to significant-
ly enhance the inversion of water reflectances for complex waters
compared to the standard MEGS inversion scheme and the C2R, a Neu-
ral Network trained using similar in-situ data (Schiller & Doerffer,
1999).

The improvements were especially noticeable for the 412, 442, 490
and 510 nm bands, which are used in Ocean Color for the estimation
of the chl-a concentration, CDOM absorption and light attenuation un-
derlying the potential of such approach to improve the standard level
2 products in coastal areas. An additional important feature of the pro-
posed inversion, based onto the Non Negative Matrix Factorization
water model, is strictly positive estimates of the water leaving reflec-
tances in coastal areas. Meaningless negative estimates, as observed in
the standard MEGS products are not anymore possible.

The complexity of the inversion is particularly stressed by the num-
ber of needed models, respectively 25 for coastal aerosol reflectances
and 35 for water reflectances, to address the spectral variability of
both water and atmospheric contributions, and to unmix the correlated
aerosol and water spectra.

5.2. A physically-interpretable modeling framework

Conversely to Neural Network, the modes retrieved by the Gaussian
Mixture Models correspond to identifiable aerosols, such as identified in
the MERIS and the OLCI reference aerosol database, and water types.
The fact that we explicitly distinguish parametric representations of
aerosol and water spectra makes also easier the independent calibration
of the models and our Bayesian model may benefit in a much simpler
manner for newly collected and/or simulated dataset to improve each
prior distribution independently. This is regarded as a key property for
future operational applications with respect to ongoing advances in ra-
diative transfer modeling, in-situ monitoring and future satellite
missions.

5.3. Operational potential in the framework of the ocean sensor of
upcoming Sentinel 3 platform

The incoming OLCI Ocean Color sensor, embedded on the Sentinel 3
platform, will succeed the MERIS sensor in December 2015. The avail-
able spectral bands will be close to the MERIS ones. Beyond genericity
of our Bayesian framework, we thus expect the considered parameteri-
zation, especially the NNMF-based representation, the GMM-based
priors and the covariance models, to be directly transferable to the

future OLCI observations. Our ongoing work addresses the development
of an operational product based on the proposed Bayesian mode that
will be freely distributed in the Odesa software (http://www.odesa-
info.eu/info/). The dependency of both aerosol and water prior distribu-
tions to the observation geometry conditions will be addressed soon
using radiative transfer simulations such as the Successive Order Scat-
tering radiative transfer code (Deuzé et al., 1989) and Hydrolight
(Mobley, 1998) to cover the full possible range of observation
conditions.

From a modeling perspective, additional developments appear of in-
terest, especially new covariates, e.g. humidity and wind conditions to
further constrain the prior distributions of the water and aerosol
variables. Parallelized implementation is also under investigation, as,
conversely to existing MEGS and C2R processors, our optimization is
computationally more demanding than these as it relies on quasi-
randomized initializations for the atmospheric initial model, i.e. multi-
ple initializations given the observed geometry conditions and per-
estimates in the near infrared. Optimal and noiseless results will be
obtained with increased number of random initializations to avoid
local minima and converge toward the ‘true’ solution. This random ini-
tialization issue and the associated computing cost, is classic for genetic
algorithms (Davis, 1991) and the new generation of satellite products
such as the Soil Moisture Ocean Salinity (SMOS) product (Font et al.,
2010).
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