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This article introduces a novel methodology for automated classification of forest areas from airborne laser scan-
ning (ALS) datasets based on two direct and simple rules: L-coefficient of variation Lcv=0.5 and L-skewness
Lskew=0, thresholds based on descriptors of the mathematical properties of ALS height distributions. We ob-
served that, while LcvN0.5 may represent forests with large tree size inequality, LskewN0 can be an indicator
for areas lacking a closed dominant canopy. Lcv=0.5 discriminated forests with trees of approximately equal
sizes (even tree size classes) from those with large tree size inequality (uneven tree size classes) with kappa
κ = 0.48 and overall accuracy OA = 92.4%, while Lskew=0 segregated oligophotic and euphotic zones with
κ = 0.56 and OA = 84.6%. We showed that a supervised classification could only marginally improve some of
these accuracy results. The rule-based approach presents a simple method for detecting structural properties
key to tree competition and potential for natural regeneration. The study was carried out with low-density
datasets from the national program on ALS surveying of Finland, which shows potential for replication with
the ALS datasets typically acquired at nation-wide scales. Since the presented method was based on deductive
mathematical rules for describing distributions, it stands out from inductive supervised and unsupervised classi-
fication methods which are more commonly used in remote sensing. Therefore, it presents an opportunity for
deducing physical relations which could partly eliminate the need for supporting ALS applications with field
plot data for training and modelling, at least in Boreal forest ecosystems.

© 2016 Published by Elsevier Inc.
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1. Introduction

Airborne laser scanning (ALS) can be a valuable tool for studying
structural properties of forests (Lefsky et al., 1999a; Drake et al., 2002;
Frazer et al., 2005;Maltamo et al., 2005; Valbuena et al., 2016a). The re-
lationships of ALS to forest structure can be employed to analyse asym-
metric competition among trees (Kellner and Asner, 2009), and hence
forest growth conditions (Stark et al., 2012). In fully-stocked forests
(Gove, 2004) light resource pre-emption drives asymmetric competi-
tion processes, leading to mortality of the least competitive trees
(Weiner, 1990). These are forests with closed canopies and structural
properties yielding shady areas, i.e. oligophotic zones (sensu Lefsky et
al., 2002), under the dominant tree crowns. In turn, detecting forest
areas with light resource availability, which are characterized by large
euphotic zones (sensu Lefsky et al., 2002), can be key tomonitoring for-
est disturbance and regeneration. Several metrics derived from ALS
height distributions have potential for describing these key characteris-
tics related to forest structure (Zimble et al., 2003). For this reason,
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studies on ALS-based forest structure characterization by statistical in-
ductive methods, which relate ALS metrics to field attributes empirical-
ly, are commonplace (Hall et al., 2005; Lefsky et al., 2005; Dalponte et
al., 2008; Pascual et al., 2008; Disney et al., 2010; Jaskierniak et al.,
2011; Ozdemir and Donoghue, 2013; Valbuena et al., 2014).

Size hierarchy among trees growing in the vicinity influences com-
petition processes in the forest community (Weiner, 1990; Valbuena
et al., 2012). Knox et al. (1989) suggested the Gini coefficient (GC)
(Gini, 1921) as a consistent descriptor of tree size inequality, and
hence a reliable indicator of competition conditions in the forest
(Cordonnier and Kunstler, 2015). For this reason, in the context of ALS
estimation, the GC of tree sizes has been used as a basis for stratifying
the forest area into homogeneous structural types (Bollandsås and
Næsset, 2007; Valbuena et al., 2013a). Furthermore, Knox et al. (1989)
also suggested the inclusion of skewness as a complement to the GC in
describing forest structural properties. For this reason, Valbuena et al.
(2013a) included asymmetry in their analysis of forest structural prop-
erties, to study relations of relative dominance between different strata
in the forest vertical profile.

While Bollandsås and Næsset (2007) employed stand register data
from previous inventories for carrying out their stratification, it would
be advantageous if the same remote sensing material could be used
real forests may be detected directly using L-moments from airborne
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for wall-to-wall predictions of forest structure indicators and classifica-
tions into forest structural types (Lefsky et al., 1999b;Drake et al., 2002).
In particular, Ozdemir and Donoghue (2013) and Valbuena et al.
(2013b, 2016a) obtained predictions of the GC of tree size inequality
with reliable accuracy. As previous research has concentrated on the
forest response (Lefsky et al., 1999a; Valbuena et al., 2013a), and on
its analysis and estimation by a wide range of different statistical
methods – such as analysis of variance (Zimble et al., 2003), canonical
correlation (Lefsky et al., 2005), parametric (Hall et al., 2005) and
non-parametric (Valbuena et al., 2014) modelling, histogram
thresholding (Maltamo et al., 2005), or finite mixtures (Jaskierniak et
al., 2011) –, the next question to answer would be: do the ALS metrics
have, by themselves, capacity to discriminate among forest structural
types, making no use of statistical methods linking field data to ALS
metrics?.

Moments are quantitative measurements of probability density dis-
tributions employed to summarize their properties. The most conven-
tional are the product moments, expected values of the powers of a
random variable which lead to the use of mean, variance and skewness
asmeasures for location, scale and shape. Thesedescriptors of ALS return
height distributions are metrics commonly employed as auxiliary vari-
ables in forest assessment (e.g., Næsset, 2002; White et al., 2013;
Asner and Mascaro, 2014). Alternatively, Frazer et al. (2011) and
Ozdemir and Donoghue (2013) recently drew the attention towards
the L-moments, a set of statistics known by their sample efficiency
(i.e., reliability at small sample sizes) and robustness to outliers, com-
pared to conventional moments (Hosking, 1990). Consider a sample
order statistic Xk:r – the kth smallest observation in a sample of size r –,
which is a many-to-one transformation of a random sample of size r,
and therefore a random variable. The L-moments are based on its ex-
pected values E(Xk:r) (Appendix A). Moreover, L-moment ratios have
the advantage of being bounded by finite intervals (Hosking, 1989),
making them comparable among ALS distributions differing in their
mean height. The L-coefficient of variation (Lcv) and the L-skewness
(Lskew) are two types of L-moment ratios (Appendix A.2). Lcv is the
ratio of the second (L2) to the first (L1) L-moments:

Lcv ¼ L2
L1

¼ E X2:2ð Þ−E X1:2ð Þ
2E Xð Þ ; ð1Þ

where E(X) is the expected value of X. In the case of ALSmetrics, the var-
iable X is the height of ALS returns. The Lcv is mathematically equivalent
to the GC (Appendix A.3), and therefore the same properties apply to
both of them. For instance, they are scale-invariant, and for positive ran-
dom variables their values are bounded within the [0,1] interval
(Hosking, 1989). Also, Valbuena et al. (2012) showed that an asymptote
atGC=0.5 represents the case ofmaximumentropy among tree sizes in
the forest. On the other hand, Lskew is the ratio of the third (L3) to the
second (L2) L-moments:

Lskew ¼ L3
L2

¼ E X3:3ð Þ−2E X2:3ð Þ þ E X1:3ð Þ
E X3:3ð Þ−E X1:3ð Þ : ð2Þ

In the case of Lskew, its theoretical bounds are [−1,1] (Hosking, 1989).
The value of Lskew=0 corresponds to a symmetric distribution, while
positive or negative values denote the type of asymmetry for the distri-
bution of ALS heights. This article employs these mathematical proper-
ties of L-moments for describing ALS height distributions, in contrast to
inductively researching explanatory potential in relation to field data
attributes.

The aim of this research was to develop simple methods for
explaining key features related to forest structure from a few L-moment
ratios of ALS returns. Lcv and Lskewwere used for detecting tree size in-
equality and light availability, and they were utilized for an automated
classification of forests from ALS datasets, which was applied directly
without the use of field data. The idea builds upon the hypothesis that
Please cite this article as: Valbuena, R., et al., Key structural features of Bo
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two deductive mathematical rules, Lcv=0.5 and Lskew=0, may be
used to classify the forest area into two groups, based solely on the
ALS height distributions. We studied whether such classifications
would be sound in terms of explaining properties of size inequality
among trees growing in vicinity (even or uneven tree sizes) and com-
petitive conditions for light in the forest community (oligophotic or eu-
photic).We compared the reliability of the rule-basedmethod to results
obtained from a supervised classification. This article discusses suitable
applications for this rule-based method.

2. Materials

2.1. Study area and ALS data

The researchwas conducted in a 252,000 ha study area including ap-
proximately 200,000 ha of the Boreal forest ecosystems typically found
in the region of North Karelia (Finland), which consists of forests dom-
inated by Scots pine (Pinus sylvestris L.) Norway spruce (Picea abies (L.)
Karst.) or Birch species (Betula ssp.) with various degrees of admixtures
also with other deciduous trees (such as Alnus ssp., Populus ssp. etc.).
The ALS data were acquired by Blom Kartta Oy (Finland) during May
2012with anALS60 system from LeicaGeosystems (Switzerland). A fly-
ing height of 2300 m above ground rendered an average density of 0.91
pulses per squared-meter. Country-wide laser data are being consis-
tently acquired using broadly similar parameters (National Land
Survey of Finland; NLS, 2013). Methods may therefore by consistently
replicated throughout the country, bringing potential for upscaling the
results obtained at national-level.

Heights above ground for individual ALS returns were calculated by
subtracting the digital terrain model provided by the NLS. We consid-
ered that, as seedlings and saplings were included in field mensuration
(Valbuena et al., 2016b), their influence in laser pulse interception had
to be accounted for in ALS metric computation. Consequently, just a
very small height threshold of 0.1 m was used, only with the intention
to mask out the influence of the ground. Sample estimates of L-mo-
ments and their ratios (Wang, 1996) were computed from the heights
of all the ALS returns located within each cell over a regular grid cover-
ing the entire study area. The spatial resolution of this grid was 16 m ×
16m, a customary practice in Finland that makes cell size roughly coin-
cident in with the area of field plots operationally established andmea-
sured by Finnish Forest Centre (SMK, Suomen Metsäkeskus).

2.2. Field dataset used for validation

Field data for validation of themethodswere partly acquired by Uni-
versity of Eastern Finland (UEF), and partly provided by SMK. Data from
a total of N=244 plots were acquired in a stratified random sampling
fashion with approximately equal per-stratum sample sizes (Valbuena
et al., 2016b). The strata employedwere the forest development classes
commonly used in operational management in Finland (per-stratum
sample sizes were n=31, unless specified): Seedling, Sapling, Young,
Advanced, Mature, Shelterwood, Seed-tree (n=29), and Multi-storied
(n=29). SMK's stand register data based on previous inventories was
employed for the initial randomization of field plot locations.
Valbuena et al. (2016b) provides details about acquisition protocol
and processing of field data. Appendix B details the criteria used to as-
sign a development class to each field plot, a task carried out indepen-
dently by experienced SMK personnel.

3. Methods

3.1. The rule-based method for stratifying forests based on ALS data

We used a deductive approach to thresholding using the L-moment
ratios. The rules were deduced from their mathematical properties, as
real forests may be detected directly using L-moments from airborne
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opposed to using inductive, supervised, data-driven optimization or
classification:

• The value Lcv=0.5was used because it representsmaximum entropy
of tree sizes (Valbuena et al., 2012); also recall that Lcv=GC (see
Appendix A.3). Since Lcv describes the relative dispersion of ALS
heights, we postulated that Lcv could be used as descriptor for struc-
tural properties related to tree size inequality, and hypothesised that
this threshold could be suitable for discriminating forests with trees
of approximately equal sizes – even tree sizes – (Lcvb0.5) from
those with high tree size inequality – uneven tree sizes – (LcvN0.5).

• The value of Lskew=0was chosen because it represents a symmetric
distribution of ALS heights, and distinguishes plots with positive or
negative skewness (Hosking, 1989). Being a descriptor of asymmetry,
we postulated that Lskew could be used as descriptor for structural
properties related to competitive dominance and light availability
characteristics (Valbuena et al., 2013a), and hypothesised that this
threshold could be useful for discriminating oligophotic zones
(Lskewb0) from euphotic ones (LskewN0).

We classified forests throughout the scanned area according to these
rules directly, avoiding the use of field data in the training stage of the
classification. The capacity of these rules to describe structural features
of the forest was validated by comparing the classifications at field
plot locations to the known development classes determined at the
field plots. For that purpose, the development classes were aggregated
into the target forest structural properties: even/uneven tree sizes and
oligophotic/euphotic.

3.2. Aggregation of development classes

With the intention to study the hypothesised relationship between
these thresholds of L-moment ratios for ALS height distribution and
their related structural properties of forests, we aggregated the forest
development classes according to their structural properties. In even-
aged silviculture, the succession of development classes usually follows
this basic chronosequence of even-sized forest types: Seedling, Sapling,
Young, Advanced andMature stands. Silviculture based on natural regen-
eration yields more complex uneven-sized structural types:
Shelterwood, Seed-tree, andMulti-storied stands. In Finland, Shelterwood
stands are forest areas attaining regeneration of shade-tolerant species
under the shade cast by a closed dominant Mature canopy (Appendix
B). This is the oligophotic zone (Lefsky et al., 2002),which in the context
of Eurasian Boreal forests corresponds to regeneration areas for Norway
spruce (note: there are many different types of shelterwood manage-
ment systems and, although in Finland this term is used specifically
for shade-tolerant regeneration – Appendix B –, in other countries it
may refer to regeneration of shade-intolerant species too, e.g.
Valbuena et al., 2013a). Other oligophotic areas are those which have
reached the stem exclusion stage – Young, Advanced andMature stands
–, limiting light availability under the dominant canopy (Zenner, 2005).
On the other hand, Seed-tree stands are areas where few parent trees
provide seeds for natural regeneration which recruits in the
understorey generating Multi-storied stands (Appendix B). These, as
well as Seedling and Sapling stands, belong to the euphotic zone
(Lefsky et al., 2002), where the absence of a closed dominant canopy
brings enough light to the ground as to allow the growth of shade-intol-
erant species. Accordingly, to test the capacity of the Lcv=0.5 and
Lskew=0 rules to discriminate forest areas according to their respective
hypotheses, the development classes were aggregated as:

(1) First criterion. Inequality among tree sizes (Lcv=0.5):
• Even tree size forest structural types: Seedling, Sapling, Young, Ad-
vanced and Mature stands. Characterized by small relative disper-
sion in tree sizes (Valbuena et al., 2013a).

• Uneven tree size forest structural types: Shelterwood, Seed-tree and
Please cite this article as: Valbuena, R., et al., Key structural features of Bo
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Multi-storied stands. Characterized by large relative dispersion in
tree sizes (Valbuena et al., 2013a).

(2) Second criterion. Relative dominance of overstorey over the
understorey (Lskew=0):

• Oligophotic (forest structural types with a closed dominant canopy
not allowing shade-intolerant regeneration): Young, Advanced,Ma-
ture and Shelterwood stands. Characterized by negative
asymmetries (Valbuena et al., 2013a).

• Euphotic (forest structural types with canopy openness allowing
shade-intolerant regeneration): Seedling, Sapling, Seed-tree, and
Multi-storied stands. Characterized by positive asymmetries
(Valbuena et al., 2013a).

3.3. Comparison against supervised classification

In order to compare the rule-based method with more common
data-driven methodologies based on inductive statistical inference, we
contrasted the results against those obtained by a supervised classifica-
tion. For that purpose, we employed the results obtained in Valbuena et
al. (2016b) from a support vector machine (SVM) classification which
employed the same field plot dataset at the training stage as the one
used for accuracy assessment in the present study. SVM is becoming in-
creasingly popular for classification of ALS data (Dalponte et al., 2008;
García et al., 2011), since it is suitable for operating with big datasets
and complex relationships of covariance. SVM is a hard classifier
which calculates hyperplanes between classes under a cost function de-
fined as a combination of maximizing distances from training samples
to the hyperplanes while minimizing the error of misclassified samples.
Using package e1071 in R statistical environment (Meyer et al., 2014a)
and a SVM C-classification method, Valbuena et al. (2016b) computed
predictions of all the above-mentioned development classes separately
which, in the present study, we aggregated into the established criteria:
inequality (even and uneven tree size classes) and dominance
(oligophotic and euphotic), as detailed above. It may be worth noting
that, in contrast to the rule-based method which avoided the training
stage, the SMV predictions were obtained by an error minimization
method using field data support and the explanatory capacity of many
more ALS metrics (Valbuena et al., 2016b: Table 2).

3.4. Accuracy assessment

Field plot data were only used for assessing the accuracy of the rule-
based method. Relationships among L-moments of ALS heights were
observed in scatterplots which depicted the development class to
which each plot belonged, observing the role of different development
classes in these relationships. Development classeswere grouped as de-
scribed above, and the capacity of the Lcv=0.5 and Lskew=0 rules to
describe those grouping characteristics was assessed with the help of
contingency matrices. The degree of misclassification was evaluated
by the final overall accuracy (OA) and per-class user's (UA) and
producer's (PA) accuracies, which were all calculated following
Olofsson et al.'s (2013) estimators for stratified random sampling as:

OA ¼ ∑pii; ð3Þ

UA ¼ pii
pi∙

; ð4Þ

PA ¼ pjj
p∙ j

; ð5Þ

calculated from the proportions of the total area for each predicted (i)
and observed (j) class. Given the stratified random sampling design,
real forests may be detected directly using L-moments from airborne
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and to adjust the accuracy estimates to account for the unequal sam-
pling intensities for each class, these proportionswereweighted accord-
ing to the share of area for each class (Aj) with respect to the total (At)
(Olofsson et al., 2013), as observed from the SMK's stand register
dataset employed in the initial stratified random sampling (Appendix
B):

pij ¼
Aj

At

nij

N
; ð6Þ

where nij was the number of plots observed for class j and predicted to
be class i, and N the total number of plots. Similarly, Cohen's (1960)
kappa coefficient (κ) was also calculated from these weighted propor-
tions pij, employing the sample estimator for stratified random sampling
suggested by Stehman (1996). Routines implemented in R-packages
vcd (Meyer et al., 2014b) and diffeR (Pontius and Santacruz, 2015)
were employed for these tasks. Results were compared with those
resulting from grouping supervised SVM predictions, which were ob-
tained in a leave-one-out fashion (Valbuena et al., 2016b). It is worth
stating that the study design complied withWestfall et al.’s (2011) rec-
ommendations for stratified estimation.

4. Results

4.1. L-coefficient of variation of ALS heights

First, we studied the relation between the Lcv of ALS heights and the
forest development classes observed at field plots. From Eq. (1), the rule
Lcv=1/2 can be represented in the L2∼L1 relation (dashed line in Fig. 1)
as:

L2 ¼ L1
2
: ð7Þ

The Lcv=0.5 threshold in Eq. (7) is depicted in Fig. 1 with a dashed line.
Thus, Fig. 1 shows how the different forest development classes distrib-
ute themselves at either side of this threshold, using ALS metrics only.
We observed that Seed-tree and Multi-storied stands, which usually
present large values of relative dispersion in tree sizes (GCN0.5), also
had wide dispersion in their ALS returns being mainly greater than the
Fig. 1. Relationship between the first and the second L-moments of ALS heights (i.e., L-
coefficient of variation).
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threshold at LcvN0.5 as well. This rule, however, failed to identify forest
areas with regeneration of shade-tolerant species recruited in the
understorey under a closed dominant canopy. These correspondmainly
to the Shelterwood development class, which fell largely under Lcvb0.5.
Fig. 1 shows that Shelterwood areas were difficult to discriminate from
Mature forests, and hence they were likely to be misclassified by this
rule as being even tree size forest types. Fig. 1 also shows the lack of in-
dependence of L2 from L1, since the spread of L2 values is larger for in-
creasing L1. This demonstrates the advantage of the Lcv ratio, which
normalizes the values of dispersion in L2, making them comparable
among distributions differing in the mean ALS height (L1, see Eq. (A3)
in Appendix A).

Concerning the classification results, using the Lcv=0.5 rule for dis-
criminating even tree size (Seedling, Sapling, Young, Advanced and Ma-
ture) versus uneven tree size classes (Shelterwood, Seed-tree and Multi-
storied) (Table 1), obtained an overall accuracy of 92.4% and a coefficient
of agreement κ=0.48. A total of 92.7% of the even-sized plotswere cor-
rectly classified by this rule, with only few omission/commission errors.
Most uncertainty was on the identification of uneven tree size forests,
due to the inability for the Lcv=0.5 rule to identify Shelterwood areas
(Fig. 1), as this rule only classified 24.4% of those areas as being un-
even-sized.

4.2. L-skewness of ALS heights

Thenext stepwas to observe the capacity of Lskew to incorporate ad-
ditional information about forest structure with regards to the relation-
ships of relative dominance among the trees. Using the rule Lskew=0 in
Eq. (2) gives

L3 ¼ 0: ð8Þ

Therefore the rule is demonstrated directly by the zero value on the
y-axis of the L3∼L2 relation (horizontal dashed line in Fig. 2). In Fig. 2,
we also observed a strong dependency of L3 on L2, since the spread of
L3 values expands while L2 increases. This also illustrates the advan-
tages of the Lskew ratio, which normalizes the L3 values of asymmetry,
making them comparable among distributions of differing dispersion
of ALS heights (hence, of different mean ALS height as well).

The utility of analysing the asymmetry of the ALS height distribu-
tionswas clear, as Lskewwas associatedwith the capacity of penetration
of the laser pulses, and therefore with the openness of the canopy. Pos-
itive skewness (LskewN0)was observedwhen therewere large propor-
tions of ALS returns with relatively lower heights, which indicates few
dominant trees allow the laser beam to reach lower areas underneath
an open upper canopy. On the other hand, negative skewness (Lskew-
0) was observed when a closed dominant canopy backscatters most
returns from the higher strata, and only few of them are returned
from the understorey.

Regarding the discrimination of oligophotic (Young, Advanced Ma-
ture and Shelterwood,) and euphotic (Seedling, Sapling, Seed-tree and
Multi-storied) areas of the forest (Table 2), the overall accuracy obtained
was 84.6% and κ=0.56. These accuracies were quite large, considering
amethodmaking no use of field data, an indication that Lskewmay be a
good proxy for the degree of canopy closure.
Table 1
Direct rule Lcv=0.5. Contingency matrix of classification of even-sized versus uneven-
sized development classes.

Predicted

Observed

TotalsEven-sized Uneven-sized

Even-sized 139 48 187
Uneven-sized 11 46 57

Totals 150 94 244

real forests may be detected directly using L-moments from airborne
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Fig. 2. Relationship between the second and third L-moments of ALS heights (i.e., L-
skewness).

Fig. 3. Relationship between the L-coefficient of variation and L-skewness of ALS heights.

5R. Valbuena et al. / Remote Sensing of Environment xxx (2016) xxx–xxx
4.3. Comparing rule-based versus supervised method

Fig. 3 shows a joint representation of both rules: Lcv=0.5 and
Lskew=0, respectively represented by vertical dotted and horizontal
dashed lines. It therefore illustrates how these measures of relative dis-
persion and asymmetry may be selected or combined in pursue of dif-
ferent objectives for classifying forest structure and development
directly from the distribution of ALS returns. Furthermore, we also com-
pared all results with those obtained by a supervised classification car-
ried out with this same subsample dataset. Tables 3 and 4 are
contingency matrices for the aggregation of development classes (ac-
cording to Section 3.2) predicted by the supervised SVM classification.
For direct comparison, Table 5 includes a summary of results obtained
by all the compared methods.

Regarding the results obtained from the supervised classification, it
can be observed that the classification of forest areas into even and un-
even tree sizes (Table 3) reached an overall accuracy 87.3% and κ =
0.34,whereas oligophotic versus euphotic (Table 4) obtained overall ac-
curacy of 93.8% and κ=0.80. Differences between the rule-basedmeth-
od and the supervised approachwere not so large if taking into account
the simplicity and lack of involvement of field data in the former one.
User's accuracies obtained by the SVM classification were very similar
to those yielded by the rule-based method (Table 5), which demon-
strates that they are mainly due to differences in the proportions of
area that each development class has from the population, and not dif-
ferences between the twomethods. The success of the Lcv=0.5 thresh-
old in classifying the even and uneven tree size forests and Lskew=0 for
segregating the oligophotic and euphotic areas of forest was remarkably
good if compared to the supervised classification, which did not obtain
much greater accuracies. The comparison of user's and producer's
Table 2
Direct rule Lskew=0. Contingencymatrix of classification of oligophotic (closed canopies)
versus euphotic (open canopies) areas.

Predicted

Observed

TotalsOligophotic Euphotic

Oligophotic 102 17 119
Euphotic 19 106 125

Totals 121 123 244

Please cite this article as: Valbuena, R., et al., Key structural features of Bo
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accuracies against the supervised classification however highlighted
the two major differences: the rule-based method increased the errors
due to omission of uneven-sized areas and commission of euphotic
areas (Table 5).

5. Discussion

5.1. L-coefficient of variation may identify tree size inequality

Our prior assumption was that forests with trees of approximately
equal sizes – i.e., even tree size classes –, since they would backscatter
most ALS returns from a single canopy stratum, could be directly detect-
ed by low values of the Lcv of their ALS heights. Our results corroborate
this assumption, since 92.7% of the even tree size plots were correctly
classified by this rule (blue colour in Fig. 4 examples). Fig. 3 shows
that most uncertainty in even tree size areas – those containing trees
of approximately equal sizes – was due to Sapling stands, whereas not
one single plot belonging to either Advanced or Mature development
classes showed values of LcvN0.5. The low rate of omission errors im-
plies that this rule could be used as a rather conservative and simple
method when the purpose is to predict even tree size forest areas.

On the other hand, it was also expected that in the presence of struc-
turally heterogeneous forests with more inequality of sizes among its
trees, the ALS returns would also show a more spread pattern as they
backscatter along the full vertical profile of the canopy, showing higher
values of Lcv. In view of our results, that was the case for Seed-tree and
mostMulti-storied areas, although not for Shelterwood stands.We there-
fore propose that the direct rule LcvN0.5 may be used as an indicator of
great tree size inequality only when regeneration is achieved by shade-
intolerant species, and therefore it has been enabled by forest
Table 3
Supervised classification. Aggregated classes from Valbuena et al. (2016b). Contingency
matrix of classification of even-sized versus uneven-sized development classes.

Predicted

Observed

TotalsEven-sized Uneven-sized

Even-sized 131 15 146
Uneven-sized 19 79 98

Totals 150 94 244
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Table 4
Supervised classification. Aggregated classes from Valbuena et al. (2016b). Contingency
matrix of classification of oligophotic (closed canopies) versus euphotic (open canopies)
areas.

Predicted

Observed

TotalsOligophotic Euphotic

Oligophotic 114 10 124
Euphotic 7 113 120

Totals 121 123 244

6 R. Valbuena et al. / Remote Sensing of Environment xxx (2016) xxx–xxx
disturbance (Knox et al., 1989; Kellner andAsner, 2009). In otherwords,
a correspondence between the GC of tree sizes (Valbuena et al., 2013a)
and the Lcv of ALS heights may only happen when the large value of GC
is due to the presence of a gap in the canopy, which allows a large pro-
portion of the laser footprint to get through and disperse its correspond-
ing returns along the vertical profile of the canopy (Stark et al., 2012).
This highlighted the importance of employing an additional metric dis-
criminating areaswith a large euphotic zone from thosewhere regener-
ation occurs in the oligophotic zone (Lefsky et al., 2002; Fig. 5).Whether
or not more ALS metrics are required for fully describing the structural
properties of forests, it isworth noting the recurrence of Lcv as a variable
selected by many different automated methods tested in our previous
studies, and therefore the role of Lcv in predicting structural attributes
related to tree size inequality (Valbuena et al., 2013b, 2014, 2016a)
and forest development (Valbuena et al., 2013a, 2016b) seems clear.

Exploring the reasons why only 24.4% of Shelterwood stands were
classified by the LcvN0.5 rule as being uneven-sized, it could be taken
into account that this development class was also the one showing
most error in the SVM classification (Valbuena et al., 2016b). The fact
that a supervised method, which used the explanatory potential of
many other metrics as well, still failed to reliably identify Shelterwood
areas may be an indication that the limitation is due not to the metrics
but rather to the original ALS data. Due to the low-density nature of
this national dataset (NLS, 2013), the laser footprint probably detects
very infrequently the presence of understory under closed dominant
canopies. In that case, scan density would need to be increased for this
task. We considered the advantages of testing the rule-based method
with this type of ALS dataset since, due to its simplicity, could have po-
tential for replication at national scales. Further research should, how-
ever, employ datasets of larger densities to clarify whether Lcv could
then show better capacity for detecting regeneration of shade-tolerant
species. If direct replication of the rule-basedmethod is to be envisaged,
the effect of other flight parameters in these L-moment ratios, such as
scanner device or maximum scanning angle (Næsset, 2004; Disney et
al., 2010), should also be object of future investigations.
Table 5
Comparison of accuracy results.

Stratification Rule-based
classification

Supervised
classificationa

Even vs. Uneven tree size Lcv=0.5 SVM
Overall accuracy (OA) 92.4% 87.3%
Kappa (κ) 0.48 0.34
Even tree size omission (PA) 92.7% 87.3%
Even tree size commission (UA) 99.6% 99.8%
Uneven tree size omission (PA) 48.9% 84.0%
Uneven tree size commission (UA) 4.2% 4.1%
Oligophotic vs. Euphotic Lskew=0 SVM
Overall accuracy (OA) 84.6% 93.8%
Kappa (κ) 0.56 0.80
Oligophotic omission (PA) 84.3% 94.2%
Oligophotic commission (UA) 96.8% 98.3%
Euphotic omission (PA) 86.2% 91.9%
Euphotic commission (UA) 52.9% 76.8%

a Aggregated from Valbuena et al. (2016b).
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5.2. L-skewness may identify fully closed canopies

The threshold derived from the asymmetry measure of L-moments,
Lskew=0, was demonstrably practical with regards to discriminating
oligophotic from euphotic areas. Lskewb0 denotes areas where most
ALS returns were backscattered from a closed dominant canopy which
only allows small proportions of the laser footprint – and the light re-
source – to reach the understorey. Conversely, LskewN0 was observed
whenever there were large proportions of ALS heights with relatively
lower heights, and it was therefore related to the presence of only few
returns backscattered from upper areas in the canopy, which indicates
that the dominant trees allow the laser beam – and thereby the light re-
source – to reach lower areas underneath an open canopy. This can be rel-
evant with regards to findings by Drake et al. (2002) and Lefsky et al.
(2005),who found the degree of canopy closure to be one of themost rel-
evant covariates in the relation between biomass and ALS heights.

Itmay beworth noting that the LskewN0 rulewas capable of practical-
ly delineating Seedling, Sampling and Seed-tree stands directly (Fig. 4). Al-
though the method was carried out at pixel-level, the resulting maps
identified entire stands sharply. The rule-based stratification by LskewN0
was therefore fairly insensitive to the within-stand variation that usually
makes it difficult to discriminate stands, especially Seed-tree areas, by
standard area-based procedures in remote sensing. These types of prob-
lemsusually requiremore complex analyses at object-level– representing
stands –, which involve segmentation procedures with subjective steps,
parameters determined by trial-and-error, or manual delineation (e.g.,
Pascual et al., 2008). In contrast, the rule based method offers a simple
procedure to determine Seedling, Sampling and Seed-tree stands directly.

5.3. Synergies between the rules

Overall accuracies obtained by the rule-based methods were, re-
spectively, 92.4% and 84.6%whichwe considered a remarkable achieve-
ment for a rule-based method not requiring field support for training
and that they were comparable to the results obtained by the super-
vised classification (87.3% and 93.8%, respectively; Table 5). As a rule
of thumb, it may be affirmed that LskewN0 characterizes canopies not
fully closed (areas not having reached stem exclusion), whereas those
areas which also had values of LcvN0.5 presented large inequality
among tree sizes driven by forest disturbance (Fig. 5). In our results in
Fig. 3, values of wide dispersion LcvN0.5 occurred only in the presence
of positive skewness LskewN0. This was also corroborated out of the
sample, as pixels with LcvN0.5 also had LskewN0 as well (Fig. 4). This
demonstrates that, in these low-density datasets, the variance of ALS
heights only increases as a cause of openness in the canopy and an in-
crease of the euphotic zone (Lefsky et al., 2002), possibly due to forest
disturbance, which leads to positive skewness in the distribution. As a
consequence, the maps obtained with LcvN0.5 were expanded by the
LskewN0 rule (Fig. 4), extending the areas of large tree size inequality
towards those simply presenting potential for growth with no limita-
tion from light resource. In turn, negatively skewed Lskewb0 ALS height
distributions (Fig. 2) are indicative of forestswith large oligophotic zone
(Lefsky et al., 2002) and therefore can only allow the regeneration of
shade-tolerant species. It is worth commenting that uneven tree size
and euphotic forest areas stand out of a general relationship between
firstmoments of ALS heights and forest attributes related tomeandiam-
eter (Lefsky et al., 2002, 2005), and therefore we suggest that one po-
tential use of the rule-based method could be to decrease the signal-
to-noise ratio when obtaining ALS-assisted estimations in heteroge-
neous forest areas.

5.4. Practical benefits and further research needs

In this article, we applied deductive science (Appendix A) to infer
that L-moments from the distribution of ALS returns can have a direct
relationship to forest structural characteristics at the community level,
real forests may be detected directly using L-moments from airborne
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Fig. 4. Examples of resultingmaps of forests stratifiedwith rule-basedmethod. Left: canopy heightmodel (CHM).Middle: areas with LcvN0.5 in yellow (uneven tree sizes) and Lcvb0.5 in
blue (even tree sizes). Right: areaswith LskewN0 in yellow (euphotic) and Lskewb0 inblue (oligophotic). The reference CHMwasmade from the sameALS dataset, courtesy of Aki Suvanto
(Blom Kartta Oy). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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namely tree size inequality and canopy closure (Fig. 5), in addition to
the already well-known fact that ALS height relates to tree height
(e.g., Lefsky et al., 2005; Maltamo et al., 2005; Miura and Jones, 2010;
Asner and Mascaro, 2014). The main benefit of these research findings
Please cite this article as: Valbuena, R., et al., Key structural features of Bo
lidar data, Remote Sensing of Environment (2016), http://dx.doi.org/10.10
is on increasing our understanding (Fig. 5) of how ALS explains key
structural features related to forest structure (Gove, 2004; Valbuena et
al., 2012) and tree competition (Weiner, 1990; Cordonnier and
Kunstler, 2015). These can be relevant to enhance the potential of ALS
real forests may be detected directly using L-moments from airborne
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Fig. 5. Schematic diagram representing the patterns of ALS return distribution that can be
found in different types of forest structures, and how they are described by ratios of L-
moments: L-coefficient of variation and L-skewness. Compare to Fig. 3 and Valbuena et
al. (2013a: Fig. 4).
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for describing light availability conditions (Lefsky et al., 2002), forest
disturbance characteristics (Kellner and Asner, 2009), or tree growth
(Stark et al., 2012) and regeneration (Valbuena et al., 2013a). Further
research should clarify the role of different flight configurations, scan-
ners systems or scanning density (Næsset, 2004; Disney et al., 2010)
in the relationships between ALS L-moments and forest structural
characteristics.

The resulting classification could be used e.g. in stratification of a for-
est area for the field data collection of an ALS inventory campaign, since
Hawbaker et al. (2009), Maltamo et al. (2011) and Gobakken et al.
(2013) demonstrated that a field sampling strategy based on a priori
knowledge extracted from the ALS itself may be advantageous. In the
presence of within-stand heterogeneity (e.g., Valbuena et al., 2013a),
L-moments could be valuable for delineating microstands (van Aardt
et al., 2006). There are potential applications in guiding future forest
management operations directly from ALS datasets, once unveiling the
relationship between GC and silvicultural alternatives (Pukkala et al.,
2016) and thereby to L-moments of ALS returns. For ecosystem studies,
there is potential for studying canopy structure, e.g., discrimination of
single- and multi-layered forests, and other traits relevant to old-
growth forests (Lefsky et al., 2002; Miura and Jones, 2010). We encour-
age further research to exploit the potential of L-moments in forest
estimation (e.g., Asner and Mascaro, 2014) and other applications.

6. Conclusions

We developed a rule-based classification deduced from L-moments
summarizing the relative dispersion and skewness of ALS heights. Clas-
sification by two simple deductive mathematical rules, L-coefficient of
variation LcvN0.5 and L-skewness LskewN0, was carried out directly
on the ALS return cloud, omitting training stages making use of field
plot data. Lcv was related to tree size inequality, while Lskew provided
information on the degree of closure of the dominant canopy. These
provide relevant information about competition conditions in different
areas of the forest, which canbededuced directly fromALS datasets. Our
conclusions, however, may apply only to Boreal ecosystems,where light
availability and its interception by the dominant canopy is the compet-
itive process that limits forest growth. Some of the accuracies obtained
were remarkably large, being a direct classification using no field data
support, and they were comparable to those obtained by a supervised
Please cite this article as: Valbuena, R., et al., Key structural features of Bo
lidar data, Remote Sensing of Environment (2016), http://dx.doi.org/10.1
classification. Two flaws of the rule-based method were the omission
of uneven-sized forest with shade-tolerant regeneration and commis-
sion errors for the euphotic areas, to be solved by further research per-
haps making use of datasets with higher density. These rules can be
executed directly over ALS datasets, providing an unambiguous proce-
dure with multiple applications.
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Appendix A. L-moments and their relationship to Gini Coefficient

A.1. L-moments for describing a distribution

Let an order statistic Xk:r be the k-th smallest observation in a sample
of size r of the randomvariableX (e.g. ALS return heights), and let E(Xk:r)
be its expected value. For example, consider E(X1:2) in the following
population of size 3: {12,16,14}. There are three possible samples of
size r=2, with sample minima (k=1): {12,12,14}. The expected value
is the mean over these, i.e., E(X1:2)=12.67. In the analysis of this
paper, the population is the unknown infinite set of all possible ALS
returns over the primary calculation unit (sample plot or grid cell).
The expected value is estimated using the observed sample of returns.

L-moments describe the distribution of a scalar random variable X
through weighted sums of E(Xk:r). Hosking (1990) defined the L-mo-
ments as:

Lr ¼ r−1 ∑
r−1

k¼0
−1ð Þk r−1

k

� �
E Xr−k:rð Þ: ðA1Þ

The first L-moment (L1) is obtained by substituting r=1 in Eq. (A1)
to get:

L1 ¼ E X1:1ð Þ ¼ E Xð Þ; ðA2Þ

which is thus equivalent to the first product-moment (expectation) of
X. Hence, L1 is the L-measure for the location or central tendency of
the distribution. If observations of X are available, L1 can be estimated
as the arithmetic mean:

L1˄¼ �X : ðA3Þ

The second L-moment (L2), follows the case for r=2:

L2 ¼ 1
2
E X2:2ð Þ−1

2
E X1:2ð Þ ¼ 1

2
E X2:2−X1:2½ �; ðA4Þ

which is the expected value of half difference between minimum (X1:2)
and maximum (X2:2) in a sample of size two. It therefore provides the
mean of half differences, and thus it is the L-measure for the dispersion
of the distribution.

Following a similar logic for the third L-moment (L3), substituting
r=3 in Eq. (A1) yields:

L3 ¼ 1
3
E X3:3ð Þ−2

3
E X2:3ð Þ þ 1

3
E X1:3ð Þ; ðA5Þ

which is a weighted sum of minimum (X1:3), median (X2:3), and
real forests may be detected directly using L-moments from airborne
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maximum(X3:3) of a samplewith size three. It can further bewritten as:

L3 ¼ 1
3
E X3:3−X2:3ð Þ− X2:3−X1:3ð Þ½ �; ðA6Þ

to show that L3 expresses the expected difference between the maxi-
mum-median and median-minimum differences in a sample of size
three,whichprovides a L-measure for the asymmetry of thedistribution
of X. Hence, L3=0 corresponds to a symmetric distribution, L3N0 de-
scribes positive asymmetry (left-skewed distribution) and L3b0 de-
scribes negative asymmetry (right-skewed distribution).

A.2. L-moment ratios

Hosking (1990) also defined the ratios for L-moments. They have the
advantage of being bounded by finite intervals (Hosking, 1989), yield-
ing comparable relative descriptions for the distribution of X.

The second L-moment ratio is obtained as the ratio of the second to
the first L-moments. It is called the L-coefficient of variation (Lcv) for its
comparison to conventional moments. From Eqs. (A2) and (A4) it can
be observed that Lcv equals:

Lcv ¼ L2
L1

¼ E X2:2ð Þ−E X1:2ð Þ
2E Xð Þ : ðA7Þ

For positive random variables, the values for the second L-moment
ratio are bounded by the [0,1] range (Hosking, 1989). Just like the coef-
ficient of variation of conventional moments, Lcv is a descriptor of dis-
persion relative to central tendency; that is to say, concentration. This
brings the advantage that concentration measures are comparable
among distributions differing in their location or central tendency
(L1), and also independently of the units of measure. It is worthwhile
to note that Hosking never defined a second L-moment ratio, as their
generalized definition stands only for r=3,4… (Hosking, 1990: 108),
and the L-coefficient of variation was simply presented alongside. It
was only later that many authors have regarded Lcv to be the second
L-moment ratio.

The third L-moment ratio is obtained by division between the third
and the second L-moments. It is called the L-skewness (Lskew), as it
has been found to be a robust descriptor for the asymmetry of the distri-
bution of X. From Eqs. (A4) and (A6), and using the equivalenceEðX3:3 �
X1:3Þ ¼ 3

2 EðX2:2 � X1:2Þ (Robbins, 1944: Eq. 22; David and Nagaraja,
2003: 44, 56) it yields:

Lskew ¼ L3
L2

¼ E X3:3ð Þ−2E X2:3ð Þ þ E X1:3ð Þ
E X3:3ð Þ−E X1:3ð Þ : ðA8Þ

As explained for L3, Lskew=0 corresponds to a symmetric distribu-
tion, while positive or negative values denote the type of asymmetry for
the distribution. Additionally, Lskew has the advantage of presenting
theoretical bounds within the [−1, 1] interval (Hosking, 1989). Conse-
quently, Lskew is a descriptor of asymmetry relative to dispersion, and
therefore independent of the units of measure and the dispersion of
the distribution of X.

A.3. Equivalence between the Gini coefficient and the L-coefficient of
variation

The Gini coefficient of a scalar random variable X (GC) is the ratio of
the area comprised between the Lorenz curve and the diagonal line of
equality (Gini, 1921):

GC ¼ 1−2∫10L Xð ÞdX; ðA9Þ

where L(X) is the Lorenz curve: the relative cumulative distribution of a
variable against the cumulative frequency distribution of the proportion
Please cite this article as: Valbuena, R., et al., Key structural features of Bo
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of individuals in the population. From Eq. (A9), Kleiber (2005: Eq. 6)
showed that:

GC ¼ 1−
E X1:2ð Þ
E Xð Þ : ðA10Þ

On the other hand, the Lcv gives also theGC. FromEq. (A7) it derives:

Lcv ¼ E X2:2ð Þ−E X1:2ð Þ
2E Xð Þ ðA11aÞ

¼ E X2:2−X1:2ð Þ þ 2E X1:2ð Þ−2E X1:2ð Þ
2E Xð Þ ðA11bÞ

¼ E X2:2 þ X1:2ð Þ−2E X1:2ð Þ
2E Xð Þ ðA11cÞ

¼ 2E Xð Þ−2E X1:2ð Þ
2E Xð Þ ðA11dÞ

¼ 1−
E X1:2ð Þ
E Xð Þ : ðA11eÞ

Eq. (A11d) results from (A11c) because X1:2+X2:2 is the sum of two
independent and identically distributed samples, and it is therefore
equivalent to X1+X2. Consequently, Eqs. (A10) and (A11e) demon-
strate:

GC ¼ Lcv: ðA12Þ

The result in Eq. (A12) is essentially a special case of a 140-years-old
result (Helmert, 1876; as cited in David and Nagaraja, 2003: 249) pre-
sented in equation 9.4.2 of David and Nagaraja (2003), which might
even provide interesting extensions using expectations of order statis-
tics in sample sizes larger than r=1,2,3.

Appendix B. Criteria for determining forest development classes

Silvicultural development classes are used in Finland to classify for-
est stands and assist in decision-making for forest management plan-
ning. It was possible to apply stratified sampling using the stand
register dataset employed by the Finnish Forest Centre (SMK, Suomen
Metsäkeskus) for their operational management planning, since a de-
velopment class has been explicitly assigned to each stand from previ-
ous inventories. The development class to which each sample plot
belonged to was nevertheless ultimately corroborated in the field,
being the criteria used in-situ prevalent over the stand register data.
Minor differences in per-stratum sample sizes were simply caused by
such type of discrepancies found in few plots. The criteria that segregat-
ed forest areas into different forest classes were:

• Seedling: stands with average tree heightb0.10 1.3 m, and absence of
mature trees (overstorey).

• Sapling: standswith average tree height N1.3m, and average diameter
at breast height (DBH)b0.10 8 cm, and absence of mature trees
(overstorey).

• Young: stands with average DBH ranging 8–16 cm and average tree
height ranging 7–9 m high.

• Advanced: stands with average DBH N 16 cm
• Mature: stands reaching a quadratic mean DBH (QMD) N 18 cm.
• Shelterwood: stands including a dense overstorey of mature trees
(DBH N 16 cm) which reaches at least 100–300 stems⋅ha−1, and also
a dense understorey of seedlings (height b 1.3 m) of shade-tolerant
species, usually Norway spruce (1500–1800 stems⋅ha−1).

• Seed-tree: stands including a sparse overstorey ofmature trees (DBH N

16 cm) of only 50–100 stems⋅ha−1, and also a dense understorey of
seedlings (height b 1.3 m) of shade-intolerant species, usually Scots
real forests may be detected directly using L-moments from airborne
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pine (1500–2200 stems ⋅ha−1) or Birch species (1100–1600
stems⋅ha−1).

• Multi-storied: stands including a dense understorey (above-men-
tioned densities) of seedlings (height b 1.3 m) and saplings
(height N 1.3 m, DBH b 8 cm) of any species, usually deciduous but
also Scots pine or Norway spruce. The size of trees in the overstorey
is not a determinant criterion, but trees in the understory must
reach their sapling stage.
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