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Article history: Studies of global hydrologic cycles, carbon cycles and climate change are greatly facilitated when global esti-
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(ARTS) E model that simulates the surface energy balance, soil water balance, and environmental constraints
on E. It uses remotely sensed leaf area index (L,;) and surface meteorological data to estimate E by: 1) introducing
a simple biophysical model for canopy conductance (G,), defined as a constant maximum stomatal conductance
Zsmax 0f 12.2 mm s~ ! multiplied by air relative humidity (Ry) and Lu; (Ge = g6 max X Rn X Lai); 2) calculating canopy

;-:(\Zggtrrisﬁspiration transpiration with the G.-based Penman-Monteith (PM) E model; 3) calculating soil evaporation from an air-
Air relative humidity relative-humidity-based model of evapotranspiration (Yan & Shugart, 2010); 4) calculating total E (Ep) as the
Stomatal conductance sum of the canopy transpiration and soil evaporation, assuming the absence of soil water stress; and 5)
Canopy transpiration correcting Eq for soil water stress using a soil water balance model.

Soil evaporation This physiological ARTS E model requires no calibration. Evaluation against eddy covariance measurements at 19
Soil water balance model flux sites, representing a wide variety of climate and vegetation types, indicates that daily estimated E had a root

Eddy covariance mean square error =0.77 mmd~ ', bias= —0.14 mm d ', and coefficient of determination, R? = 0.69. Global,

monthly, 0.5°-gridded ARTS E simulations from 1984 to 1998, which were forced using Advanced Very High Res-
olution Radiometer L,; data, Climate Research Unit climate data, and surface radiation budget data, predicted a
mean annual land E of 58.4x 10> km?®. This falls within the range (58 x 103-85x 10% km?) estimated by the Sec-
ond Global Soil Wetness Project (GSWP-2; Dirmeyer et al., 2006). The ARTS E spatial pattern agrees well with
that of the global E estimated by GSWP-2. The global annual ARTS E increased by 15.5 mm per decade from
1984 to 1998, comparable to an increase of 9.9 mm per decade from the model tree ensemble approach (Jung
et al, 2010). These comparisons confirm the effectivity of the ARTS E model to simulate the spatial pattern and
climate response of global E. This model is the first of its kind among remote-sensing-based PM E models to pro-
vide global land E estimation with consideration of the soil water balance.

© 2012 Elsevier Inc. All rights reserved.
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precipitation to the atmosphere (Oki & Kanae, 2006). Much evidence,
mainly drawn from precipitation and runoff datasets, has confirmed
the modification of the hydrologic cycle (Alkama et al, 2011;
Huntington, 2006; Labat et al., 2004).

Direct observational evidence of this intensification of global land E
is, unfortunately, lacking because there are only about 400 flux stations
worldwide and their temporal records are very short (Huntington,
2006; Jung et al.,, 2010). However, large-scale E estimation is required
for answering questions related to climate change. Climate change is
expected to increase the global available renewable freshwater re-
sources, but the increasing probability of drought and changes to re-
gional precipitation patterns may offset this effect and lead to water
stresses in many regions (Oki & Kanae, 2006). Since leaf stomata control
the exchange of water and carbon between vegetation and atmosphere,
and high stomatal conductance leads to higher transpiration and photo-
synthesis, an understanding of global E variation will help to elucidate
the effects of climate change on biogeochemical cycling (Dang et al.,
1997; Huntington, 2006; Jarvis, 1976; Kelliher et al., 1995; Nemani &
Running, 1989; Shugart, 1998).

The surface energy balance partitions the available energy (R, —G)
between turbulent heat fluxes (AE and H):

AE = R,—G—H, (1)

where AE is latent heat flux (X is the latent heat of vaporization, and E is
evapotranspiration), R, is net radiation, G is ground heat flux, and H is
sensible heat flux. E is mainly controlled by three factors: available
water, available energy, and conductivity of the ecosystem to water
vapor (Batra et al., 2006).

Satellite remote sensing can supply temporally and spatially con-
tinuous observations of key biophysical variables of the land surface,
such as L;, vegetation index (VI), albedo, land surface temperature,
and emissivity. It has ushered in a new era for the development of
land E models (Cleugh et al., 2007; Fisher et al., 2008; Leuning et al.,
2008; Mu et al., 2007, 2011; Nagler et al., 2005; Su, 2002; Wang &
Liang, 2008). There are two principal types of remote sensing E
models: empirical and physical.

2. Empirical E models

These models often apply statistical regression to estimate E, using
satellite VI and other meteorological data, such as air temperature and
surface net radiation (Nagler et al., 2005; Wang & Liang, 2008). More re-
cently, Jung et al. (2010) developed a model tree ensemble (MTE) ap-
proach that predicts global land E based on a set of explanatory
variables (remote sensing-based fraction of absorbed photosynthetical-
ly active radiation data, and surface meteorological data), according to
model trees constructed from point-wise E measurements at FLUXNET
observing sites. Empirical E models need calibration to adapt to the
local climate and ecosystem, and often require re-calibration as climate
conditions change.

3. Physical E models

Physical E models use different biophysical metrics, derived from
remote sensing. They can be further classified into two types:

(1) Energy balance E models. They estimate instantaneous E rates
as a residual of the land surface energy balance using thermal
infrared temperature as the most important input, combined
with other data. Examples of this type include the Surface En-
ergy Balance Algorithm for Land (SEBAL; Bastiaanssen et al.,
1998), the Surface Energy Balance System (SEBS; Su, 2002),
and the Two-Source Energy Balance model (TSEB; Kustas &
Norman, 1999; Norman et al., 1995). In addition, the triangle
method uses the slope of remote sensing surface temperature
to VI to estimate E (Moran et al., 1994; Nemani & Running,

1989; Nishida et al., 2003). An advantage of such models is
that they do not require precipitation and soil texture data as
input. A disadvantage is that they require clear sky conditions,
because thermal infrared radiation cannot penetrate cloud.
They cannot therefore be applied to cloudy days, and as instan-
taneous E models, they need gap-filling techniques to estimate
daily E from instantaneous E (Anderson et al., 2007; Ryu et al.,
2012).

Surface conductance-based E models. These were developed from
the Penman-Monteith (PM) combination equation (Monteith,
1965), which incorporates the effects of both vegetation physiol-
ogy and evaporative demand on E. Remote sensing-retrieved L
can be used for scaling stomata conductance to surface conduc-
tance or canopy conductance for large-scale application of the
PM equation (Allen, 1998; Cleugh et al, 2007; Leuning et al.,
2008; Mu et al., 2007, 2011; Shuttleworth & Wallace, 1985). The

—
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—

PM model is defined as
AA + pC,DG,
F—_— "p7"a 2
A1 y(1+G,/Gy), @

where A=R,, — G is the available energy; R, is net radiation; G is
soil heat flux; A is the gradient of the saturated vapor pressure to
air temperature; 7 is the psychrometric constant; p is the density
of air; G, is the specific heat of air at constant pressure; G, is the
aerodynamic conductance; Gs is the surface conductance ac-
counting for transpiration from the vegetation and evaporation
by the soil; and D=es— e, is the vapor pressure deficit of the
air, in which e is the saturation water vapor pressure at air tem-
perature and e, is the actual water vapor pressure. Conductance
is the inverse of resistance.

Because the PM model has a single-layer or ‘big leaf’ assumption and
Gs is often calculated from Ly; (Table 1; Allen, 1998; Cleugh et al., 2007),
soil evaporation is assumed small and is often neglected in the model
(Cleugh et al.,, 2007). However, studies show that where the fractional
vegetation cover is small, the surface conductance Gs should include
the effects of evaporation from the soil surface (Allen, 1998). Field ex-
periments during periods with plentiful soil water, adequate light,
high relative humidity (R},) and moderate temperature further indicate
that Gs does not change linearly with Ly;. This is because of the compen-
sating decrease in plant transpiration and increase in soil evaporation
with decreasing L,; (Kelliher et al., 1995). Moreover, water stress factors

Table 1
Summary of surface conductance Gs models and canopy conductance G. models used in
the frame of Penman-Monteith model.

Conductance model Coefficient Citation

(mms~1)
3G, =Gy X 0.5Ly G =10 Allen (1998)
PGy = Gy x Lai + Gomin G,=19-25  Cleugh et al. (2007)
Ge=gsrx 2Ly gst=2.5 Shuttleworth and

Wallace (1985)

4Ge = goxm(Tppin) x m(D) X Ly g=2.5-7 Mu et al. (2011)
*Ge = B In et S| Gomax =8 Kelliher et al. (1995)
Ge =& In g 60| [rpips0]  Eomax=2-15  Leuning et al. (2008)

Ge=8s max X exXp(—2.5D) x Ly Variable gsmax  Landsberg and Waring

(1997)
This study

Ge=gs max X Rnx Lai smax = 12.2

@ Gg is the bulk stomatal conductance of the well-illuminated leaf.

b Gy is the mean surface conductance and G min is the surface conductance control-
ling soil evaporation and the conductance through the leaf cuticle.

€ gsr is the mean stomatal conductance.

d g, is the mean potential stomatal conductance, m(Tp,) and m(D) are multipliers
to reduce potential stomatal conductance by minimum air temperatures (T;,) and
D, respectively.

€ Zsmax IS the maximum stomatal conductance.
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should also be included in surface conductance Gs to represent the
water stress effect, especially under drought conditions. Thus, soil evap-
oration and the water stress factor are two problems confronting the
PM model.

To more accurately simulate surfaces including partially vegetated
surface, two-source E models have been proposed which treat total E as
a composite of vegetation transpiration and soil evaporation (Leuning
et al., 2008; Mu et al.,, 2007, 2011; Shuttleworth & Wallace, 1985):

E=E +E, 3)

where E is the total evapotranspiration, E. is transpiration from the plant
canopy, and E; is soil evaporation. E. was often calculated from equations
of the PM type, with regard to canopy conductance (Landsberg & Waring,
1997; Leuning et al,, 2008; Mu et al., 2011; Shuttleworth & Wallace,
1985; Zhang et al., 2010b). Es was also derived from equations of the
PM type, with consideration of soil conductance in some E models (Mu
et al, 2011; Shuttleworth & Wallace, 1985; Zhang et al, 2010a).
Leuning et al. (2008) suggested calculating soil evaporation Es from
equations of the equilibrium E type.

Recent studies by Cleugh et al. (2007), Leuning et al. (2008), Zhang et
al. (2008), and Mu et al. (2007, 2011) suggest that the stomatal
conductance-based PM approach provides a biophysical framework of
great potential for estimating E at variable spatial and temporal scales,
with the advantage of applicability to all sky conditions.

This paper presents an E model called air-relative-humidity-based
two-source (ARTS) E model for explicitly considering both plant tran-
spiration and soil evaporation. The plant transpiration model follows
the PM framework, and builds on important findings on the relation-
ship between Ry, and evaporation efficiency (Yan & Shugart, 2010)
and between Ry, and stomatal conductance (Ball et al., 1987; Collatz et
al., 1991), in which canopy conductance is defined as a function of Ry,
and Ly;. It is different from previous canopy conductance models that
often depend on vapor pressure deficit (D), additional meteorological
factors, and L,; (Leuning et al,, 2008; Mu et al.,, 2007, 2011). For soil
evaporation, an R,-corrected Priestley-Taylor model (Yan & Shugart,
2010) is adopted. The model here substantially improves on recent
studies, by considering the effect of soil water stress on E through the
use of a soil water balance (SWB) model. Leuning et al. (2008)
suggested a soil moisture factor f, potentially derived from active or pas-
sive remote sensing, to correct soil evaporation without regard to the
impact of soil water deficit on plant transpiration. Cleugh et al.
(2007), Fisher et al. (2008), and Mu et al., 2007, 2011 substituted an
air-moisture index for soil-water stress, under an assumption that sur-
face air moisture can reflect variations in soil moisture. However, it is
not certain to which degree does soil moisture controls the surface air
moisture, and hence D (Vinukollu et al,, 2011).

The ARTS E model requires inputs of L,;, net radiation, Ry, air tem-
perature, wind speed, canopy height, precipitation, and maximum
soil available water content (M,.) as model parameters. Model de-
tails are given in five parts: (1) model development, especially the
building of an air Ry, and L,-based canopy conductance model, and
the development of the SWB model; (2) description of remote sens-
ing and meteorological datasets and data pre-processing methods;
(3) evaluation of the model at 19 flux tower sites within different
ecosystems; (4) assessment of global estimates of land E by compar-
ison with other studies; (5) discussion and potential use of the model
for E estimation at large spatial scales.

4. Evapotranspiration algorithm

We propose a two-source E model to calculate actual E, in two
steps. The first is to estimate plant transpiration and soil evaporation
using respective equations, under the assumption of plentiful soil
water. The second is to account for the effects of soil water stress,

using a SWB model. The main improvements to the PM model in
this study are explicit consideration of soil water stress impact on E.

Naturally, the available energy A is partitioned to two parts: the
soil part (As) and canopy part (A.) following:

As = Aexp(—kaLy) (4)
A =A—A, )

where A. and A are the parts of the available energy (A) that are
absorbed by the canopy and by the soil, respectively, and ka is an ex-
tinction coefficient that equals 0.6 (Impens & Lemeur, 1969). A was
set to the net radiation R, here, because soil heat flux G can be ig-
nored for daily and longer time steps in the calculation of E (Allen,
1998). More details are provided below.

4.1. Canopy transpiration E. and canopy conductance G,

The canopy transpiration (E.) model is based on the PM model
(Monteith, 1965), but available energy (A) and surface conductance
(Gs) in that model are replaced by the canopy-absorbed available ener-
gy (Ac) and canopy conductance (G):

E, - AA. + pC,DG, 6)
A+y(1+G,/G,).

Since stomata play a dominant role in regulating the amount of
water transpired by vegetation that in turn affects photosynthesis,
Jarvis (1976) presented a widely adopted stomatal conductance the-
ory, in which stomatal conductance (gs.) can be obtained as a result of
complete expression of the influence of all environmental variables
without any synergistic interactions:

&se = [1(Qf2(T)f3(D)f 4()f 5 (), )

where fi, f5, f3, f4, and fs are functions of absorbed solar radiation (Q),
leaf temperature (T), D, leaf water potential (i), and CO, concentration
(C). This equation describes a complex response of stomata to individu-
al environmental variables. Further leaf gas-exchange measurements
indicate that increasing leaf water deficits reduce gs. (Jarvis, 1976).
Since leaf water potential is not operationally measured, soil water def-
icit often substitutes for it within transpiration estimation.

L,; has been commonly used to scale g at the leaf level to whole-
canopy conductance (G.). Parameterization of stomatal conductance
shows large differences between E. models (Landsberg & Waring,
1997; Leuning et al., 2008; Mu et al.,, 2011; Shuttleworth & Wallace,
1985), and only a subset of the environmental variables proposed by
Jarvis (1976) are considered in calculating stomatal conductance in
many E models (Table 1). Leuning et al. (2008) considered the impacts
of short-wave radiation (Qy,) and D. Landsberg and Waring (1997) only
included the stress factor D, whereas Mu et al. (2011) considered the ef-
fect of D and minimum air temperature (T,;,). Experiments by Yu et al.
(1996) also indicate that stomatal conductance may be obtained with
the two variables of solar radiation and D in the absence of critical envi-
ronmental change, such as drought. The aforementioned gs. models all
consider the responses of stomatal conductance to D within the frame-
work of the PM model, i.e., atmospheric humidity deficit is considered
the most important stress factor in those models. Since soil water con-
tent is not operationally observed in practice, it is hard to parameterize
soil water content directly in the stomatal conductance model, and
hence soil water stress has been neglected in recent transpiration
models (Table 1). Soil water deficit is considered in the SWB section,
later in this paper.

Since air Ry, defined as e, divided by e, is also capable of rep-
resenting the humidity deficit of air, there are arguments about the
choice between R;, and D in E or stomatal conductance estimation.
Niyogi and Raman (1997) indicated that the D and Ry, variables used
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in stomatal conductance schemes yield similar results for routine mete-
orological application. Some studies (Leuning, 1995; Wang et al., 2009)
show that demand for water vapor by the atmosphere from the leaves
depends on the difference in partial pressure between leaves and the at-
mosphere, not on relative humidity, based on correlation analysis of
canopy conductance and D. However, analysis of field measurements
at flux sites (Yan & Shugart, 2010) shows that D is dependent on avail-
able energy A, and compared with D, Ry, is more closely related with
evaporation fraction EF, defined as E divided by available energy A. Be-
sides, Ry, has been proposed to build a semi-empirical model of leaf con-
ductance that links stomatal conductance to leaf photosynthesis, Ry, and
CO, concentration at the leaf surface (Ball et al., 1987; Collatz et al.,
1991). This method has been successfully used in many land surface
models, i.e., the Simple Biosphere Model (SIB2; Sellers et al., 1996),
Land Surface Model (Bonan, 1996), and Common Land Model (CLM2;
Dai et al,, 2004). Another appealing attribute of R, as a normalized
value is that the R,-based stomatal conductance model requires fewer
tuning parameters. Thus, we present a canopy conductance model
with inputs of Ry and L,; within the framework of PM model,

Gc = 8smax X Rh X Laiv (8)

where Ry, is a unitless fraction, 0-1, and ggmayx is the maximum stomatal
conductance assumed to have a value of 12.2 mm s~ !, which was ob-
served for agricultural crops (Kelliher et al, 1995). Observations of
Zsmax fOr natural vegetation constrain its value to a range between 12,
8.1,8.3,6.3,and 9.3 mm s~ ! for temperate grassland, conifer forest, eu-
calypt forest, temperate deciduous forest, and tropical rainforest, respec-
tively (Kelliher et al,, 1995). As the maximum leaf conductance of ggax
only occurs in optimum conditions with unstressed, well-illuminated
leaves (Korner, 1994), we consider 12 mm s~ ! is more reasonable for
Zsmax Of Natural vegetation because the optimum conditions seldom oc-
curred in the field (Chen et al, 1999). In the ARTS model, the highest
maximum of gg,,qx, Observed in crops, is adopted as a practical approxi-
mation rather than a value based on the average g, in different ecosys-
tems or an ecosystem-dependent parameter.
The aerodynamic conductance (G,) is calculated from the equa-
tion (Monteith & Unsworth, 1990)
2
k7u, ©)

Ga= m@:) ln(zg;d)’

where z, is the height of wind measurement, z;, is the height of humid-
ity measurement, d is the zero plane displacement height, z,, is the
roughness length governing momentum transfer, z,y, is the roughness
length governing heat and vapor transfer, k is von Karman's constant
(0.41) and u, is wind speed at height z. The variables d, zoy, and z,
are calculated from the empirical equations d=(2/3)h, zo,, =0.123 h
and zyn = 0.1z, Where h is the canopy height (Allen, 1998).

4.2. Soil evaporation Ej

We present a soil evaporation equation modified from the air-RH-
based model of evapotranspiration (ARM-ET; Yan & Shugart, 2010):
AAS

A+y’

E, = 1.35R, (10)

The ARM-ET model scales Priestley and Taylor (1972) equilibrium E
to actual E, using Ry, as a complementary relationship coefficient. Valida-
tion at 14 independent flux sites within different climates and vegeta-
tion types shows that ARM-ET had an R>=0.71, root mean square
error (RMSE)=23.62 W m~2, and bias=8.02 W m~2. The E; model
in this study differs from the RS-PM model (Mu et al., 2007), which de-
fines actual soil evaporation as the product of a complementary rela-
tionship coefficient of R, (?/1°?) and potential soil evaporation derived

from the PM model. The impact of soil water deficit is considered in
the SWB section of this paper.

4.3. Total evapotranspiration E, for well-watered surface
Eo represents evapotranspiration for well-watered surface:

AA. + pC,DG
o= e PPl g gop AA (11)
A+v(1+G,/G,)

E
Aty

4.4. Soil water correction using soil water balance model

As mentioned above, E, equals actual E (E,) only for a well-watered
surface. However, many studies have revealed that E decreases when
soil becomes dry, that is, stomatal conductance and E are strongly affect-
ed by soil water deficit in a dry environment (Jarvis, 1976; Saugier &
Katerji, 1991). Thus, a correction to Eg is required for a water-stressed
surface.

SWB model is an approach widely applied to correct Ey and produce
E, (Allen, 1998; Landsberg & Waring, 1997; Thornthwaite & Mather,
1955). The SWB model presented here is based on the Thornthwaite-
Mather approach (Thornthwaite & Mather, 1955). However, because of
its unreliable results under dry conditions (Chen et al., 2005), we rep-
laced the temperature-based potential E used in that approach with
the Eo model (Eq. (11)). The SWB model requires as inputs precipitation,
Eo, air temperature, and M.y, Its outputs are E,, soil water content, and
runoff. Precipitation is first divided into rainfall and snowfall using a tem-
perature threshold of 0 °C, and snowfall is added to the snowpack. Snow-
melt from snowpack is calculated using a temperature-based snowmelt
function. Rainfall and snowmelt contribute to soil water content. When
Eq is lower than water input, E, proceeds at a rate of Eq, and the excess
recharges soil water storage. If the soil water content reaches its available
water capacity, it remains at a constant value of M, and the excess
water forms runoff. However, when E, is greater than water input, E,
equals the water input plus a fraction extracted from soil water, caused
by this soil water deficit condition. Soil water loss becomes more difficult
as the soil becomes dry, which can be described by a soil water retention
function suggested by Thornthwaite and Mather (1955). The principal
equations of the SWB can be summarized as follows.

aw
=t =P—Ea—Ro (12)
P= Rain +Sn0w X Sf (13)
0 T,<0°C
Ss=14 02T, 0°C<T,<5°C (14)
1 T, > 5°C
 [E P>E,
Fa= {P+ﬁ(Eo—P) P < Ey (13
_w-w, 6
B*mv (16)

where W is the soil water content (mm), dW/dt is the change of W over a
time t, P is the water input (mm) including precipitation and snowmelt,
E.is actual E (mm), Ry is runoff (mm), R,i, is rainfall (mm), Spow is SnOW-
melt (mm), S¢is the snowmelt factor, T, is air temperature (°C), Eg is the
total E (mm) for a well-watered surface, defined early in Eq. (11), 3is the
soil water retention function, defined as the ratio of available soil water
content (W—W,) to Mawc (i€, We—W,,), W, is the soil water content
at wilting point (mm), and W, is the field capacity (mm).
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Table 2

585

Site name, Abbreviation, latitude (lati), longitude (longi), climate, biome type, altitude (Al), canopy height (h), annual precipitation (Pr), annual evapotranspiration (E), years of

data used for each flux site in this study, and citation.

Site name Abbreviation Lati/Longi Climate Biome * Al(m) h(m) Pr(mm) E(mm) Years Citation

ARM SGP Main SGP 36.61/-97.49 Temperate Crop 314 0.5 901 464 2003-2005 Sheridan et al. (2001)
Barrow Barrow 71.32/-156.63 Tundra Grass 1 025 1140 348 2004-2005 Harazono et al. (2003)
Bartlett Experimental Forest Bartlett 44.06/-71.29  Temperate DBF 272 19 1300 299 2004-2005 Desai et al. (2008)
Bondville Bondville 40.01/-88.29  Temperate Crop 219 3 990 601 2001-2004 Chen et al. (2008)
Donaldson Donaldson 29.75/-82.16  Subtropical ENF 36 14 1228 926 2001-2004 Clark et al. (2004)
Fermi Agricultural FermiA 41.86/-88.22 Crop 225 2 921 580 2005-2007 Xiao et al. (2008)
Fermi Prairie FermiP 41.84/-88.24 Grass 226 1 921 587 2005-2006 Xiao et al. (2008)
Mead Irrigated Meadl 41.16/-96.47  Temperate Crop 361 2.9 887 632 2002-2005 Suyker and Verma (2008)
Mead Irrigated Rotation MeadIR 41.16/-96.47  Temperate Crop 362 1.83 887 644 2002-2005 Grant et al. (2007)
Mead Rainfed MeadR 41.17/-96.43  Temperate Crop 363 1.71 887 583 2002-2005 Grant et al. (2007)
Metolius Intermediate Pine Metoliusl 4450/-121.62 Temperate ENF 1253 14 728 479 2005-2007 Thomas et al. (2009)
Metolius New Young Pine MetoliusN 44.32/-121.61 Temperate ENF 1008 311 472 323 2004-2005 Irvine et al. (2007)
Mize Mize 29.76/-82.24  Subtropical ENF 43 101 1228 942 2001-2004 Clark et al. (2004)
Morgan Monroe State Forest Morgan 39.32/-86.41 Temperate DBF 275 27 1094 513 2001-2003 Dragoni et al. (2007)
Santa Rita Mesquite Savanna Santa 31.82/-110.87 Subtropical Shrub 1116 2.5 310 302 2004-2006 Scott et al. (2009)
Tonzi Ranch Tonzi 38.43/-120.97 Mediterranean Savanna 177 9.41 558 398 2003-2005 Ma et al., 2007

Univ. of Michigan Biological Station UMBS 4556/-84.71  Temperate DBF 234 21 750 529 2001-2003 Nave et al. (2011)
Vaira Ranch Vaira 38.41/-120.95 Mediterranean Savanna 129 0.55 565 301 2001-2005 Ryu et al. (2008)
Wind River Crane Site WindR 45.82/-121.95 Mediterranean ENF 371 563 2223 483 2001-2002 Falk et al. (2008)

¢ Deciduous broadleaf forest (DBF), Evergreen needleleaf forest (ENF).

5. Datasets and pre-processing
5.1. Observation data for model evaluation

ET and meteorological data, measured at 19 AmeriFlux flux-tower
sites (Table 2) by the eddy-covariance (EC) method, were used in
model evaluation. The EC method is widely accepted for directly mea-
suring heat fluxes (Paw et al., 2000) and is widely applied to global E
measurements at flux tower sites in FLUXNET (Baldocchi et al., 2001).
The AmeriFlux network is a core part of the global FLUXNET network.
It includes sites from North, Central, and South America and continu-
ously observes ecosystem-level exchanges of CO,, water, and energy.

Gap-filled, daily and monthly averaged level-4 EC data (e.g., latent
heat flux AE, air temperature T,, and precipitation P) and half-hourly
level-3 data (e.g, Ry, net radiation R, and wind speed u/) were down-
loaded from the AmeriFlux network (ftp://cdiac.ornl.gov/pub/ameriflux/
data). The half-hourly level-3 data were further processed into daily and
monthly averaged data, to match the level-4 EC data.

Soil data, including soil depth and texture at the 19 flux sites
(Table 3), were downloaded from the Oak Ridge National Laboratory

Table 3

Soil depth (Sq), soil composition, and soil water characteristics including wilting point
(W,), field capacity (W.), and maximum soil available water content (M,wc) at nine-
teen flux sites.

SiteName Sq (m) Sand/Silt/Clay (%) W, (mm) W, (mm) M,y (mm)
SGP 0.25 29/28/43 50 99 49
Barrow 04 47/30.6/22.4 48 112 64
Bartlett 1.02 73/23/4 81 233 152
Bondville 1.0 5/70/25 120 348 228
Donaldson 3.0 99/0/1 210 540 330
FermiA 1.0 7.8/55.2/37 160 385 225
FermiP 1.0 12.2/53/34.8 180 410 230
Meadl 1.8 37/52/11 144 484 340
MeadIR 1.8 33/55/12 144 497 353
MeadR 1.8 35/57/80 144 506 362
Metoliusl 0.9 67/26/7 63 182 119
MetoliusN 0.7 80/20/0 7 116 109
Mize 3.0 99/0/1 210 540 330
Morgan 1.0 34/26/40 190 377 187
Santa 1.1 79.6/11/9.4 77 198 121
Tonzi 0.6 37.5/45/17.5 60 168 108
UMBS 1.2 92.6/6.8/0.6 36 129 93
Vaira 0.6 29.5/58/12.5 54 175 121
WindR 2.0 63/29.8/7.2 200 507 307

Distributed Active Archive Center (ORNL-DAAC) and used to calculate
soil water characteristics. M, is required as input to the SWB model,
to represent soil water changes. M,y is defined as
Mawc = chwp (17)
where M, is maximum soil available water content (mm). Wilting
point W), and field capacity W, were calculated from soil depth and
soil texture information, i.e., the relative proportion of sand, silt and
clay, according to a set of prediction equations developed by Saxton et
al. (1986). Table 3 shows that there are large differences in soil water
characteristics at the flux sites. For example, the site SGP had the lowest
M, (49 mm) because of its shallow soil depth (0.25 m); Both FermiP
and Bondville had M, of about 230 mm, twice as much as at Vaira
and Tonzi.

The input L, data required to compute canopy conductance were
obtained from the 1-km?, 8-day MODIS collection 5 FPAR/LAI product
(MOD15A2) (Myneni et al., 2002). These were also downloaded from
ORNL DAAC as a 7 x 7 km? subsets centered on each flux tower. Compan-
ion quality control data were used to filter MODIS L,; data. All poor quality
data were deleted and replaced by bilinear interpolation of the nearest re-
liable data, as suggested by Zhao et al. (2005). Further, 8-day L,; data were
interpolated to daily and averaged to monthly L,; for model evaluation.

The AmeriFlux EC tower sites (Table 2) represent different climates
(Mediterranean, humid continental, and temperate continental), soil
types (silt loam and clay loam), and vegetation types (forest, savanna,
grassland, and cropland). For instance, the Tonzi site features rocky
silt loam, oak/grass savanna, and a Mediterranean climate with a clear
change between dry and wet seasons, and almost no precipitation in
the dry season (Fig. 1). In summer, the grass is dead from arid condi-
tions and solar radiation, but it grows in winter when precipitation is
abundant and the temperature is low. The SGP site represents cropland,
a soil type of silty clay loam, and a temperate continental climate with
plentiful precipitation year-round (Fig. 2). The FermiP site is covered
with silty clay loam and tall grass prairie, with a humid continental cli-
mate, plentiful year-round precipitation (Fig. 2) and hot summers. A
more detailed description of the flux sites can be found at the website
http://public.ornl.gov/ameriflux/site-select.cfm.

5.2. Global data

The input global 0.5° gridded, terrestrial biophysical data, i.e., green
LAl roughness length and zero plane displacement, were derived from
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Fig. 1. Daily variations of estimated E and observed E (left), precipitation (middle) and L,;, and (right) scatterplots of estimated E vs. observed E for the Donaldson, UMBS, and Tonzi sites.

the monthly ISLSCP Il FASIR NDVI dataset from the period 1982 to 1998.
The Fourier-Adjusted, Sensor and Solar zenith angle-corrected, Interpo-
lated, Reconstructed (FASIR) adjusted NDVI data were calculated from
Pathfinder Advanced Very High Resolution Radiometer (AVHRR) Land
(PAL) channel 1 and 2 data, and were corrected for bidirectional reflec-
tance distribution function effects, volcanic aerosol, cloud and atmo-
spheric effects, and missing data (Hall et al., 2006; Los et al.,, 2000). L;
was derived from NDVI with an assumption that L,; changes linearly
with vegetation fraction (Los et al., 2000). Roughness length and zero
plane displacement were calculated from LA, using the first-order clo-
sure model of Sellers et al. (1989). The FASIR biophysical parameters are
likely to have errors on the order of 20-30% of the amplitude of inter-
annual variation (Los et al., 2000; Malmstrom et al., 1997).

CRU 3.0 climate data is a 0.5° latitude/longitude, gridded dataset
of monthly terrestrial surface climate over the period 1901-2006.
The dataset is produced by the Climate Research Unit (CRU) at the
University of East Anglia, and comprises seven climate elements—
precipitation, mean temperature, diurnal temperature range, wet-

day frequency, vapor pressure, cloud cover and ground-frost fre-
quency (New et al., 2000). The spatial coverage is over all land
areas, excluding Antarctica. The construction method ensures strict
temporal fidelity. Monthly CRU time-series show month-by-month
variations in climate. Because of the unavailability of monthly wind
speed data in the CRU 3.0 datasets over the research period, monthly
wind speed data from the reanalysis project (Kistler et al., 2001) of
the National Centers for Environmental Prediction (NCEP), National
Center for Atmospheric Research (NCAR), were used instead.
Surface radiation budget (SRB) data were obtained from the NASA
Langley Research Center Atmospheric Sciences Data Center NASA/
GEWEX SRB Project. They were used to characterize surface, top-of-
atmosphere, and atmospheric shortwave (SW) and longwave (LW) ra-
diative fluxes, at a precision required to predict transient climate varia-
tions and decadal-to-centennial climate trends. The SW and LW SRB
datasets were derived on a 1°x1° global grid, with quality-check algo-
rithms based on radiative transfer calculations using the Delta-Eddington
approximation (Gupta et al, 1992, 2001). Validations against ground
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Fig. 2. As in Fig. 1 except for the SGP, FermiP, and Santa sites.

measurements show that monthly averaged SW radiative fluxes have a
bias=—6.7Wm™2 and RMSE=18.7Wm™?2, whereas LW radiative
fluxes have a bias=3.6 Wm™2 and RMSE=12.8 Wm ™2, Larger errors
were found over snow- or ice-covered surfaces (http://gewex-srb.larc.
nasa.gov/common/php/SRB_validation.php).

Global 1° gridded surfaces of selected soil characteristics, including
M,we for a soil depth of 0-150 cm, developed by the International
Geosphere-Biosphere Programme (IGBP), Data and Information Ser-
vices (DIS), were downloaded from the ORNL-DAAC (http://daac.ornl.
gov/).

6. Results
6.1. Model evaluation at 19 flux sites

Statistics of model performance at the daily scale for all 19 sites
(Table 4) show that the ARTS E goodness of fit and error varied from

site to site. The slopes of the linear regression of estimated E vs. ob-
served E ranged from 0.58 at Vaira to 1.32 at Bartlett, and the intercepts

varied from —0.08 mm d ™' at Tonzi to 0.48 mm d ~ ! at Donaldson. The
E model had an average RMSE of 0.75 mm d ~ ! for all sites, ranging from
0.45 mmd~ "atSanta to 1.09 mm d ! at Donaldson. An average bias of
—0.11 mm d~ ! was obtained for all sites, ranging from —0.46 mmd !
at FermiA to 0.59 mm d ! at Bartlett; underestimation was found at 15
sites and overestimation at only four, i.e., Barrow, Bartlett, Morgan, and
WindR. On average, the E model explained 70% of the variance in esti-
mated E for all sites, ranging from 50% at WindR to a high of 85% at
Bartlett.

Daily variations of estimated E and observed E at flux sites for avail-
able years (Figs. 1 and 2) indicate that estimated E successfully simulated
the seasonal variation of observed E at six sites, representing six ecosys-
tem types: evergreen needleleaf forest (ENF), deciduous broadleaf forest
(DBF), savanna, cropland, grassland, and shrubland (Figs. 1 and 2). These
types have large differences in natural environments and vegetation. At
opposite moisture extremes are Donaldson and Santa. The former repre-
sents a humid environment, with evergreen forest, abundant precipita-
tion of 1228 mm yr~ !, and a high E of 927 mm yr~ . The latter has a
dry environment with deficit precipitation of 310 mm yr~' and a lower
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Table 4

Mean (mmd~ "), Bias (mm d~ '), RMSE (mm d '), R?, slope and intercept of linear re-
gression equation (estimated E=kxobserved E+ b) of average daily estimated E vs.
observed E at daily temporal scale.

Site name Mean Bias RMSE R? k b

SGP 1.08 —0.18 0.63 0.59 0.82 0.03
Barrow 1.41 0.48 0.82 0.68 0.98 0.5
Bartlett 1.44 0.59 0.85 0.85 132 0.31
Bondville 1.25 —0.46 0.85 0.71 0.68 0.07
Donaldson 237 —0.09 0.93 0.51 0.77 0.48
FermiA 1.23 —0.46 0.87 0.73 0.64 0.14
FermiP 1.36 —0.22 0.67 0.77 0.76 0.15
Meadl 143 —0.33 0.92 0.80 0.62 0.32
MeadIR 1.54 —0.29 0.91 0.79 0.65 0.34
MeadR 1.38 —0.33 0.85 0.78 0.64 0.27
Metoliusl 0.83 —0.39 0.66 0.6 0.67 0.01
MetoliusN 0.89 —0.01 0.44 0.64 0.8 0.16
Mize 246 —0.12 0.75 0.66 0.77 0.45
Morgan 1.58 0.21 0.67 0.82 0.83 043
Santa 0.79 —0.05 045 0.72 0.61 0.27
Tonzi 0.68 —0.42 0.61 0.77 0.69 —0.08
UMBS 1.27 —0.25 0.70 0.84 0.72 0.15
Vaira 0.71 —0.10 0.60 0.56 0.58 0.23
WindR 1.64 0.31 0.98 0.50 1.14 0.12
Average 1.33 —0.11 0.75 0.70

E of 303 mmyr~'. Comparisons of annual observed E with annual
precipitation at the Santa site reveal that almost 100% of the annual
precipitation was evaporated into the atmosphere, mainly via soil evapo-
ration. This is because of sparse vegetation with a lower mean L,; of
0.4; E is largely controlled by precipitation. At Donaldson, 75% of the
annual precipitation was converted to E mainly in the form of plant tran-
spiration, since there is thick vegetation with a stable, higher L,; of ~5.1;
E variations are mainly driven by available energy. Tonzi represents a
third climate type, with seasonal precipitation; 68% of annual precipita-
tion (558 mm yr~ ') was turned into E (399 mm yr~ ). In the rainy sea-
son, there is abundant precipitation and vegetation with L; of ~2, and
plant transpiration governs E. In the dry season, there is little precipita-
tion and soil evaporation is strong as a result of sparse vegetation.

There was a strong correlation between estimated and observed E
(Figs. 1 and 2). Nonetheless, the E model tended to underestimate the
summer peak in estimated daily E at six sites. This might be attributed
to missing the summer peak value of daily L;, which were linearly in-
terpolated from MODIS 8-day-LAI products, and other climatic fac-
tors, such as A, T,, and Ry,

(a) Daily
81—
y=074x +0.24
7 |rR*=069
Bias = -0.14

RMSE = 0.77

Estimated E (mm/d)

Observed E (mm/d)

The statistics of estimated E vs. observed E at a daily scale (Fig. 3a)
showed good agreement for all data from all 19 sites. Linear regression
yielded a slope of 0.74 and intercept of 0.24 mmd~'. The model
accounted for 69% of the variation in estimated E, and underestimated
E with a bias=—0.14mmd ™" and RMSE=0.77 mmd~ .

To evaluate the performance of our model, we compared the above
results with previous studies. Our E model performed less well than a
two-parameter, surface conductance-based E model (Leuning et al.,
2008), which closely fitted observed E for all data from 15 flux sites at
daily scale (Y=0.83X+0.22, R2=0.80). Nevertheless, the latter
model required site-level optimization of two parameters for the sur-
face conductance, whereas our results were obtained without any
site-specific calibration or parameter optimization. Though the different
sites and number of sites that were used for evaluation makes the com-
parison between models performances indirect and qualitative, our
model performed better than the improved RS-PM model (Mu et al.,
2011), and even the revised RS-PM model (Yuan et al., 2010). The im-
proved RS-PM model had an average RMSE=0.84 mm d ' and an av-
erage R? = 0.42 at daily scale, for 46 eddy flux sites. The revised RS-PM
model, with three parameters calibrated at 21 sites, had an R>=0.68 at
8-day temporal scale, for 33 evaluation sites.

As with the daily scale, the model performance at monthly scale also
varied from site to site (Table 5). The slopes of the linear regression of es-
timated E vs. observed E range from 0.65 at Vaira to 1.87 at WindR, and
the intercepts vary from —0.74 mm d~"' at WindR to 0.68 mmd~! at
Donaldson. On average, the E model explained 80% of the variance in es-
timated E for all sites, ranging from 45% at Donaldson to 92% at UMBS. An
average bias of —0.01 mm d ™~ was obtained for all sites, ranging from
—034mmd~" at Tonzi to 0.62 mmd ™" at Bartlett; underestimation
was found at 12 sites and overestimation at only seven. The E model
had an average RMSE of 0.57 mmd~! across all sites, ranging from
0.28 mm d ! at Santa to 0.82 mm d ! at Donaldson.

Evaluation at different temporal scales for all data (Fig. 3a and b)
showed that ARTS E accuracy increased with temporal scale; the
slope k of linear regression also increased, from 0.74 for daily ARTS
E to 0.84 for monthly ARTS E. Daily estimated E (Fig. 3a) had RMSE =
0.77 mmd~ !, Bias= —0.14 mm d~ !, and R>=0.69; monthly estimated
E (Fig. 3b) showed better performance (RMSE=0.59 mm d~', bias=
—0.05mmd~", and R*=0.77). Similarly, Mu et al. (2011) reported
poorer statistics of RMSE=0.84 mmd~' and R?=0.42 at daily scale,
whereas Fisher et al. (2008) estimated monthly E with better statistics
of RMSE=0.53mmd~"' and R?=0.90. The dependence of E model
performance on temporal scale was seldom addressed in previous

(b) Monthly
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Fig. 3. Scatterplots of daily average estimated E vs. observed E at daily (a) and monthly (b) temporal scales for all sites, all data.


image of Fig.�3

H. Yan et al. / Remote Sensing of Environment 124 (2012) 581-595 589

Table 5

As in Table 4 except for monthly temporal scale.
Abbreviation Mean Bias RMSE R? k b
SGP 1.25 —0.03 0.52 0.63 1.05 —0.1
Barrow 1.56 0.61 0.74 0.85 123 0.38
Bartlett 1.44 0.62 0.82 0.92 1.58 0.14
Bondville 1.34 —0.30 0.55 0.84 0.92 -0.17
Donaldson 2.52 —0.01 0.82 0.45 0.72 0.68
FermiA 1.25 —0.34 0.52 0.87 0.84 —0.07
FermiP 1.49 —0.12 0.51 0.83 0.83 0.14
Meadl 1.45 —0.28 0.68 0.89 0.69 0.25
MeadIR 1.54 —0.23 0.65 0.87 0.72 0.26
MeadR 139 —0.21 0.51 0.90 0.77 0.14
Metoliusl 1.00 —0.31 0.55 0.68 0.8 —0.04
MetoliusN 0.91 0.02 0.32 0.78 0.94 0.07
Mize 2.64 0.06 0.52 0.76 0.76 0.65
Morgan 1.77 0.36 0.59 0.88 0.94 0.43
Santa 0.84 0.01 0.28 0.83 0.86 0.12
Tonzi 0.75 —0.34 0.43 0.89 0.92 —0.26
UMBS 1.28 —0.17 0.45 0.92 0.8 0.11
Vaira 0.79 —0.03 0.59 0.52 0.65 0.25
WindR 1.74 0.42 0.81 0.88 1.87 —0.74
Average 1.42 —0.01 0.57 0.80

studies, so it is recommended to compare E models at the same temporal
scale.

One deficiency of this and similar studies is intrinsic to the method
of comparison of estimated and observed E values of daily and sea-
sonal variation using linear regression analysis. This approach might
give over-confidence in model performance because much of the var-
iation in E is driven by the corresponding variation in available ener-
gy. Thus, a more objective test of model skill is to subtract equilibrium
evaporation from the estimated and measured E to see how well the E
model accounts for the residuals.

AA

Ea=F17

(18)

where Eq is the equilibrium evaporation; other variables have the
same meaning as in Eq. (2).

Table 6 shows that ARTS E model explained more than 75% of the
variation in the residuals at six sites (i.e., SGP, Metoliusl, MetoliusN,
Santa, Tonzi, and Vaira) with limited precipitation of ~589 mm yr~1,
whereas less than 47% of the variance in the residuals was explained

Table 6

Mean (mm d~ '), Bias (mm d~ '), RMSE (mm d~ '), R?, slope and intercept of linear re-
gression equation (Estimated E — Eeq = kx (Observed E — Eeq) + b) of average daily es-
timated E minus Eeq vs. observed E minus E.q at daily temporal scale.

Site name Mean Bias RMSE R? k b

SGP —0.61 —0.18 0.63 0.75 0.73 —0.30
Barrow —0.57 0.48 0.81 0.41 0.59 0.05
Bartlett —0.35 0.59 0.85 0.41 0.37 0.00
Bondville —0.49 —045 0.85 0.26 0.35 —048
Donaldson —0.08 —0.09 0.95 0.10 0.09 —0.09
FermiA —0.63 —0.46 0.87 0.44 0.45 —0.56
FermiP —0.57 —0.22 0.67 0.36 0.46 —041
Meadl —0.54 —0.33 0.92 0.25 0.28 —0.48
MeadIR —0.49 —0.29 0.91 0.26 0.26 —0.44
MeadR —0.56 —0.33 0.85 0.28 0.33 —048
Metoliusl —0.67 —0.39 0.66 0.76 0.68 —048
MetoliusN —0.95 —0.01 0.44 0.83 0.85 —0.16
Mize —033 —0.12 0.74 0.18 0.39 —0.25
Morgan —0.36 0.21 0.67 0.38 0.35 —0.16
Santa —1.39 —0.05 0.45 0.87 0.80 —0.33
Tonzi —1.76 —0.42 0.61 0.93 0.98 —0.45
UMBS —0.35 —0.25 0.70 0.29 0.37 —0.31
Vaira —1.00 —0.10 0.60 0.92 0.66 —0.41
WindR —045 0.31 0.98 0.47 0.29 —0.23

at the other 13 sites with higher precipitation of ~1112 mm yr~ ! indic-
ative of conditions where soil moisture is not limiting. Thus, the esti-
mated E minus Eq tend to have a higher R? at site where E is mainly
controlled by precipitation and a lower R? at site with E likely controlled
by available energy. Note that SGP site is water stressed due to its shal-
low soil. The slopes of the linear regression equation for estimated E
minus Eeq vs. observed E minus Eeq ranged from 0.09 at Donaldson to
0.98 at Tonzi, and the intercepts varied from —0.56 mm d ™' at FermiA
to 0.0 mmd ™! at Bartlett.

Scatterplots of daily average estimated E minus Eeq vs. observed E
minus E.q in Fig. 4 depict the strong correlation at sites of Tonzi, SGP,
and Santa, and the weak correlation at sites of Donaldson, UMBS, and
FermiP.

R? and linear regression equation for estimated E minus Eeq
(Table 6) differ from that for estimated E (Table 4) at 19 sites, which re-
veals that direct comparison of estimated E with observed E gives over-
confidence in model performance only at site with E mainly driven by
available energy. However, Bias and RMSE of estimated E minus Eeq VS.
observed E minus E.q almost equal to that of estimated E vs. observed
E (Table 4).

ARTS E model adopted a two factors (R, and L,;)-based G. model
ignoring the impact of solar radiation (S) and air temperature (T,).
To evaluate the two factors-based G. model, we developed a four fac-
tors (S, Ta, Ry, and Ly;)-based G, model,

Gc = &smax Xf(S) Xf(Ta) X Rh X Laiv (19)

where gqmax is 12.2 m s~ !, the influence of S and T, follows the defini-
tion of Stewart (1988) and Noilhan and Planton (1989), respectively,

£(S) = (1+¢/1000) x S/(c+S) (20)
f(T,) = 1—0.0016(298—T,)* (21)

where S is solar radiation (W m~2), c=100, T, is air temperature (k).

The new four factors-based G. model was applied to calculate E.
(Eq. (6)) and was further compared with original E. with the two
factors-based G, model (Eq. (8)) at six sites (Fig. 5), which shows a
strong correlation with R2>0.98 between two E driven with different
G. model, indicating that ignoring the direct impact of S and T, on G
dose not substantially change the variation in the calculated E.. This is
consistent with many parameterizations of stomatal or surface conduc-
tance that neglect the direct effect of temperature (Landsberg & Waring,
1997; Leuning et al., 2008; Stewart & Gay, 1989) or solar radiation
(Cleugh et al,, 2007; Landsberg & Waring, 1997; Mu et al., 2011) on can-
opy conductance.

6.2. Analysis of global estimates of land evapotranspiration

Global SRB radiation data and IGBP-DIS soil parameters were linear-
ly interpolated to a spatial resolution of 0.5°. Global land E from 1984 to
1998 was estimated using monthly remote sensing LAI, CRU climate,
and SRB radiation data, at the same spatial resolution. Global spatial
and temporal patterns of E were analyzed. We estimated a mean annual
land E of 58.4 x 10® km?, which falls within the model range (58 x 10>~
85x 10> km?) estimated by the GSWP-2 project (Dirmeyer et al., 2006).
But our global E estimate is lower than the 62.8x10°km> and
65.0x 103 km? reported by Mu et al. (2011) and Jung et al. (2010), re-
spectively. This is partly because of a negative bias of net radiation in
this study, which results from a negative bias of SRB SW radiation and
a positive bias of SRB LW radiation (Gupta et al., 1992, 2001).

Fig. 6a shows the spatial distribution of annual E. Tropical and sub-
tropical forests in South America, Africa, and Asia Island have a high E
of 1300 mm yr~'. In contrast, the major deserts of North Africa, the
Middle East, Middle Asia, and Australia, as well as high-latitude re-
gions in the northern hemisphere, have an E less than 200 mm yr~ .
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Fig. 4. Scatterplots of daily average estimated E minus Eq vs. observed E minus Eq for the Donaldson, UMBS, Tonzi (top), SGP, FermiP, and Santa sites (bottom).

To assess the spatial pattern of E, we calculated the ratio of annual
E to annual precipitation, averaged from 1984 to 1998 (Fig. 6b). This
shows that in the major deserts of North Africa, Middle East, Middle
Asia, and Australia, almost all precipitation evaporated into the atmo-
sphere. In vegetated regions, annual E is less than annual precipita-
tion, i.e., precipitation is partly converted into E, with the residual
going to runoff and leakage flow.

Fig. 7 shows the latitudinal mean of global land E, based on the ARTS
E model and the GSWP-2 project. The annual ARTS E, averaged over
1984-1998 (Fig. 7a), indicates that equatorial zones tend to have high
annual E, over 1100 mmyr~'. Mid- and high latitude zones often
have low annual E, less than 450 mm yr~ . Analogously, observed E
exceeded 920 mm yr— ! at the two subtropical sites of Donaldson and
Mize, whereas the E at tundra and temperature sites ranged from
299 mmyr~ ! at Bartlett to 644 mm yr~ ! at MeadIR (Table 1). ARTS E
values are within the range of observed E at flux sites in this study.

Seasonally, the mid- and high latitude zones in the southern and
northern hemispheres display a distinctive change. In January
(Fig. 7b), E increases in the southern hemisphere (summer), and it de-
creases in the northern hemisphere (winter). In July (Fig. 7¢), it is the
reverse. The comparisons indicate that the ARTS model clearly captured
the main features of annual E (Fig. 7a) and seasonal E (Figs. 7b and c) vs.
latitude, in accord with the results of the GSWP-2 project. It also indi-
cates that the obvious—hemispherical variation in E is strongly driven
by available energy.

Our global land E estimates (Fig. 8) tend to increase from 1984 to
1998, with a linear trend of 15.5 mm per decade (P<0.01). This con-
firms the result of Jung et al. (2010) of global E increase at a rate of

9.9 mm per decade (P<0.01) over the same period. This increase in E
is consistent with intensification of the land-based hydrologic cycle, be-
cause of combined surface solar brightening and increasing tempera-
ture (Jung et al.,, 2010; Wild et al., 2008). Jung et al. (2010) further
asserted that the interannual variation of global E correlates well with
temperature variation during this period. However, contrary results
(Zhang et al., 2011) were found that MTE and other satellite-based
energy-balance methods might not explain trends in E estimated
using catchment water balances for wet regions due to use of
remotely-sensed radiation and gridded meteorological fields with in-
sufficient accuracy.

7. Discussion

The evaluation of ARTS E at flux sites was affected by measurement
error of flux E data. The EC method has an energy imbalance problem,
i.e., net radiation R, minus ground heat flux G is greater than the sum
of latent heat flux AE and sensible heat flux H at many eddy flux sites
(Leuning et al., 2008; Wilson et al., 2002; Yan & Shugart, 2010). The
ratio of AE+ H to R, -G is about 0.8 for global FLUXNET measurements
(Wilson et al., 2002). Thus, a correction method, i.e., energy closure ra-
tios for EC measurements, has been proposed (Twine et al., 2000;
Wilson et al., 2002) and applied to the calibration of empirical E models
(Jung et al,, 2010; Nagler et al,, 2005; Wang & Liang, 2008). However,
because physical E models do not require calibration and the energy im-
balance problem does not affect their development but degrades the
error statistics of validation, these models often employ original flux E
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for validation, without regard to the energy imbalance problem (cur-
rent study; Fisher et al., 2008; Mu et al., 2007, 2011).

Although it is common to use continuous daily precipitation, air
temperature, and Eq in the SWB model to simulate daily E, there are
missing observation data at most flux sites (Neal et al., 2011; current
study). The discontinuous daily data had to be applied to the SWB
model here, which inevitably causes uncertainties in daily E estimates.
Fortunately, data gaps typical of EC records typically last a week or
less (Neal et al., 2011), and it is our assessment that such short-term
data gaps do not significantly affect our modeling results and main con-
clusions, drawn from daily evaluation. For monthly data, gap-filling was
done to create continuous monthly data (Moffat et al., 2007; Papale &
Valentini, 2003; Reichstein et al., 2005), and hence ARTS E was properly
estimated at the monthly scale.

Remote sensing-retrieved L,; is a key input variable to calculate G,
because substantial vegetation often corresponds to higher E. and E.
Further, variation of vegetation detected by remote sensing has been
found to have a close relationship with interannual E variation
(Suzuki et al., 2007). Despite inevitable impacts on the quality of re-
trieved L,; by the L,; algorithm, remote sensing calibration, and cloud
and smoke contamination (Myneni et al., 2002), remotely sensed L,;
has been used in canopy conductance modeling for large spatial appli-
cations or climate simulations (Buermann et al., 2001). We believe
that improvement of L retrieval by the remote sensing research
group will enhance the accuracy of E estimation, on a wide range of
temporal and spatial scales.

Uncertainties in other input forcings of climate and radiation data
also contribute to uncertainties in ARTS E. Negative bias, against ground
measurements, in net radiation R, derived from SRB radiation (Gupta et

al., 2001) produced lower estimates of global E in this study than that of
Mu et al. (2011) and Jung et al. (2010). Further, Zhang et al. (2011) con-
clude that the SRB radiation estimates are likely in error by comparing
regional trends in E estimated using MTE and a PM model (Leuning et
al., 2008) driven by SRB available energy with those estimated using
catchment water balances. CRU 3.0 climate data often had interpolation
error, which is inevitable and varies with climate elements and location.
The precipitation data have a systematic gauge measurement error, i.e.,
an underestimation of the true precipitation. This varies between 5%
and over 100% vs. measured data for monthly accumulated precipita-
tion, depending on weather conditions (New et al., 1999). However,
CRU climate and SRB radiation data, as an available dataset, have been
widely used in global E estimates (Fisher et al., 2008; Sheffield et al.,
2010; Zhang et al., 2011). To assess uncertainties from input datasets,
further intercomparison of global E estimates, using other global
reanalysis data, will be the subject of future work.

More physical processes considered will improve the ARTS E model.
For instance, many ground measurements have shown that there are con-
siderable day-to-day variations and seasonality in G across a wide range
of geography (Halliwell & Rouse, 1987; Heitman et al,, 2010; Kakane,
2004; Meulen & Klaassen, 1996). Thus ignoring G in calculation of A as a
simple simplification for practical application might result in potential un-
certainty in E calculation, which will be considered in future work.

The ARTS model incorporates Ry, in the canopy conductance model,
whereas previous E models frequently use D in this model (Mu et al.,
2007, 2011; Leuning et al., 2008). One inconvenience of using D is that
it must be normalized, using a constant dependent on vegetation type
(Muetal,, 2011). Clearly, Ry, as a normalized value reduces the complex-
ity of the E model.
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Fig. 6. Global annual E (a) and ratio (b) of annual E to annual precipitation averaged from 1984 to 1998.

Fundamentally, E is controlled by atmospheric demand and terres-
trial water supply. E is restricted by soil water deficit for a water-
stressed surface, where precipitation is the upper limit of E if irrigation
and lateral flows are ignored. Thus, to accurately estimate E, the soil
water constraint has to be considered. Some methods have been devel-
oped to simulate or substitute for it, however, because of scarce soil
moisture observation. Wang and Liang (2008) proposed the diurnal
land surface temperature range to address the influence of soil moisture
on E. Fisher et al. (2008) recently proposed an index of soil water deficit,
defined as R, based on the complementary hypothesis of Bouchet
(1963), which suits sufficiently large spatial and temporal scales when

the atmosphere is in equilibrium with underlying soil. However, there
are obviously exceptional cases confronting the application of RE,
owing to advection when humid air passes over dry soil (Fisher et al.,
2008). In other words, RP may not explicitly represent the soil water
deficit on daily scales when such advection is frequent, or in dry regions
where precipitation controls E processes. Wang et al. (2007) argued
that any E parameterization without consideration of soil moisture con-
tent will overestimate E during drought conditions. Since the SWB
model has no such problems and its capacity to simulate soil water def-
icit with precipitation input at variable temporal scales, SWB model is
suggested to account for soil water deficit in the E estimation algorithm.
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8. Conclusions

The ARTS E model uses remote sensing observations to predict the
rates of E globally. It accounts for the impact of net radiation, air temper-
ature, air moisture deficit, soil water deficit, and vegetation LAI, thereby
adequately representing the principles of surface energy balance and
water balance. The ARTS E model shows good agreement with observed
E at 19 flux sites, at daily and monthly scales. The evaluation also indi-
cates that the PM equation provides a practical framework with which
to incorporate a canopy conductance model in the plant transpiration
model and that the SWB model is capable of representing the effect of
soil water deficit on plant transpiration and soil evaporation.

The further evaluation of ARTS E model, by using residuals of sub-
tracting E.q from the estimated and measured E, reveals that ARTS E
model has better performance with regards to accounting for the re-
siduals at sites where E is controlled by precipitation than that at sites

T M T = T T T M T T T T T T T 1
15| —e— This study, y = 1.55x - 3105 o«
- % MTE, y = 0.99x - 1975
104 4%

Global Land E anomalies (mm/yr)
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Fig. 8. Annual global land E anomalies based on ARTS model in this study and MTE
model from 1984 to 1998.

with E controlled by available energy. We hypothesize that this is be-
cause Eq comprised the major contribution of available energy in
these sites. This type of evaluation is a supplement to routine evalua-
tion method, e.g., directly comparing estimated E with observed E,
which often result with over-confidence in model performance at
site where much of the variation in E is driven by the corresponding
variation in available energy.

As a physical E model with no need of calibration, ARTS has the
potential for implementation at variable temporal and spatial scales.
The input data for the proposed ARTS E model include meteorological,
La;, and soil data, most of which are readily available. The regional or
global E estimates will be of great interest in terrestrial water cycle
and climate change research.
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