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Satellite imagery has proven to be a powerful tool for measuring chlorophyll a in surface waters. While this
provides an estimate of total phytoplankton biomass, it does not distinguish between phytoplankton groups,
many of which have functional differences and therefore affect biogeochemical cycles differently. Phyto-
plankton pigment analysis has been used to quantify a wide range of photosynthetic and accessory pigments,
and chemotaxonomic analysis (e.g. CHEMTAX) has been used to successfully quantify functional taxonomic
groups in nature based on pigment distributions. Here, we combine CHEMTAX analysis with satellite-derived
distributions of specific phytoplankton pigments to describe the distributions of particular components of the
phytoplankton community in the northeast coast of the United States from space. The spatial and seasonal
variations in phytoplankton community structure elucidated through satellite remote sensing methods gen-
erally agreed with observations of abundance estimates of cell counts. Diatoms were generally the most
abundant phytoplankton in this region, especially during Winter-Spring and in the inner shelf, but phyto-
plankton populations shifted to increasing abundance of other taxa during Summer, especially offshore.
While still preliminary, satellite-derived taxa-specific information with proper regional controls holds prom-
ise for providing information on phytoplankton abundance to a taxonomic group level which would greatly
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improve our understanding of the impacts of human activity and climate change on ecosystems.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Satellite ocean color remote sensing is a valuable tool for studying
large-scale variations of phytoplankton biomass which in turn affects
biogeochemical cycling of elements (IOCCG, 1999, 2000; McClain,
2009). Global distributions of total chlorophyll a concentration
([TChl_a]) and extrapolations of primary production have been previ-
ously quantified from satellite observations, especially for the oceanic
Case 1 waters (Behrenfeld & Falkowski, 1997; Behrenfeld et al., 2005;
McClain, 2009; O'Reilly et al., 1998, 2000). However, because of the
limitations of satellite spectral resolution in distinguishing between
plant pigments, the distribution and seasonal variation in phyto-
plankton community composition observed from satellite measure-
ments are limited (Aiken et al, 2008, 2009; Alvain et al., 2008;
Brewin et al,, 2010, 2011; Hirata et al., 2008, 2011; McClain, 2009;
Pan et al,, 2010; Roy et al., 2011).

Phytoplankton community composition is important for deter-
mining biogeochemical function because different taxonomic groups
have unique physiologies that affect their growth rates, C and N
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uptakes, competitive success, and biogeochemical functions in the
environment. For example, blooms of large chain-forming diatoms
can contribute disproportionately to the sinking biogenic particle
flux of carbon than small phytoplankton such as cyanobacteria.
Thus, a taxonomic level of analysis can improve our understanding
of phytoplankton species distribution, primary productivity, and car-
bon export flux estimates (Aiken et al., 2008, 2009; Alvain et al., 2008;
Brewin et al., 2011; Hirata et al., 2008, 2011; McClain, 2009; Roy et al.,
2011; Uitz et al., 2009). This level of analysis is also useful in assessing
regional variations in phytoplankton distribution as well as the effects
of climate variability and change on the seasonal and spatial variation
of phytoplankton species. For example, the distributions of phyto-
plankton functional groups, particularly dinoflagellates and prymne-
siophytes, are often thought to correlate to dimethylsulfide (DMS),
a precursor of cloud condensation nuclei (Townsend & Keller, 1996).

Phytoplankton taxonomy is traditionally assessed by microscopy,
which requires significant amounts of time and expertise. Species
too fragile to be preserved or small in size (in particular, pico-
phytoplankton) are challenging to identify by routine microscopic
methods and this introduces biases to taxonomic assessments done
using these methods. Advances in high-performance liquid chromatog-
raphy (HPLC) methods have allowed the detection of an increasing
number of phytoplankton pigments. This information can allow
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quantification of phytoplankton community composition, at least to a
functional group level, because many plant pigments are particular to
specific taxonomic groups or even species (Jeffrey et al., 1997; Mackey
et al., 1996).

Chemotaxonomic assessment of phytoplankton assemblages has
been further facilitated through development of algorithms to parti-
tion bulk [TChl_a] into taxonomic groups based on pigment composi-
tion of the community (Mackey et al., 1996). CHEMTAX (Mackey
et al, 1996), a Matlab® (The Mathworks, Inc.) program, analyzes
the relative pigment ratios for each taxonomic group, especially
those pigments found only in one or two taxonomic groups (e.g.
alloxanthin in cryptophytes, peridinin in peridinin-containing dino-
flagellates, and zeaxanthin primarily in cyanobacteria and prochloro-
phytes; Jeffrey et al., 1997). However, CHEMTAX does not provide the
same resolution as microscopy, because the latter can identify many
groups to the species level. Overlapping pigment compositions can
further complicate the capability for CHEMTAX to separate taxonomic
groups, i.e. to separate chlorophytes from prasinophytes. Although
there exist these limitations to CHEMTAX, it has been successful in
describing variations of major phytoplankton taxonomic groups for
many water types including: oceanic waters (e.g. the Southern
Ocean and the northeastern Atlantic), and coastal waters (e.g. the
New Jersey coast, the Chesapeake Bay estuary, United States south-
eastern estuaries, and European coastal waters) (Adolf et al., 2006;
Gibb et al., 2001; Lewitus et al., 2005; Mackey et al., 1996; Moline &
Blackwell, 2004; Schliiter et al., 2000; Wright et al., 1996).

Studies of phytoplankton taxonomy are typically limited to dis-
crete stations sampled during irregular ship surveys, and so we
know little about the spatial and temporal variations of phytoplank-
ton assemblages (Aiken et al., 2008, 2009; Alvain et al., 2008; Brewin
et al,, 2010; 2011; Hirata et al., 2008, 2011). Pan et al. (2010) showed
that many important phytoplankton pigments could be empirically
estimated from ocean color remote sensing within reasonable
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agreement to the field observations along the northeast coast of the
United States (U.S.). In this study, phytoplankton community compo-
sition by chemotaxonomy (e.g. CHEMTAX) in the U.S. northeast coast
was estimated using satellite retrieval of phytoplankton pigment
composition (Pan et al., 2010).

The northeast coast of the U.S. is a highly productive and optically
complex region that is significantly influenced by freshwater outflow
(e.g. from the Chesapeake Bay, Delaware Bay, and Hudson-Raritan
Rivers) and by alongshore flow and tidal forcing (Mannino et al.,
2008; O'Reilly & Zetlin, 1998; Pan et al., 2008, 2010). Phytoplankton
species composition varies seasonally: diatoms generally dominate
during Winter-Spring, while other taxa, such as dinoflagellates and
cyanobacteria, increase in proportions during Summer (Adolf et al.,
2006; Marshall, 1984a, 1984b; Marshall & Cohn, 1987; Marshall
et al., 2006; Moline & Blackwell, 2004). The objectives of this study
were: (1) to develop a quantitative method to describe phytoplankton
community composition using satellite ocean color remote sensing;
and (2) to determine the spatial and temporal variability of phytoplank-
ton community composition, and its impact on biogeochemical pro-
cesses in the U.S. northeast coast.

2. Materials and methods
2.1. Field experiments

This study focused on the U.S. northeast coast within the longitude
and latitude boundaries of 77°W to 65°W and 35°N to 45°N, respec-
tively (Fig. 1). The study area includes the Gulf of Maine (GoM) and
the Middle Atlantic Bight (MAB), in which the MAB is separated
into the New York Bight (NYB) and the southern MAB (SMAB)
(Fig. 1). Multiple cruises were conducted in this region from 2004
to 2009 (Table 1 and Fig. 1).
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Fig. 1. Map of the study area and station locations within the northeast coast of the United States. The locations of stations sampled included the serial cruises in the Gulf of Maine
(GoM; +), New York Bight (NYB) for a series of Ocean Color Validation cruises (OCV; A), Southern Middle Atlantic Bight (SMAB) for a series of Bio-physical Interactions in Ocean
Margin Ecosystems cruises (BIOME; x), Chesapeake Bay Plume cruises (CBP; A), and Chesapeake Bay Hydrological survey cruises (CBH; ¢), and the Climate Variability on the East
Coast cruise-1 (CliVEC-1; O) along the northeast coast. CB: Chesapeake Bay; DB: Delaware Bay; HR: Hudson-Raritan Rivers. Two locations (®) used for time-series analysis of sat-

ellite derivations in the CB estuarine are shown in the inset.
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Table 1

Field cruises conducted for this study. GoM: Gulf of Maine; NYB: New York Bight;
SMAB: southern Middle Atlantic Bight; OCV: Ocean Color Validation cruises; BIOME:
Bio-physical Interactions in Ocean Margin Ecosystems cruises; CBP: Chesapeake Bay
Plume cruises; CBH: Chesapeake Bay mouth Hydrological survey cruises; CliVEC-1: Cli-
mate Variability on the East Coast cruise-1.

Regions  Cruises Periods Stations® Measurements®
GoM GoM-1 26 to 30 Apr 2007 14/12/0 HPLC, Ry
GoM-2 26 to 28 May 2007 17/14/0  HPLC, Rys
GoM-3 6 to 8 Jun 2007 13/12/0  HPLC, Ry
GoM-4 6 Sep 2007 5/5/0 HPLC, Rys
CliVEC-1¢ 17 to 28 Aug 2009 19/0/8 HPLC, CC
NYB 0CV1 5 to 9 May 2007 20/19/0  HPLC, Ry
0ocv2 10 to 14 Nov 2007 22/18/0  HPLC, Ry
0CV3 21 to 24 Jul 2008 8/8/0 HPLC, R;s
OCV5 19 to 21 May 2009 10/0/0 HPLC
CliVEC-1¢ 17 to 28 Aug 2009 15/0/14  HPLC, CC
SMAB BIOME1 30 Mar to 1 Apr 2005 14/5/0 HPLC, Rys
BIOME2 26 to 30 Jul 2005 29/19/0  HPLC, Ry
BIOME3 9 to 12 May 2006 26/0/0 HPLC
BIOME4 2 to 6 Jul 2006 31/27/0  HPLC, Ry
BIOME5 31 Oct 2006 5/0/3 HPLC, CC
CBP 27 May, 3 Nov 2005; 24/13/7  HPLC Ry, CC
6 Sep, 28 Nov 2006;
3 Jul 2007
CBH 5May, 5 Jul, 1 Sep, 15 Oct, 35/0/0 HPLC
15 Nov 2004; 10 Jan, 26 May,
21 Jun, 19 Aug, 23 Sep 2005
CliVEC-1¢ 17 to 28 Aug 2009 11/0/10  HPLC, CC

2 Numbers of stations are shown on N;/N,/Ns, while Ny, Ny, and N3 represent how
many stations during which HPLC, R, and cell counting measurements were made,
respectively.

b Selected parameters from the cruises, including HPLC phytoplankton pigments
(HPLC), cell counting by microscopy or flow cytometry (CC), and remote sensing re-
flectance (Rys).

€ CliVEC-1 was conducted along the northeast coast of the United States across the
GoM, the NYB, and the SMAB.

2.2. Pigment measurements and cell counts

Pigment samples were filtered onto 25 mm GF/F filters, immediately
frozen in liquid nitrogen, and stored frozen (— 80 °C) until analysis (Pan
et al,, 2008, 2010). Samples were analyzed at Horn Point Laboratory
(University of Maryland Center for Environment Science) using
reverse-phase high-performance liquid chromatography (HPLC) with a
C8 column and a photodiode array detector (Van Heukelem & Thomas,
2001). The selected HPLC pigments analyzed include: total chlorophyll
a (TChl_a), divinyl Chl_a (DV_Chl_a), total chlorophyll b (TChl_b), chlo-
rophyll ¢; and ¢ (Chl_c;/c3), chlorophyll c3 (Chl_c3), fucoxanthin (Fuco),
19’-butanoyloxyfucoxanthin (But), 19’-hexanoyloxyfucoxanthin (Hex),
peridinin (Perid), zeaxanthin (Zea), alloxanthin (Allo), diadinoxanthin
(Diad) plus diatoxanthin (Diato) (Dia), lutein (Lut), neoxanthin (Neo),
violaxanthin (Viola), and prasinoxanthin (Pras). TChl_a is defined as
the sum of chlorophyll a (Chl_a), DV_Chl_a, and chlorophyllide a
(Chlide_a), while TChI_b is defined as the sum of chlorophyll b (Chl_b)
and divinyl Chl_b (DV_ChI_b) (Hooker et al., 2005). Carotene (Caro) is
not included in this analysis due to its rapid alteration to oxidized prod-
ucts. The abbreviations of pigments are also shown in Table 2.

Cell counts were conducted at Old Dominion University or Univer-
sity of Rhode Island using the method described by Marshall and
Alden (1990). Water samples (500 mL or 1000 mL) were fixed in
Lugol's solution, and after a 48 hour period, a series (3) of siphoning
and settling steps followed to obtain a 20-40 ml concentrate that
was placed in the settling chamber of an inverted plankton micro-
scope (Nikon TS100) for analysis. The net-phytoplankton (>200 um)
were scanned at 150x for the entire aliquot. A minimum cell count
basis of 200 cells and 10 random fields was used at scanning at
300x for both the micro- (20-200 pm) and nano-phytoplankton (2-
20 um). This analysis produced an 85% accuracy estimate for the cell
concentrations (Venrick, 1978). Pico-phytoplankton samples were
preserved with paraformaldehyde (0.2% final concentration) and

Table 2
Abbreviations of the phytoplankton pigments analyzed in this paper.
Abbreviation Description
Chlorophyll
Chl_a Chlorophyll a
DV_Chl_a Divinyl chlorophyll a
Chlide_a Chlorophyllide a
TChl_a Chl_a+DV_Chl_a+ Chlide_a

Chl_b Chlorophyll b

DV_Chl_b Divinyl chlorophyll b
TChl_b Chl_b+DV_Chl_b

Chl_c;/c, Sum of chlorophyll ¢; and ¢,
Chl_c3 Chlorophyll c3

TChl_c Chl_c;/c2 + Chl_c3

Photosynthetic carotenoid pigments (PSC)

Caro Carotene

Fuco Fucoxanthin

Perid Peridinin

But 19’-butanoyloxyfucoxanthin
Hex 19’-hexanoyloxyfucoxanthin

Photoprotective carotenoid pigments (PPC)

Diad Diadinoxanthin
Diato Diatoxanthin
Dia Diad + Diato
Allo Alloxanthin
Zea Zeaxanthin
Tertiary pigments

Lut Lutein

Neo Neoxanthin
Viola Violaxanthin
Pras Prasinoxanthin

cyanobacterial abundances were estimated by counting their pico-
sized fraction using flow cytometry. Match-up stations with both
cell counts and HPLC pigment measurements were limited to the
BIOMES5 cruise during 31 October 2006, CBP cruises during 11 No-
vember 2006 (CBP_5) and 3 July 2007 (CBP_8), and CliVEC-1 cruise
during 17 to 28 August 2009 (Table 1).

2.3. Phytoplankton taxonomy from HPLC pigments

Phytoplankton composition was derived from the relative pigment
ratios for each phytoplankton taxonomic group using CHEMTAX v1.95
(Mackey et al., 1996) and based on concentration matrices of biomarker
HPLC pigments and TChl_a. The chemotaxonomy was tuned to this
study region, as described below. The selected 11 phytoplankton taxo-
nomic groups included here are: diatoms, cryptophytes, dinoflagellates
containing fucoxanthin-like pigments (Dino_A), dinoflagellates con-
taining peridinin (Dino_B), Type_8 Haptophytes defined in Zapata
et al. (2004) (Hapt_A), Type_6 Haptophytes defined in Zapata et al.
(2004) (Hapt_B), prasinophytes containing prasinoxanthin (Prasino_A),
prasinophytes without prasinoxanthin (Prasino_B), chlorophytes,
cyanobacteria, and prochlorophytes (Table 3). Euglenophytes were not
considered in this study due to their relatively low abundances in this
region (Marshall et al., 2006). Chrysophytes are also excluded here
due to the difficulty of deriving their major accessory pigment, 19’-buta-
noyloxyfucoxanthin (But), from satellite ocean color (Pan et al., 2010),
and the consideration that blooms of chrysophytes (e.g. Aureococcus
anophagefferens) are typically limited to coastal lagoons along the U.S.
northeast coast, especially in Narragansett Bay (Rhode Island), Barnegat
Bay (New Jersey), and Peconics-Gardiners Bay estuary and south shores
of Long Island (New York) (ECOHAB, 1994).

The distribution of [TChl_a] after logarithm transformation, log
([TChl_a]), from our pigment data set mostly (868 of 878 samples)
varied between —0.9 and 1.5. The pigment data were then
separated into 12 sub-sets with log(|[TChl_a]) intervals of 0.2
(Table 4). Although the separation of sub-sets is relatively



3734 X. Pan et al. / Remote Sensing of Environment 115 (2011) 3731-3747

Table 3
Phytoplankton taxonomic groups analyzed for CHEMTAX.

Groups Division/class Description and example species

1=Diatom Bacillariophyta Example species include Asterionellopsis
glacialis and Skeletonema costatum.

2=Crypt Cryptophyta Example species include Cryptomonas spp.

3=Dino_A Dinophyta_A Dinoflagellates containing fucoxanthin-like pig-
ments(Fuco, But, or Hex), e.g. Gymnodinium spp.

4=Dino_B Dinophyta_B Dinoflagellates containing peridinin, e.g.
Gyrodinium spp., Scrippsiella trochoidea, and
Heterocapsa rotundatum

5=Hapt_A Haptophyta_A Type_8 Haptophytes defined in Zapata et al.
(2004), e.g. Phaeocystis pouchetii.

6 =Hapt_B Haptophyta_B Type_6 Haptophytes defined in Zapata et al.

(2004), e.g. Emiliania huxleyi.

7 =Prasino_A Prasinophyceae_A Prasinophytes containing prasinoxanthin, e.g.
Pycnococcus provasolii.

8 =Prasino_B Prasinophyceae_B Prasinophytes without prasinoxanthin, e.g.
Pyramimonas grassi.

9=~Chlo Chlorophyceae Example species include Ankistrodesmus
falcatus and Nannochloris atomus.

10=Cyano Cyanophyta Example species include Synechococcus spp.
and Unidentified Trichomes.

11 =Proc Prochlorophyta Example species include Prochlorococcus

marinus.

arbitrary, it is not without biological foundation. Hirata et al.
(2011; Fig. 3 in their paper) indicated that as [TChl_a] increased
globally the proportion of pico-phytoplankton generally decreased
and micro-phytoplankton increased, and nano-phytoplankton
were generally more abundant within the mid-range of [TChl_a]
(e.g. 0.1 to 1 mgm 3) than in low and high [TChl_a]. Individual
phytoplankton taxonomic function groups can be categorized
within specific size classes, such as prochlorophytes, cyanobac-
teria, and pico-eukaryotes classified as pico-phytoplankton, prym-
nesiophytes and green algae classified as nano-phytoplankton, and
diatoms and dinoflagellates classified as micro-phytoplankton. The
distributions of these taxonomic groups generally followed the
trends corresponding to their size class (Hirata et al., 2011). Simi-
lar trends were also observed for the northeast U.S. continental
margin (Fig. 2) following the size class definitions of Vidussi et al.
(2001). Such results imply that increasing the number of sub-
sets, e.g. changing the intervals of log([TChl_a]) to 0.1 or even
0.05, may be beneficial for development of more appropriate pig-
ment matrices for phytoplankton functional groups. However, the
requirement to have a sufficient number of data points for each
sub-set being applied to CHEMTAX, e.g. N>11, limits the number
of sub-sets that we can apply to our database.

For each sub-set, the following steps adapted from the instruction
manual for CHEMTAX v1.95 were followed to determine the pigment
ratios. Initial pigment ratios (A0O) were selected from Mackey et al.
(1996). Sixty ratio matrices (A01-A60) were generated by multiply-
ing a randomly determined factor (M;anqom) to each value in the ini-
tial matrix (A0O), where M,andgom =1+ 0.7(Rrangom) — 0.5 and Riandom
is a random value between 0 and 1 generated by Excel® (Microsoft,
Inc.). In total 61 solutions were created. The best 10% (N =6) of the
solutions with the lowest root mean square errors (RMSEs) provided
by CHEMTAX were averaged as the starting ratios (Fser). The final
pigment ratios (F,) were then determined by CHEMTAX with the
input of the starting ratios (Fs..t). The TChl_a concentrations for
each taxonomic group (Ciaxa n) Were calculated based on the final
pigment ratios (F,). Although DV_Chl_g, But, Hex, and Pras were ap-
plied to construct the pigment concentration matrices, they were not
used to interpret or further applied to satellite imagery due to the
difficulty in retrieving those pigment signatures from ocean color re-
mote sensing data (Pan et al., 2010). The ratios for TChl_c represent
the sum of Chl_c;/c, and Chl_cs. Individual pigment concentrations

([Pig_m]) integrated from all taxonomic groups were calculated
with Eq. (1).

. taxa_1 gtaxa_2 ... ctaxa_n

[Pig 1] Ciaxa_1 Joig T Soig 1 Srig i Craxa_1
5 taxa_1 gtaxa_2 ... ctaxa_n

[Pig -2] =F, x _C}f_lxal = Jpig2 »JPig2 > 7fPig_2 X F}?Xﬂl (1)
1 y .t:axa _1 gtaxa_2 ... ctaxa_n

[Pig-m] Craxan Pig _m 7fPig _m > -,fPig _m Craxa_n

Here, Pig_m represents individual HPLC pigment type including
TChl_a, TChl_b, TChl_c, Fuco, Perid, Zea, Allo, Dia, Lut, Neo, and
Viola, and f§g%" in the nxm (here 11x 11) matrices (F,) represents
the mth marker pigment ratio normalized to Ciaxa , for the nth phyto-
plankton taxa, and Cixa , represents the relevant TChl_a for the nth
phytoplankton functional group. The fraction of TChl_a for each phy-
toplankton taxonomic group [(FC)xa n] is then calculated as:

@
(FCO)taxan = [Tta);alliz] x100%. (2)

Ideally, the reconstructed pigment concentrations ([Pig_m ] econstructed)
computed by multiplying CHEMTAX-derived concentrations of
phytoplankton functional groups (Ciaxs n) With the pigment ratio
matrices (F,) should be equal to the field measurements of HPLC pig-
ments ([Pig_m]geiq). The difference between [Pig_m]ieconstructed and
[Pig_m]gelq Was then considered as the deviations caused by the CHEM-
TAX method. The mean absolute percent difference (MAPD) and root
mean square error (RMSE) between reconstructed and field pigment
concentrations were defined as:

Pig ,m] reconstructed [Pig ,m] field |
[Pig-M]geiq

(MAPD)py 1 = %2 I x100% 3)

1 . .
(RMSE) Pig-m — \/N 2 ([Plg*m] reconstructed — [PI8-Me1d ) 2 4)

Here, N represents the number of samples.
2.4. Satellite imagery

Observations of level-2 spectral remote sensing reflectance (R;s)
from the Moderate Resolution Imaging Spectroradiometer on the
Aqua satellite (MODIS-Aqua) were downloaded from the NASA
Ocean Color Web (http://oceancolor.gsfc.nasa.gov/; by access during
19 to 25 November 2010). Bulk water temperature required to esti-
mate [Zea] (Pan et al., 2010) was obtained from MODIS-Aqua short-
wave infrared (4 um) observations of nighttime sea surface tempera-
ture (SST). All images were mapped isotropically to 90 pixels per
longitude degree and 111 pixels per latitude degree (with an approx-
imate resolution of 1 kmx 1 km per pixel) using the SeaWiFS Data
Analysis System software (SeaDAS; version 6.1).

Phytoplankton pigment concentrations ([Pig_m]) were calculated
from the empirical algorithms based on the R;s band ratios as de-
scribed by Pan et al. (2010):

log[Pig m] = Agm + Ay mX + Ay X + A3 X°. (5)

Here X =1og[R;s(N\1)/Ris(N\2)], and Ai, (i=0, 1, 2, and 3) were de-
rived coefficients for each pigment. The selected MODIS bands were
488 nm for \; and 555 or 667 nm for \, (Pan et al., 2010).

Ciaxa_n Was then determined by solving Eq. (1) through multiple
linear regressions with the derived F, and [Pig_m]. The multiple
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Table 4

Final pigment matrices of phytoplankton taxonomic groups fils*m, derived from CHEMTAX for 12 sub-sets based on log([TChl_a]) distributions.
Groups TChl_a TChl_b TChl_c Perid Fuco Dia Allo Zea Lut Neo Viola
Sub-set 1: log([TChl_a])< —0.7
Diatom 1 0 0.2108 0 0.7552 0.0626 0 0 0 0 0
Crypt 1 0 0.0797 0 0 0 0.3655 0 0 0 0
Dino_A 1 0 0.2244 0 0.4762 0.7847 0 0 0 0 0
Dino_B 1 0 0.3844 0.5903 0 0.1683 0 0 0 0 0
Hapt_A 1 0 0.5139 0 0.4319 0.0508 0 0 0 0 0
Hapt_B 1 0 0.3569 0 0.2368 0.2744 0 0 0 0 0
Prasino_A 1 0.8437 0 0 0 0 0 0.0828 0.0198 0.1013 0.0074
Prasino_B 1 1.1130 0 0 0 0 0 0.0636 0.0657 0.1154 0.1180
Chlo 1 0.0263 0 0 0 0 0 0.0239 0.0260 0.0266 0.0202
Cyano 1 0 0 0 0 0 0 1.1889 0 0 0
Proc 1 0.3552 0 0 0 0 0 0.2320 0 0 0
Sub-set 2: —0.7<log([TChl_a])<—0.5
Diatom 1 0 0.2312 0 0.5793 0.0663 0 0 0 0 0
Crypt 1 0 0.0723 0 0 0 0.3289 0 0 0 0
Dino_A 1 0 0.2136 0 0.4913 0.8545 0 0 0 0 0
Dino_B 1 0 0.4166 0.6195 0 0.2245 0 0 0 0 0
Hapt_A 1 0 0.1928 0 0.2077 0.0264 0 0 0 0 0
Hapt_B 1 0 0.3922 0 0.1194 0.2933 0 0 0 0 0
Prasino_A 1 0.7173 0 0 0 0 0 0.0696 0.0186 0.0792 0.0087
Prasino_B 1 0.5602 0 0 0 0 0 0.0476 0.0480 0.0895 0.1126
Chlo 1 0.3911 0 0 0 0 0 0.0532 0.1918 0.0446 0.0392
Cyano 1 0 0 0 0 0 0 0.9459 0 0 0
Proc 1 0.5536 0 0 0 0 0 0.2410 0 0 0
Sub-set 3: —0.5<log([TChl_a])<—0.3
Diatom 1 0 0.2097 0 0.6930 0.0558 0 0 0 0 0
Crypt 1 0 0.0658 0 0 0 0.3039 0 0 0 0
Dino_A 1 0 0.1699 0 0.5120 0.9437 0 0 0 0 0
Dino_B 1 0 0.4565 0.3654 0 0.1807 0 0 0 0 0
Hapt_A 1 0 0.3533 0 0.3150 0.0396 0 0 0 0 0
Hapt_B 1 0 0.3508 0 0.1675 0.3236 0 0 0 0 0
Prasino_A 1 0.6809 0 0 0 0 0 0.0842 0.0173 0.1013 0.0098
Prasino_B 1 0.8977 0 0 0 0 0 0.0474 0.0675 0.0973 0.1223
Chlo 1 0.2432 0 0 0 0 0 0.0410 0.1771 0.0453 0.0306
Cyano 1 0 0 0 0 0 0 0.8097 0 0 0
Proc 1 0.6461 0 0 0 0 0 0.2328 0 0 0
Sub-set 4: —0.3<log([TChl_a])<—0.1
Diatom 1 0 0.1770 0 0.5820 0.0603 0 0 0 0 0
Crypt 1 0 0.0696 0 0 0 0.2628 0 0 0 0
Dino_A 1 0 0.1862 0 0.5473 0.8401 0 0 0 0 0
Dino_B 1 0 0.3457 0.4980 0 0.1456 0 0 0 0 0
Hapt_A 1 0 0.4411 0 0.2174 0.0348 0 0 0 0 0
Hapt_B 1 0 0.3611 0 0.2657 0.2484 0 0 0 0 0
Prasino_A 1 0.7503 0 0 0 0 0 0.0896 0.0174 0.0966 0.0089
Prasino_B 1 0.9162 0 0 0 0 0 0.0556 0.0624 0.0973 0.1017
Chlo 1 0.2858 0 0 0 0 0 0.0389 0.1466 0.0468 0.0317
Cyano 1 0 0 0 0 0 0 0.6017 0 0 0
Proc 1 0.5071 0 0 0 0 0 0.2126 0 0 0
Sub-set 5: —0.1<log([TChl_a])<0.1
Diatom 1 0 0.1852 0 0.6342 0.0561 0 0 0 0 0
Crypt 1 0 0.0634 0 0 0 0.2458 0 0 0 0
Dino_A 1 0 0.1948 0 0.4429 0.6610 0 0 0 0 0
Dino_B 1 0 0.3334 0.7643 0 0.1726 0 0 0 0 0
Hapt_A 1 0 0.4957 0 0.2595 0.0467 0 0 0 0 0
Hapt_B 1 0 0.3879 0 0.2099 0.1156 0 0 0 0 0
Prasino_A 1 0.7244 0 0 0 0 0 0.0642 0.0165 0.0916 0.0085
Prasino_B 1 0.8759 0 0 0 0 0 0.0546 0.0556 0.0881 0.1209
Chlo 1 0.2350 0 0 0 0 0 0.0360 0.1690 0.0388 0.0285
Cyano 1 0 0 0 0 0 0 0.9549 0 0 0
Proc 1 0.6052 0 0 0 0 0 0.2337 0 0 0
Sub-set 6: 0.1<log([TChl_a])<0.3
Diatom 1 0 0.1606 0 0.6178 0.0510 0 0 0 0 0
Crypt 1 0 0.0837 0 0 0 02115 0 0 0 0
Dino_A 1 0 0.2351 0 0.4779 0.8808 0 0 0 0 0
Dino_B 1 0 0.3021 0.7737 0 0.1378 0 0 0 0 0
Hapt_A 1 0 0.8328 0 0.4125 0.0527 0 0 0 0 0
Hapt_B 1 0 0.3498 0 0.2336 0.0950 0 0 0 0 0
Prasino_A 1 0.7738 0 0 0 0 0 0.0750 0.0178 0.0900 0.0086
Prasino_B 1 0.8782 0 0 0 0 0 0.0447 0.0435 0.0913 0.1044

(continued on next page)
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Groups TChl_a TChI_b TChl_c Perid Fuco Dia Allo Zea Lut Neo Viola
Sub-set 6: 0.1 <log([TChl_a])<0.3

Chlo 1 0.2165 0 0 0 0 0 0.0277 0.1057 0.0295 0.0259
Cyano 1 0 0 0 0 0 0 0.7079 0 0 0

Proc 1 0.5547 0 0 0 0 0 0.2310 0 0 0
Sub-set 7: 0.3<log([TChl_a])<0.5

Diatom 1 0 0.1696 0 0.5458 0.0438 0 0 0 0 0
Crypt 1 0 0.0904 0 0 0 0.2366 0 0 0 0
Dino_A 1 0 0.1729 0 0.3969 0.8260 0 0 0 0 0
Dino_B 1 0 0.3003 0.8031 0 0.1340 0 0 0 0 0
Hapt_A 1 0 0.6823 0 0.6388 0.0621 0 0 0 0 0
Hapt_B 1 0 0.4305 0 0.2548 0.2509 0 0 0 0 0
Prasino_A 1 0.6680 0 0 0 0 0 0.0659 0.0168 0.0718 0.0076
Prasino_B 1 0.7792 0 0 0 0 0 0.0527 0.0511 0.0936 0.0972
Chlo 1 0.2347 0 0 0 0 0 0.0293 0.0519 0.0289 0.0269
Cyano 1 0 0 0 0 0 0 0.7114 0 0 0

Proc 1 0.5923 0 0 0 0 0 0.2354 0 0 0
Sub-set 8: 0.5<log([TChl_a])<0.7

Diatom 1 0 0.1576 0 0.5122 0.0379 0 0 0 0 0
Crypt 1 0 0.0918 0 0 0 0.2572 0 0 0 0
Dino_A 1 0 0.1826 0 0.4009 0.8294 0 0 0 0 0
Dino_B 1 0 0.2655 0.7556 0 0.1188 0 0 0 0 0
Hapt_A 1 0 1.0504 0 0.5077 0.0633 0 0 0 0 0
Hapt_B 1 0 0.3989 0 0.2220 0.1146 0 0 0 0 0
Prasino_A 1 0.7411 0 0 0 0 0 0.0692 0.0140 0.0747 0.0083
Prasino_B 1 0.7644 0 0 0 0 0 0.0454 0.0534 0.0811 0.0945
Chlo 1 0.2374 0 0 0 0 0 0.0282 0.1165 0.0320 0.0250
Cyano 1 0 0 0 0 0 0 0.6473 0 0 0

Proc 1 0.6029 0 0 0 0 0 0.1941 0 0 0
Sub-set 9: 0.7 <log([TChl_a])<0.9

Diatom 1 0 0.1603 0 0.5176 0.0347 0 0 0 0 0
Crypt 1 0 0.0691 0 0 0 0.3008 0 0 0 0
Dino_A 1 0 0.2056 0 0.5969 0.9267 0 0 0 0 0
Dino_B 1 0 0.3022 0.7063 0 0.1776 0 0 0 0 0
Hapt_A 1 0 0.6087 0 0.3062 0.0401 0 0 0 0 0
Hapt_B 1 0 0.4735 0 0.2654 0.3018 0 0 0 0 0
Prasino_A 1 0.8318 0 0 0 0 0 0.0839 0.0176 0.0876 0.0078
Prasino_B 1 0.8019 0 0 0 0 0 0.0467 0.0491 0.0837 0.1033
Chlo 1 0.1475 0 0 0 0 0 0.0242 0.0181 0.0249 0.0217
Cyano 1 0 0 0 0 0 0 0.6056 0 0 0

Proc 1 0.6283 0 0 0 0 0 0.2644 0 0 0
Sub-set 10: 0.9<log([TChl_a])<1.1

Diatom 1 0 0.1483 0 0.5106 0.0342 0 0 0 0 0
Crypt 1 0 0.0738 0 0 0 0.2765 0 0 0 0
Dino_A 1 0 0.1270 0 0.5244 0.8351 0 0 0 0 0
Dino_B 1 0 0.2847 0.7034 0 0.1716 0 0 0 0 0
Hapt_A 1 0 0.8304 0 0.3343 0.0473 0 0 0 0 0
Hapt_B 1 0 0.4412 0 0.2926 0.3269 0 0 0 0 0
Prasino_A 1 0.9292 0 0 0 0 0 0.0967 0.0185 0.1134 0.0100
Prasino_B 1 0.8432 0 0 0 0 0 0.0517 0.0602 0.0826 0.1002
Chlo 1 0.1097 0 0 0 0 0 0.0223 0.0099 0.0213 0.0165
Cyano 1 0 0 0 0 0 0 0.8287 0 0 0

Proc 1 0.6819 0 0 0 0 0 0.2507 0 0 0
Sub-set 11: 1.1<log([TChl_a])<1.3

Diatom 1 0 0.1398 0 0.4607 0.0427 0 0 0 0 0
Crypt 1 0 0.0747 0 0 0 0.2897 0 0 0 0
Dino_A 1 0 0.1716 0 0.3616 1.0481 0 0 0 0 0
Dino_B 1 0 0.2508 0.6579 0 0.1476 0 0 0 0 0
Hapt_A 1 0 0.6767 0 0.3641 0.0505 0 0 0 0 0
Hapt_B 1 0 0.4435 0 0.1868 0.1550 0 0 0 0 0
Prasino_A 1 0.8959 0 0 0 0 0 0.1036 0.0156 0.1207 0.0101
Prasino_B 1 0.7231 0 0 0 0 0 0.0452 0.0478 0.0851 0.0989
Chlo 1 0.3226 0 0 0 0 0 0.0429 0.1474 0.0468 0.0361
Cyano 1 0 0 0 0 0 0 0.6840 0 0 0

Proc 1 0.6079 0 0 0 0 0 0.2312 0 0 0
Sub-set 12: 1.3 <log([TChl_a])

Diatom 1 0 0.1519 0 0.4486 0.0765 0 0 0 0 0
Crypt 1 0 0.1182 0 0 0 0.2291 0 0 0 0
Dino_A 1 0 0.1430 0 1.1550 0.4188 0 0 0 0 0
Dino_B 1 0 0.2980 0.7600 0 0.1482 0 0 0 0 0
Hapt_A 1 0 0.5690 0 0.3641 0.0506 0 0 0 0 0
Hapt_B 1 0 0.2901 0 0.4100 0.2624 0 0 0 0 0
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Table 4 (continued)
Groups TChl_a TChl_b TChl_c Perid Fuco Dia Allo Zea Lut Neo Viola
Sub-set 12: 1.3<log([TChl_a])
Prasino_A 1 0.8314 0 0 0 0 0 0.0755 0.0205 0.0775 0.0084
Prasino_B 1 0.4449 0 0 0 0 0 0.0335 0.0307 0.0705 0.0914
Chlo 1 0.3532 0 0 0 0 0 0.0485 0.1580 0.0397 0.0375
Cyano 1 0 0 0 0 0 0 0.6043 0 0 0
Proc 1 0.7109 0 0 0 0 0 0.2588 0 0 0
100 to derive phytoplankton community composition from space is also
—e— mPF shown on a flowchart (Fig. 3).
gol |0~ nPF
= —-¥— pPF
5 3. Results
‘g 60
= 3.1. CHEMTAX relative pigment concentration ratios
ge)
5 40f . : .
a In this study, we separated HPLC pigment data into 12 sub-sets
i % based on the distributions of log([TChl_a]). Such a separation is
207 T S based on the previously observed seasonal and regional variations
‘ﬁ of dominant phytoplankton species in this study region (Marshall,

g -08 -06-04-02 00 02 04 06 08 10 12 14
nominal log([TChI_a])

Fig. 2. The mean (4 SD) proportion factors of micro- (mPF), nano- (nPF), and pico-
phytoplankton (pPF) based on Vidussi et al. (2001) along the nominal log([TChl_a])
(mean+0.1). The definitions are: mPF = ([Fuco] + [Perid])/DP, nPF = ([Hex] + [But]+
[Allo])/DP, and pPF = ([Zea] + [TChl_b])/DP, while DP = [Fuco] + [Perid] + [Hex] + [But] +
[Allo]+ [Zea] + [TChl_b]. For a better view, the x-axes of the corresponding nPF and pPF
were artificially moved slightly left and right, respectively.

linear regression of Eq. (1) requires m>n, and in this paper,
m =n = 11. The multiple linear fit was conducted by adapting an
IDL program, ‘regress2.pro’, which can be downloaded from http://
hesperia.gsfc.nasa.gov/ssw/gen/idl/fitting/. Above all, the methodology

1984a; Marshall & Cohn, 1987; Marshall et al., 2006) associating
with the distributions of phytoplankton pigments (Pan et al., 2010)
and the trends of the variations of phytoplankton community compo-
sition (micro-, nano-, and pico-phytoplankton) with [TChl_a] (Fig. 2;
and also Hirata et al., 2011). The differences in the relative pigment
concentration ratios for the phytoplankton taxonomic groups (figm"
in 12 sub-sets are shown in Table 4. f5z%" from the major phyto-
plankton types (e.g. Fuco in diatoms, Allo in cryptophytes, and Zea
in cyanobacteria) generally decreases with the increase of [TChl_a],
but the trends become less significant or even reverse in some less
abundant phytoplankton types (e.g. Perid in Dino_B) (Table 4 and
Fig. 4). 5% was less variable at relatively high [TChl_a], e.g. log
(|TChl_a])>0, which might indicate some dominant phytoplankton
(e.g. diatoms) became more significant. In contrast, the highly variable
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: = 7y Pan et al. (2010)
? |
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Fig. 3. Flowchart of the methodology.
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Fig. 4. Relationships between the CHEMTAX-derived relative pigment concentration
ratios for the phytoplankton taxonomic groups (fffs*s) and [TChl_a]. (a) Examples of
photosynthetic carotenoid pigments (PSC) such as fucoxanthin (Fuco) in diatoms and
peridinin (Perid) in dinoflagellates containing Perid (Dino_B); (b) Examples of photo-
protective carotenoid pigments (PPC) such as alloxanthin (Allo) in cryptophytes
(Crypt) and zeaxanthin (Zea) in cyanobacteria (Cyano).

ieom' at relatively low [TChl_a], e.g. log([TChl_a])<— 0.3, might sug-
gest shifts in the dominant phytoplankton over space and time.

The CHEMTAX-derived pigment ratio matrices were generally rea-
sonable based on the assessment of reconstructed pigment concentra-
tions from field measurements. The mean absolute percent differences
(MAPDs) of the reconstructed pigment concentrations and field mea-
surements were generally low (4% to 9%) for pigments well correlated
with TChl_a (e.g. Fuco, TChl_c, and Dia, which were also abundant in
the most common phytoplankton species in this region, diatoms; Pan
et al, 2010) (Table 5). Moderate MAPDs were found for pigments
unique to phytoplankton functional groups whose abundances were
generally high, e.g. 17% for Perid, 20% for Allo, and 17% for Zea
(Table 5). Very high MAPDs were generally found for pigments unique
to phytoplankton functional groups whose abundances were generally
very low, e.g. Pras and DV_Chl_a (unpublished data). The MAPDs for
the accessory pigments (TChl_b, Lut, Neo, and Viola) abundant in
green algae (prasinophytes and other chlorophytes) increased with a
decrease in their relative abundance, e.g. the MAPDs of TChl_b<Neo~
Viola<Lut as the median pigment concentration values were [TChl_b]>
[Neo]~[Viola]>[Lut] (Table 5). Similar trends to the MAPDs were also
found for the root mean square errors (RMSEs) between the

Table 5

reconstructed pigment concentrations and the field measurements,
after accounting for the median value in each pigment component
(Table 5).

3.2. Phytoplankton composition from field measurements

The mean (FC).xa n for different sub-sets are shown in Fig. 5. Di-
atoms generally became more abundant and dominant with the in-
crease of [TChl_a], accounting for 17-26%, 24-53%, and 49-70% of
TChl_a at sub-sets with log([TChl_a])<—0.1, between —0.1 and 0.5,
and>0.5, respectively. The relative abundance of cryptophytes also
increased with the increase of [TChl_a] at relatively low log
([TChl_a]) condition (e.g. <0.3), but decreased at relatively high log
([TChl_a]) condition (e.g. >0.3) primarily due to the obscuration
caused by diatoms. The relative abundance of dinoflagellates
(Dino_A + Dino_B) had a similar trend with cryptophytes, but the de-
crease of (FC)pino with [TChl_a] began earlier than cryptophytes at log
([TChl_a]) = —0.3. Haptophytes (Hapt_A -+ Hapt_B) generally be-
came less abundant with the increase of [TChl_a], ranging from 19-
30%, 6-24%, and 1-5% at sub-sets with log([TChl_a]) <— 0.1, between
—0.1 and 0.5, and >0.5, respectively. The relative abundance of green
algae (Prasino_A + Prasino_B+ Chlo) was less variable at most
[TChl_a] conditions, ranging from 9-15% at log([TChl_a]) varying
from —0.7 to 1.1. The relative abundances of cyanobacteria and pro-
chlorophytes generally decreased with the increase of [TChl_a], and
prochlorophytes became almost negligible at conditions with log
([TChl_a])>—0.3. Since [TChl_a] roughly indicates the general spatial
and seasonal distributions of phytoplankton (e.g. decreasing towards
offshore and increasing from Summer to Winter-Spring), the varia-
tions of (FC)iaxa n With [TChl_a] imply the seasonal and spatial varia-
tions of phytoplankton community composition. These results are
generally consistent with previous studies on the seasonal and spatial
variations of phytoplankton community composition (Marshall,
1984a, 1984b; Marshall & Cohn, 1987; Marshall et al., 2006) and cell
count data used in this study.

The match-up comparisons showed that CHEMTAX-derived con-
centrations of phytoplankton functional groups generally agreed with
the cell counts (Fig. 6). The CHEMTAX-derived concentrations generally
increased with increases in the cell counts. Their relationships for some
major phytoplankton functional groups, such as diatoms, cryptophytes,
dinoflagellates (Dino_A+ Dino_B), and cyanobateria, could even be
expressed into log-transformed linear regressions (Fig. 6).

3.3. Satellite imagery of phytoplankton community composition

Because current empirical methodology is unable to derive some
important accessory pigments (e.g. Hex and But) from remotely
sensed imagery (Pan et al.,, 2010), and CHEMTAX chemotaxonomic
analysis is not able to separate phytoplankton groups with similar
pigment composition, such as chlorophytes and prasinophytes
(Mackey et al, 1996), we aggregated the remotely sensed

Mean absolute percent differences (MAPDs) and root mean square errors (RMSEs) between (a) the CHEMTAX reconstructed pigment concentrations ([Pig_m]econstructed) and field
measurements of HPLC pigments ([Pig_m]geiq), and (b) match-up satellite-derived pigments ([Pig_m]saceriite) and [Pig_m]geiq from MODIS-Aqua within + 8 hour overpass window
adapted from Pan et al. (2010). Median values of [Pig_m]geiq Were also shown for comparison.

Parameters TChl_a TChl_b TChl_c Perid Fuco Dia Allo Zea Lut Neo Viola
Median 1.987 0.149 0.395 0.070 0.575 0.148 0.074 0.043 0.006 0.019 0.019
{(1) [Pig_m]reconstmctcd vs. [Pig_m]ﬁeld

MAPD (%) 0 6.4 8.9 16.9 3.9 6.4 19.8 17.4 121.1 203 323
RMSE 0 0.012 0.040 0.016 0.050 0.017 0.017 0.013 0.014 0.009 0.013
(b) [Pig_m]sacenice VS. [Pig_M]fieta

MAPD (%) 33.7 45.7 35.4 443 40.9 34 421 48.5 373 45.2 432
RMSE 0.229 0.329 0.279 0.257 0318 0.368 0417 0.262 0319 0.307 0.239
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Fig. 5. Percentage fraction of TChl_a for each phytoplankton taxonomic group, FC, de-
rived from CHEMTAX analysis on 12 sub-sets (Table 4) of HPLC pigment data. The
nominal log([TChl_a] (median+0.1) for each sub-set was: sub-set 1 (—0.8), 2
(—0.6), 3 (—04), 4 (—0.2), 5 (0.0), 6 (0.2), 7 (0.4), 8 (0.6), 9 (0.8), 10 (1.0), 11
(1.2), and 12 (1.4).

distributions of phytoplankton groups into six categories: diatoms
(Diatom), cryptophytes (Crypt), dinoflagellates (Dino; sum of
Dino_A and Dino_B), haptophytes (Hapt; sum of Hapt_ A and
Hapt_B), prasinophytes plus chlorophytes (Prasino&Chlo), and pico-
phytoplankton (Pico; sum of cyanobacteria and prochlorophytes).
Figs. 7 and 8 showed examples of the spatial and seasonal distributions
phytoplankton functional groups from 2006. Similar distributions could
also be found on similar seasonal periods for the same or different years
(data not shown). Except for pico-phytoplankton, the absolute concen-
trations of phytoplankton decreased from Winter-Spring to Summer
and from the inner to outer shelf (Fig. 7).

This study region is known to be strongly impacted by the outflow
plumes and along-shore flows (e.g. from Chesapeake and Delaware
Bays in the SMAB, from Hudson-Raritan River-Estuary in the NYB,
and from the Scotian Shelf in the GoM) (Acker et al., 2005; Harding
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et al., 2005; Marshall, 1984a; Marshall & Cohn, 1987; O'Reilly & Zetlin,
1998; Pan & Zimmerman, 2010; Pan et al., 2008, 2010). High nutrient
loading from terrestrial inputs has been related to enhanced phyto-
plankton biomass in coastal systems (Acker et al., 2005; Filippino
et al., 2009; Harding et al., 2005; Smith, 2006). For example, the
monthly mean freshwater discharge rates out of the Chesapeake
Bay mouth were 2983, 1463, 729, and 4189 m3s~! for February,
May, August, and November 2006, respectively (G. Fisher, U.S. Geo-
logical Survey, personal communication, 2007). This presumably led
to transport of phytoplankton groups characteristic of the Chesapeake
Bay estuary and plume region to offshore areas during November,
February, and even May when freshwater discharge was significantly
higher than during August (Fig. 7), consistent with other work (Filippino
et al.,, 2009). In addition, diatom concentrations decreased by a factor of
>15 from the inner shelf to the middle shelf in the SMAB during August,
and by a factor of 4 to 9 during November, February, and May 2006
(Fig. 7). In contrast, variations in phytoplankton biomass from middle
shelf to outer shelf were found inversely related to discharge rates, e.g.
diatom concentrations decreased from the middle shelf to outer shelf
in the SMAB by a factor of 2 to 4 during February, May, and November
but 1 to 2 during August (Fig. 7). Cuaxa n Was also found high around
the Nantucket Shoals and the Georges Bank, in which the geologically
shallow water conditions favor the upwelling of nutrient-rich deep wa-
ters, especially during the Winter-Spring (Fig. 7). Diatoms and crypto-
phytes became almost negligible in offshore and basin waters,
especially during Summer, in which Prasino&Chlo (probably within the
pico-size fraction identified as the dominant pico-eukaryotes; Marshall,
1984a) and pico-phytoplankton became more dominant (Fig. 7). Pico-
phytoplankton (here primarily represented as cyanobacteria in the
inner and middle shelf waters and prochlorophytes in the outer shelf
and the basin waters) were more abundant during Summer and in the
southern region than during Winter-Spring and in the northern region
(Fig. 7), consistent with earlier observations showing a positive relation-
ship between cyanobacteria and water temperature (Jeffrey et al., 1997;
Reynolds & Walsby, 1975) and the dominant status of prochlorophytes in
the oligotrophic waters, especially in warm waters (Campbell & Vaulot,
1993).
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Fig. 6. Match-up comparisons between microscopic cell counts and CHEMTAX-derived concentrations for phytoplankton functional groups of (a) diatoms, (b) cryptophytes, (c)
dinoflagellates (Dino_A + Dino_B), and (d) cyanobacteria. The data sets were limited to samples collected from the top 10-m waters. The log-transformed linear (Type 1) regres-

sions (solid lines and the equations) are also shown.
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Fig. 7. The distributions of TChl_a abundance (Ci.xa n) Of functional phytoplankton groups including diatoms (Diatom), cryptophytes (Crypt), dinoflagellates (Dino), haptophytes
(Hapt), prasinophytes plus chlorophytes (Prasino&Chlo), and pico-phytoplankton (Pico; cyanobacteria plus prochlorophytes) in the northeast coast of the United States in 2006.

Each image represents an 8-day mean derived from MODIS-Aqua.

The distributions of (FC)axa n Showed that diatoms were the most
abundant phytoplankton group on the inner shelf, accounting for 40-
55% of [TChl_a] during Winter-Spring and about 30-45% during Sum-
mer (Fig. 8). The abundance and proportion of diatoms decreased oft-
shore as the impact from estuarine discharge and alongshore flows
decreased (Fig. 8). For example, (FC)pjatom Were relatively lower,
from 40% on the inner shelf to 15% on the outer shelf, during August
2006 when discharge rates were lower (729 m>s~'), and increased
with increases in discharge rates, e.g. about 45-50% and 20-25% dur-
ing May (1463 m3s~!), February (2983 m>s~!), and November
2006 (4189 m>s~!) for the inner and outer shelf respectively
(Fig. 8). Cryptophytes typically showed similar trends to diatoms,
but somewhat higher proportions were found in the inner and middle
shelf other than the plume regions since in the plume regions crypto-
phyte blooms are obscured by diatom blooms, which was consistent
with the results from HPLC and CHEMTAX analyses (Fig. 5). Such sea-
sonal and spatial patterns of absolute and relative abundances of dia-
toms and cryptophytes agreed generally with phytoplankton cell
abundance data from previous works, especially in offshore areas
(>35 km from shore) (Table 6). Dinoflagellate proportions of the

total phytoplankton community were somewhat higher on the
inner shelf during Summer than during Winter-Spring and generally
increased offshore (Fig. 8). Higher proportions of haptophytes were
typically observed during late Spring to Summer (May and August)
on the middle and outer shelf (Fig. 8). Also the seasonal and spatial
patterns in the abundance of dinoflagellates and haptophytes relative
to the total phytoplankton population agreed reasonably well with
previous studies on phytoplankton abundance in the region
(Table 6). Higher proportions of Prasino&Chlo were found offshore
while diatoms were dominant on the inner shelf (Fig. 8). Pico-
phytoplankton proportions were typically very low at high [TChl_a]
waters (Pan et al., 2010), especially on the inner and middle shelf
during Winter-Spring, but increased during Summer and towards
offshore (Fig. 8). Although our approaches were developed primarily
for the shelf waters, the observations of very high proportions of pico-
phytoplankton during Summer (Fig. 8), as well as their absolute con-
centrations (Fig. 7), might indicate cyanobacterial blooms in the mid-
dle and low regions of the Chesapeake Bay, in which cyanobacterial
blooms are common during Summer (ECOHAB, 1994). These results
were generally consistent with cell count data (Table 6) and previous
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Fig. 8. The distributions of the percentage fraction of TChl_a for each phytoplankton group [(FC)axa n]. See Fig. 7 for detailed description.

observations (Marshall, 1984a, 1984b; Marshall & Cohn, 1987;
Marshall et al., 2006).

3.4. Time-series analysis of phytoplankton community composition from
satellite observations

The seasonal and spatial patterns in phytoplankton functional group
distributions were further confirmed using time-series analysis done at
two selected locations (75.88°W, 36.96°N, and 74.83°W, 36.40°N;
Fig. 1) on the inner shelf and outer shelf areas of the Chesapeake Bay
estuary in the SMAB. Diatoms were most abundant in the inner shelf,
in which their abundances were about 2- to 5-fold of cryptophytes, hap-
tophytes, and Prasino&Chlo, and 6- to 30-fold of dinoflagellates and
pico-phytoplankton (Fig. 9). The dominant status of diatoms became
less apparent in the outer shelf, in which diatom abundances were
only 0.3- to 2-fold of cryptophytes, haptophytes, and Prasino&Chlo,
and 0.5- to 3-fold of dinoflagellates and pico-phytoplankton (Fig. 9). Ex-
cept for pico-phytoplankton and haptophytes, phytoplankton abun-
dances were generally higher during Winter-Spring than during
Summer, with the ratios of 1.5 to 2.8 in the inner shelf and 1.4 to 9.4

in the outer shelf, respectively (Fig. 9). The seasonal variations of hapto-
phytes were less significant in the inner shelf, but significant in the
outer shelf in which their abundances during Winter-Spring were
about 2.7-fold of those during Summer (Fig. 9). In contrast, pico-
phytoplankton were more abundant (about 3-fold) during Summer
than during Winter-Spring in the inner shelf, but their seasonal varia-
tions disappeared dramatically in the outer shelf (Fig. 9).

The relative abundances (FC) showed that diatoms accounted for
about 37% of [TChl_a] in the inner shelf, following by 16% to 19%
from cryptophytes, haptophytes, or Prasino&Chlo, and 2% to 5%
from dinoflagellates or pico-phytoplankton (Fig. 10). In the outer
shelf, haptophytes and Prasino&Chlo together accounted for about
50% of [TChl_a], while other phytoplankton accounted for the remain-
ing 50% in relatively equal proportions (Fig. 10). The relative abun-
dances in the inner shelf decreased from Winter-Spring to Summer
for diatoms (42% versus 32%) and cryptophytes (20% versus 16%),
and were relatively constant for dinoflagellates (~5%) and Prasino&
Chlo (~19%) but increased for haptophytes (12% versus 20%) and
pico-phytoplankton (1% versus 7%) (Fig. 10). Similarly, the relative
abundances in the outer shelf decreased from Winter-Spring to


image of Fig.�8

3742 X. Pan et al. / Remote Sensing of Environment 115 (2011) 3731-3747

Table 6

Mean abundances of the selected phytoplankton groups during Cape Henlopen cruise 82-3 in April 1982, NEMP cruise 82-08 in July/August 1982, and NEMP cruise 82-11 in Sep-
tember 1982 (Marshall, unpublished data). Near shore stations (NS) located within 35 km from the shore, while far shore stations (FS) beyond this distance. Transects established
along these approximate coordinates: the Chesapeake Bay entrance (CBE) from 36.88°N, 75.87°W to 36.23°N, 74.80°W; the Delaware Bay entrance (DBE) from 38.80°N, 74.95°W to
38.13°N, 73.87°W, and the New York Bight (NYB) from 40.45°N, 73.88°W to 39.65°N, 72.70°W.

Regions Seasons Diatoms Cryptophytes Dinoflagellates Coccolithophores
NS FS NS FS NS FS NS FS

Phytoplankton abundance (10° cells L™")

CBE Apr 6.088 1.236 1336 0.923 0.283 0.416 0.296 0.609
Jul/Aug 5.816 4.187 0.116 0.065 0.855 0.187 0.217 3.713
Sep 0.971 0.504 0.519 0.365 0.494 0.513 0.164 0.146
Mean 4292 1.976 0.657 0.451 0.544 0.372 0.226 1.490

DBE Apr 2.033 3.721 1312 1.609 0.077 0.323 0.170 1.606
Jul/Aug 8.290 3.645 0.924 0.609 2.525 0.975 0.103 0.094
Sep 4433 1.119 1.923 0.553 1.904 5.082 2.097 0.268
Mean 4919 2.828 1.387 0.924 1.502 2127 0.790 0.656

NYB Apr 10.135 2.344 1.678 0.480 0.470 0.310 0.641 0.160
Jul/Aug 1.192 1.109 0.143 0.401 1.341 0.620 0.044 0.086
Sep 4.459 0.123 0.966 0.450 0.714 0.406 0.402 1.109
Mean 5.262 1.192 0.929 0.444 0.842 0.446 0.362 0.451

Relatively abundance normalized to diatom cell counts

CBE Apr 1 1 0.219 0.747 0.046 0.337 0.049 0.493
Jul/Aug 1 1 0.020 0.016 0.147 0.045 0.037 0.887
Sep 1 1 0.535 0.724 0.509 1.018 0.169 0.290
Mean 1 1 0.153 0.228 0.127 0.188 0.053 0.754

DBE Apr 1 1 0.645 0.432 0.038 0.087 0.084 0.432
Jul/Aug 1 1 0.111 0.167 0.305 0.267 0.012 0.026
Sep 1 1 0.434 0.494 0.430 4.542 0.473 0.239
Mean 1 1 0.282 0.327 0.305 0.752 0.161 0.232

NYB Apr 1 1 0.166 0.205 0.046 0.132 0.063 0.068
Jul/Aug 1 1 0.120 0.362 1.125 0.559 0.037 0.078
Sep 1 1 0.217 3.659 0.160 3.301 0.090 9.016
Mean 1 1 0.177 0.372 0.160 0.374 0.069 0.378

Summer for diatoms (16% versus 8%), cryptophytes (13% versus 3%)
and haptophytes (29% versus 23%), and were relatively constant for
dinoflagellates (~12%) but increased for Prasino&Chlo (20% versus
33%) and pico-phytoplankton (9% versus 21%) (Fig. 10). Similar sea-
sonal and spatial patterns were also found in the Delaware Bay estu-
ary and New York Bight, but became less significant in the semi-
enclosed Gulf of Maine (data not shown).

The spatial distributions and the time-series patterns of phytoplank-
ton composition derived from CHEMTAX method agreed reasonably
with cell count observations. Phytoplankton composition over the U.S.
northeastern continental shelf including studies involving NOAA
National Marine Fisheries Service (NMFS) based cruises from 1969
through 1985 showed over 600 algal taxa recorded for this region
(Marshall & Ranasinghe, 1989). The major components included
diatoms, a diverse group of phytoflagellates, plus pico-phytoplankton
(<3 um) composed predominantly of cyanobacteria and chlorophytes
(Marshall, 1984a, 1984b). A previous study showed that a total phyto-
plankton abundance near shore (up to 35 km seaward) ranging from
10° to 107 cells L™, that generally decreased to 10* to 10° cells L™}
across the mid-shelf and increased again along the outer shelf margin
(Marshall, 1984b). This is generally consistent with the phytoplankton
composition derived here using satellite data, e.g. an increase of phyto-
plankton concentrations by a factor of 1 to 2 orders of magnitude from
the outer to inner shelf (Figs. 7 and 9). Within the MAB estuarine
plumes (Hudson, Delaware, and Chesapeake Bays), estuarine outflow
increased phytoplankton concentrations seasonally and influenced spe-
cies composition and diversity (Marshall, 1984a; Marshall & Cohn,
1987; this study, Figs. 7-10).

Phytoplankton abundance from previous studies with station lo-
cations comparable to the present study were also presented in
Table 6. These samples were taken aboard from one U.S. Coast
Guard and two NOAA's NorthEast Monitoring Program (NEMP)
cruises (82-03, 82-08, 82-11) and subsequently analyzed for phyto-
plankton composition and abundance (Marshall, unpublished data).

A minimum of 3 near-shore and 3 off-shore stations yielded mean
phytoplankton concentrations for these regions during April, July/
August, and September 1982. These values illustrated the monthly
abundance varied from 10* to 10° cells L™! for diatoms, and 10° to
10° cellsL™! for cryptophytes, coccolithophores, and dinoflagel-
lates. Diatoms were consistently the dominant flora within near
shore waters and along transects directed across the shelf for all sea-
sons. Phytoflagellates were also dominant constituents within these
waters. At lower concentrations and with seasonally varying abun-
dance were cyanobacteria, chlorophytes, and pico-phytoplankton.
The 1982 data, as well as the cell counts conducted in our cruises
from 2006 to 2009, are consistent with our seasonal and spatial phy-
toplankton function group derivations from satellite observations
(Figs. 7-10).

Time-series analyses of phytoplankton assemblages from this
study indicate generally negative correlations between concentra-
tions of micro- and nano-phytoplankton groups (diatoms, dinoflagel-
lates, cryptophytes, haptophytes, and Prasino&Chlo) and sea surface
temperature (SST) in the outer shelf areas (Table 7). The negative cor-
relations between SST and phytoplankton abundance or TChl_a were
generally more significant in the south regions (e.g. the Chesapeake
Bay estuary and the Delaware Bay estuary) than in the north region
(e.g. the New York Bight and the Gulf of Maine) (Table 7), consistent
with the suggestion by Richardson and Schoeman (2004) for the
northeast Atlantic. Such results imply that the nutrient availability is
generally the major limiting factor for phytoplankton growth in the
offshore region. With the deepening of the surface mixed layer by
surface cooling in Winter, as well as stronger winds, more nutrients
are transported to the surface mixed layer to stimulate phytoplankton
growth. In the other hand, the shallowness of the surface mixed layer
due to strong vertical stratification in Summer creates a nutrient-
depleted surface mixed layer that may reduce micro- and/or nano-
phytoplankton growth within the surface mixed layer. Because
pico-phytoplankton generally compete successfully over micro- and
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Fig. 9. Monthly time-series plots of Ci.xa n distributions for selected phytoplankton groups at two locations in the SMAB region. The inner shelf and outer shelf locations are at
75.88°W, 36.96°N and 74.83°W, 36.40°N, respectively. The selected phytoplankton groups include (a) Diatom, (b) Crypt, (c) Dino, (d) Hapt, (e) Prasino&Chlo, and (f) Pico.

nano-phytoplankton in nutrient-depleted water conditions, especial-
ly in Summer, the correlations between SST and pico-phytoplankton
abundances were significantly positive (Table 7). The correlations be-
tween SST and phytoplankton abundances in the inner shelf were
more complex (Table 7), depending on the major limiting factor (nu-
trients, light penetration, light intensity, or photoperiod) for phyto-
plankton growth. For example, Harding et al. (1986) indicated that
the major limiting factor was nutrient availability in the Chesapeake
Bay estuary (CBE) but light penetration in the Delaware Bay estuary

(DBE). Consequently, the increasing supply of nutrients in Winter
caused more apparent stimulation effect for phytoplankton growth
in the CBE than in the DBE, as shown by more significant negative cor-
relations between SST and phytoplankton abundances in the CBE
than in the DBE (Table 7). In the GoM and even the NYB, light avail-
ability (light intensity and photoperiod) is the major limiting factor
for phytoplankton growth during Winter. Phytoplankton blooms typ-
ically occur in late Spring or early Summer as observed from our serial
cruises in the GoM.
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Fig. 10. Monthly time-series plots of percentage fractions of TChl_a for selected phytoplankton groups [(FC)axa n] at two locations in the SMAB region. See Fig. 9 for detailed

description.

4. Application and discussion
4.1. CHEMTAX taxonomic groups and limitations to our approach

Phytoplankton functional groups using CHEMTAX analysis should
be selected with caution. Some uncommon species, such as eugleno-
phytes, should be excluded from CHEMTAX analysis for this region, or
the calculations would result in unreasonably high concentrations of

euglenophytes (sometimes even higher than diatoms) (unpublished
data). Other uncommon species, such as Prasino_A and prochloro-
phytes, could be included to CHEMTAX analysis, partly due to their
unique pigments (e.g. prasinoxanthin and DV_Chl_a). Cell count
data are essential to evaluate the quality of the CHEMTAX outputs.
The categories of CHEMTAX taxonomic groups are based on pig-
ment ratios within phytoplankton from particular taxonomic groups.
Many phytoplankton functional groups have similar pigment ratios,
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The correlation coefficients (r) of sea surface temperature (SST) versus absolute abundance (Ceax, n) and relative abundance [(FC)iaxa n] of functional phytoplankton groups. The
selected stations on the inner shelf and the outer shelf were (75.88°W, 36.96°N) and (74.83°W, 36.40°N) for the Chesapeake Bay estuary (CBE), (75.00°W, 38.75°N) and
(74.11°W, 37.91°N) for the Delaware Bay estuary (DBE), (73.94°W, 40.46°N) and (72.54°W, 39.48°N) for the New York Bight (NYB), and (70.62°W, 43.04°N) and (69.99°W,
42.79°N) for the Gulf of Maine (GoM), respectively. The selected functional phytoplankton groups included: diatoms (Diatom), cryptophytes (Crypt), dinoflagellates (Dino), hap-
tophytes (Hapt), prasinophytes plus chlorophytes (Prasino&Chlo), and picophytoplankton (Pico; cyanobacteria plus prochlorophytes).

Parameters CBE DBE NYB GoM

Inner Outer Inner Outer Inner Outer Inner Outer
[TChl_a] —0.16 —0.22 0.03 —0.31 0.07 —0.12 —0.01 —0.08
Cpiatom —0.16 —0.14 —0.03 —0.23 —0.02 —0.08 0.08 —0.08
Cerypt —0.14 —0.22 —0.02 —0.34 0.04 —0.14 0.05 —0.07
Cpino —0.12 —0.26 —0.04 —0.40 0.03 —0.28 0.03 —0.09
Chapt —0.09 —0.47 0.07 —0.46 0.15 —0.35 0.02 —0.10
Cprasino&Chio —0.21 —0.19 0.04 —0.20 0.08 —0.09 0.01 —0.09
Cpico 0.40 0.20 0.27 0.42 0.21 0.24 0.22 0.50
(FC)biatom —0.28 —0.35 —0.14 —0.37 —0.24 —0.30 0.02 0.04
(FO)crypt —0.32 —0.51 —0.25 —0.52 —0.35 —0.53 —0.19 —0.08
(FC)pino 0.02 0.25 —0.05 0.21 —0.10 0.21 0.03 —0.02
(FC)Hapt 0.32 —0.36 0.19 —0.39 0.36 —0.40 —0.16 —0.13
(FC)prasinogChio —0.21 0.41 0.00 0.37 0.17 0.36 0.10 —0.18
(FO)pico 0.80 0.77 0.77 0.82 0.69 0.85 045 0.81

such as dinoflagellate species containing fucoxanthin-like pigments
(Dino_A) versus diatoms, prasinophytes versus chlorophytes, and
cyanobacteria versus prochlorophytes (Table 4). This can make it diffi-
cult to distinguish between these groups by using CHEMTAX (Mackey
et al,, 1996). As for CHEMTAX analysis, the ability to accurately deter-
mine phytoplankton community composition from ocean color remote
sensing depends on the ability to quantify particular phytoplankton
pigments (versus bulk TChl_a) using ocean color sensors, especially
for species- or taxa-specific pigments. For example, the ability to derive
19’-butanoyloxyfucoxanthin (But) and 19’-hexanoyloxyfucoxanthin
(Hex) from satellite data makes it easy to distinguish chrysophytes
and haptophytes from other golden-brown algae and provides a useful
tool for assessing the distributions of these important phytoplankton
groups. Unfortunately, such remotely sensed approaches have not
been developed at this time (Pan et al., 2010).

The satellite-derived phytoplankton community composition de-
veloped in this paper is dependent on two independent approaches
(Fig. 3): (1) ocean color algorithms to derive pigment concentrations
(Approach_1; Pan et al,, 2010), and (2) CHEMTAX-derived pigment
matrices for selected phytoplankton functional groups (Approach_2;
Table 4). Compared with the uncertainty attributed to Approach_1,
the uncertainty associated with Approach_2 is generally small. As
shown in Table 5, the MAPDs and RMSEs between the derived or
reconstructed pigments and field measurements from Approach_1
were generally much higher than those from Approach_2. Therefore,
developing appropriate ocean color algorithms with reasonable
agreement to field data becomes a bottleneck for studying phyto-
plankton community composition from space.

4.2. Cell counts versus chemotaxonomy

Comparisons of phytoplankton community composition made
using microscopic cell counts versus CHEMTAX derivations should
be conducted with caution. Microscopic analysis can also be biased.
For example, it is difficult to count fragile cells. There is differential
preservation of phytoplankton depending on the various preserva-
tives used. Pico-phytoplankton are often underestimated by direct
microscopic counts. Physiological variability of cells within particular
groups can also bias chemotaxonomic results. For example, cellular
pigment concentrations in phytoplankton vary not only between spe-
cies and taxonomic groups but also with environmental factors such
as light, nutrient availability, and physiological stage of cells (Lewitus
et al., 2005; Mackey et al., 1996; Moisan & Mitchell, 1999; Schliiter
et al, 2000; Zapata et al, 2004). Cells adapted to a high light

environment may have lower cellular concentrations of photosyn-
thetic pigments but higher concentrations of photoprotective pig-
ments (Lewitus et al., 2005; Schliiter et al., 2000). Therefore, the
pigment matrices and results presented here should be validated be-
fore being applied to other regions, even though the derived matrices
were based on sub-sets across a wide range of [TChl_a] (Table 4).

Without considering the significant variations of cellular pigment
concentrations over seasons and regions, seasonal and spatial patterns
of the CHEMTAX-derived concentrations of phytoplankton functional
groups may significantly differ from abundances determined using
cell counts. For example, CHEMTAX-derived concentrations of dinofla-
gellates from this study seemed somewhat higher during Winter-
Spring than during Summer, especially on the inner shelf (Figs. 7 and
9). The monthly means of Cp;,, from a location on the inner shelf
of the SMAB (—75.88°W, 36.96°N) were 0.283, 0.114, and
0.200 mg m > during April, July/August, and September, respectively
(Fig. 9), indicating dinoflagellate concentrations during July/August
were only half that observed during April and September. The historical
observations based on cell counts (Marshall & Cohn, 1987), however,
showed generally higher abundance of dinoflagellates during Summer
than during other seasons, e.g. 2.9- to 32.8-fold and 1.3- to 1.9-fold in-
crease in dinoflagellate cell abundance during July/August as compared
to those during April and September in the near-shore region (within
35 km from the shore) (Table 6). The cellular pigment concentrations
of dinoflagellates during summer may be several folds lower than dur-
ing other seasons, e.g. cellular [Perid] varied from 1.3 to 3.7 pg cell ™!
during July/August to 7.8 to 62 pg cell ! during November from our da-
tabase. As also indicated in Fig. 6, the dinoflagellate cell abundances can
vary over 10-fold for a given CHEMTAX-derived concentration. Such
significant variations of cellular pigments should be accounted for to ex-
ploit the significant seasonal and spatial variability of relationships be-
tween CHEMTAX-derived concentrations and cell counts.

The physiological stage of cells varies diurnally and seasonally and
needs to be considered in using CHEMTAX derivations of phytoplank-
ton community composition. For example, many dinoflagellates are
mixotrophic and have notoriously flexible metabolisms (Bockstahler
& Coats, 1993; Jeffrey et al., 1997; Li et al, 1999). The degree to
which these organisms are autotrophic versus heterotrophic at any
one time may affect their pigment composition. It is reasonable to as-
sume that: a) cellular pigment concentrations, especially for photo-
synthetic pigments, were lower in autotrophic dinoflagellates than
in heterotrophic forms because pigments digested by the latter
were kept in the cell (Li et al., 1999); and b) cellular pigment concen-
trations in the autotrophic forms were higher under low-light
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environment than under high-light environment (Lewitus et al.,
2005; Schliiter et al., 2000); and c) higher proportion of heterotrophic
forms occurred under low-light environment than under high-light
environment (Bockstahler & Coats, 1993; Li et al., 1999). Ignoring
the spatial difference, such variations of cellular pigment concentra-
tions and the degree of autotrophic versus heterotrophic forms may
together account for the variations of cellular [Perid], which was
higher in early morning and had a second-peak in later morning,
and which was generally higher during Winter-Spring than Summer,
e.g. 41.0, 40.8, 6.3, and 7.8 pg cell~! on local 9:03, 10:03, 11:20, and
13:35 during CBP_5 cruise on 28 November 2006; and 2.9, 1.2, and
1.4 pg cell ™! on local 9:24, 10:40, and 11:46 during CBP_8 cruise on
3 July 2007.

One of the advantages of the chemotaxonomic approach over the
microscopic cell counting is that the former can be used to quantify
some phytoplankton functional groups which are difficult to detect
by the latter technique (Mackey et al., 1996). For example, coccolitho-
phorids might be underestimated by microcopy using Lugol's preserva-
tion since the acidic Lugol solution may cause dissolution of coccoliths
on the cell surface of coccolithophorids. Chlorophytes might also be
underestimated from microscopy since some of them might be found
in a significant proportion of the pico-phytoplankton (Marshall,
1984b; Vaulot et al,, 2008). The CHEMTAX derivations showed that
Prasino&Chlo might be present at similar or even higher order of mag-
nitude than diatoms, especially in the offshore regions (Figs. 5-8), but
chlorophytes could not be detected microscopically from many of cell
counting samples.

4.3. Phytoplankton community composition, global changes, and
social-economical impacts

Understanding general changes in trends of phytoplankton com-
munity composition is crucial for understanding how climate change
impacts aquatic biology. The response of phytoplankton composition
and abundance to climate change will have profound effects on higher
trophic levels through bottom-up processes, which in turn impacts
phytoplankton community through top-down control mechanisms
(Edwards & Richardson, 2004; Hays et al.,, 2005; Montes-Hugo et al.,
2009; Richardson & Schoeman, 2004). Edwards and Richardson
(2004) showed a strong response of marine pelagic communities to
global change, and a mismatch in the response between phytoplankton
versus that of higher trophic levels (e.g. zooplankton and economic
fish), and this mismatch partly accounted for the decline of fish stocks.
For example, over the past 45 years, high abundance of diatom and di-
noflagellate now increase 33 and 27 days earlier in the year, respective-
ly, in response to increasing water temperatures in the North Sea, while
copepod abundance occurs only 11 days earlier over the same period
(Hays et al,, 2005). This has resulted in decreased energy flow to higher
trophic levels. Montes-Hugo et al. (2009) reported that a decrease in
TChl_a in the northern part of the western Antarctic Peninsula (WAP)
accompanied by a decrease in the relative abundance of diatoms (and
an opposite effect on the southern part of the WAP) associated with
rapid regional warming, coincided with the changes in the distribution
of krill and penguin populations. Global warming is also cited as a caus-
ative factor in the expansion poleward in the range of tropical and tem-
perate phytoplankton species (e.g. Ceratium trichoceros), and resulting
in shifts in local and regional phytoplankton communities (Hays et al.,
2005). The ability of satellite remote sensing to provide information
on phytoplankton community composition will improve our under-
standing of how climate change impacts marine ecosystems. Our results
suggest that we can expect to see shifts in phytoplankton community
composition as surface waters continue to warm. For example, Fig. 9 in-
dicated that the annual mean concentrations of phytoplankton func-
tional groups between 2003 and 2009 decreased over the years for all
phytoplankton in both inner and outer stations (r ranging from — 0.2
to —0.7) except pico-phytoplankton in the inner shelf station (r=20.1).

5. Conclusions

This paper shows that ocean color remote sensing can be used to de-
termine the phytoplankton community composition in the northeast
coast of the United States, although exploiting such derivations should
be, to some degree, applied with caution as compared to cell count
abundance. Spatial and seasonal variations of satellite-derived phyto-
plankton taxonomic groups from this study generally agreed with the
cell count observations and with previous work (e.g. Marshall, 1984a,
1984b; Marshall & Cohn, 1987; Marshall & Ranasinghe, 1989; Marshall
et al,, 2006). Cell abundances of some major phytoplankton functional
groups (e.g. diatoms, cryptophytes, dinoflagellates, and cyanobacteria)
can potentially be estimated from CHEMTAX-derived concentrations
(Fig. 6). Diatoms were generally the most abundant phytoplankton spe-
cies in this region, especially during winter-spring and on the inner
shelf. Other phytoplankton groups tended to co-occur with diatoms
(Marshall, 1984a, 1984b; Marshall & Cohn, 1987; Marshall et al.,
2006). High abundances of pico-phytoplankton were typically observed
during summer when diatom abundance was lower. Although our
study showed the distributions of Ciaxa n, the application of these satel-
lite products to the study of phytoplankton community structure
should be conducted with caution due to the significant variations in
cellular pigment concentrations with environmental factors and physi-
ological status. The method developed from this study, however,
proved reasonable to determine the intended phytoplankton groups,
especially if they were relatively abundant or had fairly unique pigment
compositions.

Acknowledgments

This research was supported by an appointment to the NASA Post-
doctoral Program at the Goddard Space Flight Center, administered
by Oak Ridge Associated Universities through a contract with NASA.
The work was supported by the NASA Ocean Biology and Biogeo-
chemistry Program, Interdisciplinary Science, Biodiversity, New In-
vestigator Program, Carbon Cycle Science and Earth Observing
System programs. We thank M. Twardowski for planning the New
York Bight cruises. We are grateful to T. Egerton and C. Burbage at
Old Dominion University (ODU) and D. Borkman at University of
Rhode Island for providing phytoplankton cell count data, and R.
Zimmerman at ODU for his HPLC data submitted to the NASA SeaBASS
database. We thank the captains and crews of R/V Cape Henlopen,
Hugh R. Sharp, Gulf Challenger, Connecticut, and Fay Slover. We are
grateful to L. Van Heukelem and C. Thomas at Horn Point Laboratory
for analyzing HPLC pigments, and the Ocean Biology Processing
Group (OBPG) at GSFC for satellite data processing and distribution.

References

Acker, J. G., Harding, L. W., Leptoukh, G., Zhu, T., & Shen, S. (2005). Remotely-sensed chl a
at the Chesapeake Bay mouth is correlated with annual freshwater flow to the Ches-
apeake Bay. Geophysical Research Letters, 32, L05061. doi:10.1029/2004GL021852.

Adolf, ]. E., Yeager, C. L., Miller, W. D., Mallonee, M. E., & Harding, L. W. (2006). Environ-
mental forcing of phytoplankton floral composition, biomass, and primary produc-
tivity in Chesapeake Bay, USA. Estuarine Coastal and Shelf Science, 67, 108-122. doi:
10.1016/j.ecss.2005.11.030.

Aiken, J., Hardman-Mountford, N. ], Barlow, R., Fishwick, J., Hirata, T., & Smyth, T.
(2008). Functional links between bioenergetics and bio-optical traits of phyto-
plankton taxonomic groups: An overreaching hypothesis with application for
ocean colour remote sensing. Journal of Plankton Research, 30, 165-181.

Aiken, J., Pradhan, Y., Barlow, R., Lavender, S., Poulton, A., Holligan, P., et al. (2009). Phyto-
plankton pigments and functional types in the Atlantic Ocean: A decadal assessment,
1995-2005. Deep-Sea Research I, 56, 899-917. doi:10.1016/j.dsr2.2008.09.017.

Alvain, S., Moulin, C., Dandonneau, Y., & Loisel, H. (2008). Seasonal distribution and
succession of dominant phytoplankton groups in the global ocean: A satellite
view. Global Biogeochemical Cycles, 22, GB3001. doi:10.1029/2007GB003154.

Behrenfeld, M. ]., Boss, E., Siegel, D. A., & Shea, D. M. (2005). Carbon-based ocean pro-
ductivity and phytoplankton physiology from space. Global Biogeochemical Cycles,
19, GB1006. doi:10.1029/2004GB002299.

Behrenfeld, M. ]., & Falkowski, P. G. (1997). Photosynthetic rates derived from satellite-
based chlorophyll concentration. Limnology and Oceanography, 42(1), 1-20.


http://dx.doi.org/10.1029/2004GL021852
http://dx.doi.org/10.1016/j.ecss.2005.11.030
http://dx.doi.org/10.1016/j.dsr2.2008.09.017
http://dx.doi.org/10.1029/2007GB003154
http://dx.doi.org/10.1029/2004GB002299

X. Pan et al. / Remote Sensing of Environment 115 (2011) 3731-3747 3747

Bockstahler, K. R.,, & Coats, D. W. (1993). Grazing of the mixotrophic dinoflagellate
Gymnodinium sanguineum on ciliate populations of Chesapeake Bay. Marine Biology,
116, 477-487.

Brewin, R. J. W., Hardman-Mountford, N. J., Lavender, S. ]., Raitsos, D. E., Hirata, T,, Uitz, ].,
et al. (2011). An intercomparison of bio-optical techniques for detecting dominant
phytoplankton size class from satellite remote sensing. Remote Sensing of Environment,
115, 325-3309.

Brewin, R. ]. W, Sathyendranath, S., Hirata, T., Lavender, S., Baraciela, R. M., & Hardman-
Mountford, N. (2010). A three-component model of phytoplankton size class for
the Atlantic ocean. Ecological Modeling, 221(11), 1472-1483.

Campbell, L., & Vaulot, D. (1993). Photosynthetic picoplankton community structure in
the subtropical North Pacific Ocean near Hawaii (station ALOHA). Deep Sea Research
1,40(10), 2043-2060.

Ecology and Oceanography of Harmful Algal Blooms (ECOHAB) workshop report
(1994). Snow Mountain Ranch Conference Center, Colorado, 23-28 August 1994.
http://www.whoi.edu/science/B/redtide/nationplan/ECOHAB/ECOHABhtml.htm
Accessed 23 July 2009.

Edwards, M., & Richardson, A. J. (2004). Impact of climate change on marine pelagic
phenology and trophic mismatch. Nature, 430, 881-884.

Filippino, K. C,, Bernhardt, P. W., & Mulholland, M. R. (2009). Chesapeake Bay plume
morphology and the effects on nutrient dynamics and primary productivity in
the coastal zone. Estuaries and Coasts, 32, 410-424.

Gibb, S. W., Cummings, D. G., Irigoien, X., Barlow, R. G., Fauzi, R., & Mantoura, C. (2001).
Phytoplankton pigment chemotaxonomy of the northeastern Atlantic. Deep Sea
Research II, 48, 795-823.

Harding, L. W., Magnuson, A., & Mallonee, M. E. (2005). SeaWiFs retrievals of chlorophyll
in Chesapeake Bay and the mid-Atlantic bight. Estuarine, Coastal and Shelf Science, 62,
75-94.

Harding, L. W., Messon, B., & Fisher, T. (1986). Phytoplankton production in two east
coast estuaries: Photosynthesis-light functions and patterns of carbon assimilation
in Chesapeake and Delaware Bays. Estuarine, Coastal and Shelf Science, 23, 773-806.

Hays, G. C., Richardson, A. J., & Robinson, C. (2005). Climate change and marine plank-
ton. Trends in Ecology & Evolution, 20(6), 337-344.

Hirata, T., Aiken, J., Hardman-Mountford, N., Smyth, T. ]., & Barlow, R. (2008). An ab-
sorption model to determine phytoplankton size classes from satellite ocean col-
our. Remote Sensing of Environment, 112, 3153-3159.

Hirata, T., Hardman-Mountford, N. J., Brewin, R. ]. W., Aiken, J., Barlow, R., Suzuki, K.,
et al. (2011). Synoptic relationships between surface Chlorophyll-a and diagnostic
pigments specific to phytoplankton functional types. Biogeosciences, 8, 311-327.
doi:10.5194/bg-8-311-2011.

Hooker, S. B., Van Heukelem, L., Thomas, C. S., Claustre, H., Ras, J., Barlow, R, et al.
(2005). The second SeaWiFS HPLC analysis round robin experiment (SeaHARRE-2).
NASA TM/2005-212785. Greenbelt, Maryland: NASA Goddard Space Flight Center.

International Ocean-Colour Coordinating Group (IOCCG) (1999). Status and plans for
satellite ocean-colour missions: Considerations for complementary missions. In J.
Yoder (Ed.), Reports of the International Ocean-Color Coordinating Group, no. 2. Dartmouth,
Nova Scotia.

International Ocean-Colour Coordinating Group (IOCCG) (2000). Remote sensing of
ocean color in coastal, and optically-complex waters. In S. Sathyendranath (Ed.),
Reports of the International Ocean-Color Coordinating Group, no. 3. Dartmouth,
Nova Scotia.

Jeffrey, S. W., Mantoura, R. F. C,, & Wright, S. W. (1997). Phytoplankton pigments in
oceanography. Paris: UNESCO Publishing.

Lewitus, A. J., White, D. L., Tymowski, R. G., Geesey, M. E., Hymel, S. N., & Noble, P. A.
(2005). Adapting the CHEMTAX method for assessing phytoplankton taxonomic
composition in southeastern U.S. estuaries. Estuaries, 28(1), 160-172.

Li, A., Stoecker, D. K., & Adolf, ]. E. (1999). Feeding, pigmentation, photosynthesis and
growth of the mixotrophic dinoflagellate Gyrodinium galatheanum. Aquatic Microbial
Ecology, 19(2), 163-176. d0i:10.3354/ame019163.

Mackey, M. D., Mackey, D. ]., Higgins, H. W., & Wright, S. W. (1996). CHEMTAX—a program
for estimating class abundances from chemical markers: Application to HPLC
measurements of phytoplankton. Marine Ecology Progress Series, 144, 265-283.

Mannino, A., Russ, M. E., & Hooker, S. B. (2008). Algorithm development and validation
for satellite-derived distributions of DOC and CDOM in the U.S. Middle Atlantic
Bight. Journal of Geophysical Research, 113, C07051. doi:10.1029/2007]JC004493.

Marshall, H. G. (1984). Phytoplankton of the northeastern continental shelf of the United
States in relation to abundance, composition, cell volume, seasonal, and regional
assemblages. Rapports et Proces-Verbaux des Reunions, Conseil International pour
I'Exploration de la Met, 183. (pp. 41-50).

Marshall, H. G. (1984). Phytoplankton distribution along the eastern coast of the USA.
Part V. Seasonal density and cell volume patterns for the northeastern continental
shelf. Journal of Plankton Research, 6(1), 169-193.

Marshall, H. G., & Alden, R. W. (1990). A comparison of phytoplankton assemblages and
environmental relationships in three estuarine rivers of the lower Chesapeake Bay.
Estuaries, 13, 287-300.

Marshall, H. G., & Cohn, M. S. (1987). Phytoplankton distribution along the eastern
coast of the USA. Part VI. Shelf waters between Cape Henry and Cape May. Journal
of Plankton Research, 9(1), 139-149.

Marshall, H. G., Lacouture, R. V., Buchanan, C., & Johnson, ]. M. (2006). Phytoplankton
assemblages associated with water quality and salinity regions in Chesapeake
Bay, USA. Estuarine, Coastal and Shelf Science, 69, 10-18.

Marshall, H. G., & Ranasinghe, A. (1989). Phytoplankton distribution along the eastern
coast of the U.S.A. VII. Mean cell concentrations and standing crop. Continental Shelf
Research, 9(2), 153-164.

McClain, C. R. (2009). A decade of satellite ocean color observations. Annual Review of
Marine Science, 1, 19-42. doi:10.1146/annurev.marine.010908.163650.

Moisan, T. A., & Mitchell, B. G. (1999). Photophysiological acclimation of Phaeocystis
antarctica Karsten under light limitation. Limnology and Oceanography, 44(2),
247-258.

Moline, M. A, & Blackwell, S. M. (2004). Episodic physical forcing and the structure of
phytoplankton communities in the coastal waters of New Jersey. Journal of Geophysical
Research, 109, C12S05. doi:10.1029/2003JC001985.

Montes-Hugo, M., Doney, S. C., Ducklow, H. W, Fraser, W., Martinson, D., Stammerjohn,
S.E., et al. (2009). Recent changes in phytoplankton communities associated with
rapid regional climate change along the western Antarctic Peninsula. Science, 323,
1470-1473.

O'Reilly, J. E., Maritorena, S., Mitchell, B. G., Siegel, D. A., Carder, K. L., Garver, S. A., et al.
(1998). Ocean color algorithms for SeaWiFS. Journal of Geophysical Research, 103,
24937-24953.

O'Reilly, J. E., & Zetlin, C. (1998). Seasonal, horizontal, and vertical distribution of phy-
toplankton chlorophyll a in the northeast U.S. continental shelf ecosystem. NOAA
Technical Report NMFS 139. Seattle, Washington: U.S. Department of Commerce.

O'Reilly, J. E., Maritorena, S., Siegel, D., O'Brien, M. C,, Toole, D., Mitchell, B. G., et al.
(2000). SeaWiFS postlaunch calibration and validation analyses, part 3. In S. B.
Hooker, & E. R. Firestone (Eds.), SeaWiFS post-launch technical report series. NASA
technical memorandum 2000-206892, Volume 11, Greenbelt, Maryland: NASA
Goddard Space Flight Center.

Pan, X., Mannino, A, Russ, M. E., & Hooker, S. B. (2008). Remote sensing of the absorption
coefficients and chlorophyll a concentration in the United States southern Middle
Atlantic Bight from SeaWiFS and MODIS-Aqua. Journal of Geophysical Research, 113,
C11022. doi:10.1029/2008]C004852.

Pan, X., Mannino, A., Russ, M. E., Hooker, S. B., & Harding, L. W. (2010). Remote sensing
of phytoplankton pigment distribution in the United States northeast coast. Remote
Sensing of Environment, 114, 2403-2416. doi:10.1016/j.rse.2010.05.015.

Pan, X., & Zimmerman, R. C. (2010). Modeling the vertical distributions of downwelling
plane irradiance and diffuse attenuation coefficient in optically deep waters. Journal of
Geophysical Research, 115, C08016. doi:10.1029/2009]C006039.

Reynolds, C. S., & Walsby, A. E. (1975). Water blooms. Biological Reviews, 50, 437-481.

Richardson, A. ]., & Schoeman, D. S. (2004). Climate impact on plankton ecosystems in
the northeast Atlantic. Science, 305, 1609-1612.

Roy, S., Platt, T., & Sathyendranath, S. (2011). Modelling the time-evolution of phyto-
plankton size spectra from satellite remote sensing. ICES Journal of Marine Science,
68, 719-728. doi:10.1093/icesjms/fsq176.

Schliiter, L., Mohlenberg, F., Havskum, H., & Larsen, S. (2000). The use of phytoplankton
pigments for identifying and quantifying phytoplankton groups in coastal areas:
Testing the influence of light and nutrients on pigment/chlorophyll a ratios. Marine
Ecology Progress Series, 192, 49-63.

Smith, V. H. (2006). Responses of estuarine and coastal marine phytoplankton to nitro-
gen and phosphorus enrichment. Limnology and Oceanography, 51(1, part 2),
377-384.

Townsend, D. W., & Keller, M. D. (1996). Dimethylsulfide (DMS) and dimethylsulfonio-
propionate (DMSP) in relation to phytoplankton in the Gulf of Maine. Marine Ecology
Progress Series, 137, 229-241.

Uitz, ], Claustre, H,, Griffiths, F. B, Ras, J.,, Garcia, N., & Sandroni, V. (2009). A phytoplankton
class-specific primary production model applied to the Kerguelen Islands region
(Southern Ocean). Deep Sea Research I, 56(4), 541-560. doi:10.1016/j.dsr.2008.11.006.

Van Heukelem, L., & Thomas, C. S. (2001). Computer-assisted high-performance liquid
chromatography method development with applications to the isolation and anal-
ysis of phytoplankton pigments. Journal of Chromatography. A, 910, 31-49.

Vaulot, D., Eikrem, W., Viprey, M., & Moreau, H. (2008). The diversity of small eukary-
otic phytoplankton (<3 pm) in marine ecosystems. FNMS Microbiology Reviews, 32
(5), 795-820. doi:10.1111/§.1574-6976.2008.00121 .

Venrick, E. L. (1978). How many cells to count. In A. Sournia (Ed.), Phytoplankton manual
(pp. 167-180). Paris: UNESCO Publishing.

Vidussi, F., Claustre, H., Manca, B. B., Luchetta, A., & Marty, J. C. (2001). Phytoplankton
pigment distribution in relation to upper thermocline circulation in the eastern Med-
iterranean Sea during winter. Journal of Geophysical Research, 106(C9), 19939-19956.

Wright, S. W., Thomas, D. P., Marchant, H. ., Higgins, H. W., Mackey, M. D., & Mackey,
D. ]. (1996). Analysis of phytoplankton of the Australian sector of the Southern
Ocean: Comparisons of microscopy and size frequency data with interpretations
of pigment HPLC data using the ‘CHEMTAX' matrix factorization program. Marine
Ecology Progress Series, 144, 285-298.

Zapata, M., Jeffrey, S. W., Wright, S. W., Rodriguez, F., Garrido, ]. L., & Clementson, L.
(2004). Photosynthetic pigments in 37 species (65 strains) of Haptophyta: Impli-
cations for oceanography and chemotaxonomy. Marine Ecology Progress Series,
270, 83-102.


http://www.whoi.edu/science/B/redtide/nationplan/ECOHAB/ECOHABhtml.htm
http://dx.doi.org/10.3354/ame019163
http://dx.doi.org/10.1029/2007JC004493
http://dx.doi.org/10.1146/annurev.marine.010908.163650
http://dx.doi.org/10.1029/2003JC001985
http://dx.doi.org/10.1029/2008JC004852
http://dx.doi.org/10.1016/j.rse.2010.05.015
http://dx.doi.org/10.1029/2009JC006039
http://dx.doi.org/10.1093/icesjms/fsq176
http://dx.doi.org/10.1016/j.dsr.2008.11.006
http://dx.doi.org/10.1111/j.15742008.00121.x

	Remote sensing of phytoplankton community composition along the northeast coast of the United States
	1. Introduction
	2. Materials and methods
	2.1. Field experiments
	2.2. Pigment measurements and cell counts
	2.3. Phytoplankton taxonomy from HPLC pigments
	2.4. Satellite imagery

	3. Results
	3.1. CHEMTAX relative pigment concentration ratios
	3.2. Phytoplankton composition from field measurements
	3.3. Satellite imagery of phytoplankton community composition
	3.4. Time-series analysis of phytoplankton community composition from satellite observations

	4. Application and discussion
	4.1. CHEMTAX taxonomic groups and limitations to our approach
	4.2. Cell counts versus chemotaxonomy
	4.3. Phytoplankton community composition, global changes, and social–economical impacts

	5. Conclusions
	Acknowledgments
	References


