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ARTICLE INFO ABSTRACT

Article history:

Urbanization is one of the most important components of global environmental change, yet most of what we
know about urban areas is at the local scale. Remote sensing of urban expansion across large areas provides
information on the spatial and temporal patterns of growth that are essential for understanding differences in
socioeconomic and political factors that spur different forms of development, as well the social, environmental,
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and climatic impacts that result. However, mapping urban expansion globally is challenging: urban areas have
a small footprint compared to other land cover types, their features are small, they are heterogeneous in both
material composition and configuration, and the form and rates of new development are often highly variable
across locations. Here we demonstrate a methodology for monitoring urban land expansion at continental to
global scales using Moderate Resolution Imaging Spectroradiometer (MODIS) data. The new method focuses
on resolving the spectral and temporal ambiguities between urban/non-urban land and stable/changed areas
by: (1) spatially constraining the study extent to known locations of urban land; (2) integrating multi-
temporal data from multiple satellite data sources to classify c. 2010 urban extent; and (3) mapping newly
built areas (2000-2010) within the 2010 urban land extent using a multi-temporal composite change detection
approach based on MODIS 250 m annual maximum enhanced vegetation index (EVI). We test the method in
15 countries in East-Southeast Asia experiencing different rates and manifestations of urban expansion. A
two-tiered accuracy assessment shows that the approach characterizes urban change across a variety of
socioeconomic/political and ecological/climatic conditions with good accuracy (70-91% overall accuracy by
country, 69-89% by biome). The 250 m EVI data not only improve the classification results, but are capable of
distinguishing between change and no-change areas in urban areas. Over 80% of the error in the change detection
can be related to definitional issues or error propagation, rather than algorithm error. As such, these methods
hold great potential for routine monitoring of urban change, as well as for providing a consistent and up-to-
date dataset on urban extent and expansion for a rapidly evolving region.

© 2014 Published by Elsevier Inc.

1. Introduction

The demographic transformation toward an urban world has
pushed urbanization - population growth as well as the expansion of
built-up areas - to the forefront of environmental and development
agendas. The consequences of urbanization are largely contingent on
the size, location, and configuration of development (Weng, 2001;
Zhou et al., 2004), with many environmental impacts exacerbated
when new growth is expansive and/or fragmented in form (Alberti,
2005). A meta-analysis of urban expansion indicates that local- to
regional-scale studies are geographically biased, leaving even many
large cities unstudied (Seto, Fragkias, Giineralp, & Reilly, 2011). Detailed
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maps on regional- to global-scale changes in urban land do not exist.
Previous efforts have been sample-based (Angel et al., 2005;
Schneider & Woodcock, 2008; Taubenbdck, Esch, Felbier, Wiesner, &
Roth, 2012), have focused on one country (Homer, Huang, Yang,
Wylie, & Coan, 2004; Wang et al., 2012), or have drawn conclusions
from datasets with substantial temporal and spatial mismatch or
variability in how cities are defined (Seto, Sanchez-Rodriguez, &
Fragkias, 2010). Routine monitoring of urban expansion across large
areas could therefore provide the spatial information on patterns of
urban growth that are essential for understanding differences in socio-
economic and political factors that spur different forms of development,
as well the social and environmental impacts that result (World Bank,
2014).

Several global maps of c¢. 2000 urban areas have been produced in
the past decade (Bhaduri, Bright, Coleman, & Dobson, 2002; CIESIN,
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Fig. 1. Maps of the East Asia region illustrating (a) the study area extent defined by known locations of urban land, and (b) Olson's biome designation, used to delineate areas of similar
ecoclimatic characteristics for data processing.
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2004; Elvidge et al., 2007; Schneider, Friedl, Mciver, & Woodcock, 2003)
which have demonstrated the value of large-area maps of urban extent/
expansion for assessment of arable land (Avellan, Meier, & Mauser,
2012; Tan, Li, Xie, & Lu, 2005), water quality/availability (McDonald
et al., 2011), natural resources (Lambin & Meyfroidt, 2011), habitat
loss (Radeloff et al., 2005) and biodiversity (Guneralp & Seto, 2013);
air pollution monitoring and associated impacts to human health
(Grimm et al.,, 2008); and regional-global modeling of climate (Oleson,
Bonan, Feddema, Vertenstein, & Grimmond, 2008), hydrological
(McGrane, Tetzlaff, & Soulsby, 2014), and biogeochemical cycles
(Nordbo, Jarvi, Haapanala, Wood, & Vesala, 2012; Zhao, Zhu, Zhou,
Huang, & Werner, 2013). These maps have also proven vital for investi-
gating socioeconomic issues, including population distribution (Jones &
O'Neill, 2013), spatial patterns of disease risk (Tatem, Noor, von Hagen,
Di Gregorio, & Hay, 2007; Wilhelmi, de Sherbinin, & Hayden, 2013),
poverty (Elvidge et al., 2009), and economic growth (Chen &
Nordhaus, 2011), and for planning and policy in developing-country
cities that lack this information (Scott et al., 2013).

While remote sensing of land cover change for large areas has
become common in many types of landscapes (Hansen et al., 2013;
Zhang et al., 2003 ), mapping urban expansion globally has remained
relatively difficult: urban areas are rare, their features are small, they
are heterogeneous in both material composition and configuration,
and the form, rates, and spectral-temporal signatures of urban expan-
sion are highly variable across locations (Jensen & Cowen, 1999;
Kontgis et al., 2014; Maktav, Erbek, & Jiirgens, 2005; Potere, Schneider,
Schlomo, & Civco, 2009). In addition, cost and data availability generally
necessitate the use of coarse (250-1000 m) or moderate (20-30 m)
resolution data for continental scale mapping, thereby compounding
the issue of land cover ‘mixing’ due to the large ground resolution cell.

The primary objective of this work was to develop a methodology to
monitor urban land expansion at continental to global scales. Building
on our past work using Moderate Resolution Imaging Spectroradio-
meter (MODIS) data to map global urban extent (Schneider, Friedl, &
Potere, 2010, Schneider et al., 2003), we developed a methodology to
resolve the spectral and temporal ambiguities between urban/non-
urban land and stable/changed areas by: (1) spatially constraining the
study extent using known locations of urban land; (2) integrating mul-
tisource satellite data to classify c. 2010 urban extent; and (3) employing
multitemporal composites of MODIS 250 m maximum enhanced vege-
tation index (EVI) observations in a change detection approach to map

Table 1
Datasets used to define the study extent in East Asia for satellite image processing.

newly built areas (2000-2010) within the 2010 urban land extent. This
method is built on one critical assumption: any conversion of land to
urban uses is unidirectional and absolute, and thus, any urban expan-
sion 2000-2010 (regardless of location near/far from the city) will be
urban land in 2010.

We test and implement this methodology for 15 countries in East
and Southeast Asia (Fig. 1, hereafter East Asia). In doing so, we set a
second objective to generate a new dataset depicting recent urban
land expansion across the region (Schneider et al., in press). The rapid
economic growth and high rates of urbanization characterizing many
areas in the region have resulted in a high demand for timely land infor-
mation for researchers, land use managers, governing institutions and
the private sector. East Asia also provides a sound test case for method
validation, as the predominance of cloud cover and complex urban land-
scapes in the region require methods that are robust to missing/noisy
data. In the following sections, we outline the background, describe
the methods and results, and finally, conclude with a discussion of les-
sons learned from this research.

2. Background

To map urban expansion across large areas, we draw on three areas
in the remote sensing literature: (a) global monitoring of urban land,
(b) change detection methods for urban areas, and (c) change detection
over large areas.

2.1. Global mapping of urban areas

Eight different teams have developed global maps that depict the
spatial extent of urbanization c. 2000 (Gamba & Herold, 2009), while
others have developed proof of concept studies (Taubenbdck et al.,
2012; Zhang & Seto, 2011). Unfortunately, existing global maps exhibit
a great deal of variability in how urban areas are characterized, evident
from the areal estimates of urban land that range from 300,000 to
3 mil km? (Schneider et al., 2010). The definitional problems are
twofold. First, any number of operational definitions of ‘urban’ are
employed, ranging from functional definitions related to human land
use (Balk et al., 2004; Zhang & Seto, 2011), administrative boundaries
(Deichmann, Balk, & Yetman, 2001), or population size and density
(Bhaduri, Bright, Coleman, & Dobson, 2002), to physical definitions
based on land cover (Elvidge et al., 2007; Schneider et al., 2003) or

Dataset Producer Description Location Website or citation
MODIS 500 m map of University of Wisconsin-Madison Map of 88,578 urban patches >1 km? Global http://www.sage.wisc.edu
global urban extent used to verify, geolocate, and
update city points.
GRUMRP city points Center for International Point dataset of 67,935 cities, Global http://sedac.ciesin.columbia.edu
Earth Science Information towns and settlements.
Network (CIESIN),
Columbia University,
International Food
Policy Research Institute (IFPRI),
World Bank, Centro
Internacional de Agricultura
Tropical (CIAT)
Urban agglomerations with United Nations Department of Point dataset of 633 cities Global http://esa.un.org/unup/GIS-Files/gis_1.htm
>750,000 inhabitants, 2011 Economic and Social Affairs >750,000 persons.
Population Division
Universe of cities Angel, Lincoln Institute of Point dataset of 3943 Global Angel (2012). Planet of Cities.
Land Policy cities >100,000 persons. Cambridge, Massachusetts,
Lincoln Institute of Land Policy.
Chinese city point data Chinese Academy of Sciences Point dataset of 664 cities. China Chinese Academy of Sciences (2011).
Beijing, China.
Google Earth populated places Google Earth Pro v7.1. Layers: City point location used to verify, Global http://www.google.com/earth

populated places

geolocate, and update city points.

Abbreviations: Moderate Resolution Imaging Spectroradiometer (MODIS), Global Rural-Urban Mapping Project (GRUMP).
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Table 2

Remote sensing and training datasets used to map c. 2010 urban extent and 2000-2010 urban expansion. Abbreviations: Moderate Resolution Imaging Spectroradiometer (MODIS),
Bidirectional reflectance distribution function (BRDF), System for Terrestrial Ecosystem Parameterization (STEP), Enhanced Vegetation Index (EVI).

Dataset Description Source Location Time period Spatial unit
Classification MCD43A4, MCD43A2 MODIS nadir BRDF-adjusted MODIS Land Team, Global Monthly composites, 500 m pixel
c.2010 reflectance (NBAR) and Boston University 2009-2011
quality product 8-day
composites
STEP land cover Training exemplar database Boston University, Global c. 2010 500 m-2 km polygon
database used with NBAR data University of
Wisconsin-Madison
MODO09Q1G EVI MODIS Enhanced Vegetation NASA Goddard Space East Asia Annual growing season 250 m pixel
Index (EVI) 8-day composites Flight Center maximum, 2009-2010
Urban, non-urban Training set database University of East Asia c.2010 250 m pixel
training data used with EVI data Wisconsin-Madison
MOD44W MODIS land-water mask United States East Asia c. 2010 250 m pixel
Geological Survey
Change detection MOD09Q1G EVI MODIS Enhanced Vegetation NASA Goddard Space East Asia Annual growing season 250 m pixel
2000-2010 Index (EVI) 8-day composites Flight Center maximum, 2001-2010
Urban and urban Training set database University of East Asia 2000-2010 250 m pixel

expansion training data used with EVI data

Wisconsin-Madison

anthropogenic light emissions (NGDC, 2007). The second is whether the
adopted definition is congruent with how the maps are produced, such
that the input datasets (e.g., remote sensing, nighttime lights, census
data), classification method, and thematic classes align with how
urban areas are defined.

Few of the global urban mapping efforts - including new work by
the European Space Agency and Google Earth Engine to map c. 2010
urban land - depict changes in urban land over time, however. The
exception is the GeoCover Land Cover product for 1990-2000 (MDA
Federal, 2004), although these data have limited geographic coverage,

Optimal cloud-free
time of year

January 1 - April 30

March 22 - August 28
May 1 - October 15
August 5 - November 8
October 8 - December 18

@000 e

-y MODIS tile grid
= (sinusoidal projection)

Number of MODIS 0 138
observations, i
2009-2011 no cloud-free no missing

observations data

Kilometers 600

Fig. 2. The distribution of missing data observations in the MODIS 500 m NBAR data for (a) the East Asia study region, and for (b) northeastern China, (c) southeastern China, and
(d) central Indonesia. Note the small number of cloud-free observations in cities and tropical/subtropical areas. Panel (e) illustrates the cloud-free time of year for each tile.
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remain prohibitively expensive, and are becoming outdated for areas
witnessing rapid changes since 2000 (Potere et al., 2009). Recent efforts
with nighttime lights to monitor urbanization have shown promise, but
are limited for mapping urban land expansion explicitly as these data
have been found to be a function of demographic, socioeconomic, and
land surface variables (Ma, Zhou, Pei, Haynie, & Fan, 2012; Zhang &
Seto, 2011).

2.2. Urban change detection

Early approaches to measure urban expansion with remote sensing
focused on simple band ratios, image thresholding, and image differenc-
ing to discern broad-scale changes at the urban-rural fringe (Howarth &
Boasson, 1983; Jensen & Toll, 1982; Martin & Howarth, 1989), while
more recent developments accommaodate the high spectral variability
of urban areas by exploiting spatial or polarimetric dimensions in satel-
lite datasets (Bhaskaran, Paramananda, & Ramnarayan, 2010; Ghimire,
Rogan, & Miller, 2010; Shaban & Dikshit, 2001; Taubenbdck et al.,
2012). Recent studies have also explored data fusion to combine
multi-resolution optical data (Deng, Wang, Li, & Deng, 2009), or
radar and optical data either during preprocessing (i.e. fusing raw
data, Amarsaikhan et al., 2010) or classification (e.g. combining in-
puts within one algorithm, Corbane, Faure, Baghdadi, Villeneuve, &
Petit, 2008; Griffiths, Hostert, Gruebner, & Van der Linden, 2010).
As these data fusion techniques use high/very high resolution
(VHR) optical data or radar imagery, they have only been applied
at the scale of individual cities or neighborhoods (Bhaskaran et al.,
2010; Pacifici, Chini, & Emery, 2009; Pesaresi, 2000) where obtaining
full coverage is feasible.

Global training data
land cover classes
Forest
Grassland, savanna
Cropland, crop mosaic
Urban land
Barren, snow
Wetland

e Water bodies
Local training data
classes (c, d)

® Urban land

Non-urban land
® Urban expansion

East Asia
study region -

MODIS 500m exemplars:
land cover classes

2.3. Change detection over large areas

New access to Landsat data has generated a boom in their use for
large-area applications (Wulder, Masek, & Cohen, 2012), yet several
barriers to their widespread adoption have yet to be resolved. Data
availability is still hampered by cloud cover (35% on average, Ju & Roy,
2008), gaps from the scan line corrector failure of Landsat 7 (22% per
scene on average, Storey, Scaramuzza, & Schmidt, 2005), and data dis-
continuities in the archives. While some data issues have been resolved
by the unprecedented availability of the Landsat archives, processing
these scenes for large areas remains time- and labor-intensive due to
the small scene footprint (e.g., East Asia is covered by more than 1500
Landsat footprints). The advantages of coarse resolution data for these
applications are therefore clear: comprehensive areal coverage, large
image footprints, routine monitoring, archival depth, and perhaps
most importantly, frequent data acquisition (global coverage every 1-
2 days). Moreover, many methods developed for coarse resolution
data will become increasingly viable for Landsat as technical solutions
to address data quality and availability continue to be advanced.

3. Definitions

An important first step in the methodology is establishing a clear
conceptual framework for defining the urban environment. Representa-
tions of urban areas derived from satellite data are most congruent with
definitions based on the surface properties that they measure (Potere &
Schneider, 2007). Therefore, we define urban areas as locations domi-
nated by constructed surfaces, where dominated implies >50% coverage
of a pixel. Spaces that perform an urban function but are not made up of

L
PRI

MODIS 250m exemplars:
urban vs. non-urban land

MODIS 250m exemplars:
urban vs. urban change

Fig. 3. Global (a) and local views (b-d) of the three training datasets compiled for this research. To classify c. 2010 urban land using the MODIS 500 m data, we rely on a global distribution
of >2000 training sites (Friedl et al., 2010) (a, b). This database was updated and augmented with an additional 400 + training sites drawn from a stratified random sample of 250 locations
in East and Southeast Asia. To create the a priori urban probability surface using MODIS 250 m data, we collected training data on a tile-by-tile basis for urban and non-urban areas (c). We
then adapted (c) to represent stable urban land and urban expansion, 2000-2010 (d), for use in the change detection approach.
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30% Urban probability  100%

C) Final map of c. 2070 urban extent -
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Fig. 4. The data fusion approach used to map ¢ 2010 urban extent for Bangkok, Thailand, illustrating (a) the urban class probability from the MODIS 500 m supervised decision tree
classification; (b) the a priori surface for urban land developed from the MODIS 250 m enhanced vegetation index data; and (c) the final map of urban extent from the fusion of the

(a) and (b) using Bayes' Rule.

constructed surfaces (e.g. parks, golf courses, green spaces) are not con-
sidered urban land. We also define a minimum mapping unit (MMU) of
0.56 km? (3 x 3 250 m pixels) as the smallest contiguous area of built-
up land reliably represented using 250-500 m MODIS inputs. Converse-
ly, areas within urban areas that do not have built-up surfaces are char-
acterized as non-urban land if they exceed the MMU.

The approach to monitor urban change is based on the premise that
any conversion of land to urban cover during the period 2000-2010 will
appear as urban land in 2010. The assumption that urban development

is irreversible is commonly adopted for land change studies (Carrion-
Flores & Irwin, 2004; Schneider, 2012; Seto et al., 2011; Taubenbd6ck
et al,, 2012) and in practice holds true especially at the temporal scale of
interest (e.g. decade). Housing demolition does occur within the study
region, but the result is land modification or redevelopment rather than
land conversion. In this research, only conversion of non-urban to urban
land is considered ‘urban expansion,’” and all areas converted to built-up
surfaces are labeled urban expansion regardless of location within the
urban fabric, at the urban fringe, or in peri-urban or rural areas.
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X Non-urban land

c) Tropical biomes
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04 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Enhanced vegetation index (EVI)
growing season max 2010

Fig. 5. Maximum enhanced vegetation index (EVI) values for the 2009 and 2010 growing seasons for urban and non-urban exemplars in temperate, arid/semi-arid, and tropical biomes,
highlighting the ability of EVI data to discriminate between the two classes. A linear boundary can nearly be fit to the data in temperate zones, and clustering is visible in arid and tropical

zones as well, indicating that EVI is informative in these regions as well.
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Table 3

A comparison of results from the logistic regression models used to estimate an urban/non-urban probability surface with MODIS 250 m enhanced vegetation index (EVI) data. Models
were tested with (a) different explanatory variables, and (b) different methods of training data collection.

Sample size (n)

Number of predictors (X;)

Number of significant predictors o« = 0.05 (x;) Area under ROC curve

a. Predictor variables

1 Growing season, all 8-day observations (2010) 1237 23
2 Growing season maximum (2009) 1237 1
3 Growing season maximum (2010) 1237 1
4 Growing season maximum (2009, 2010) 1237 2
5 Growing season maximum (2001, 2009, 2010) 1237 3
b. Method of training data collection (using model 3)
6 STEP database (Google Earth imagery) 3611 1
7 250 m pixels (MODIS imagery) 1237 1

96.0
94.6
93.5
98.6
97.5

NN = = O

—_

79.7
1 93.5

Abbreviations: Moderate Resolution Imaging Spectroradiometer (MODIS), System for Terrestrial Ecosystem Parameterization (STEP).

4. Data and methods for monitoring urban expansion
4.1. Overview

After defining the study extent, we characterize urban expansion
2000-2010 by: (1) classifying c. 2010 urban land, and (2) locating
areas of change within the c. 2010 urban extent.

4.2. Delineating the study area extent

We constrained the East Asia study region to known locations of
urban land. To do this, we synthesized all contemporary city point
data available (gazetteers, city lists, etc., Table 1) with a c. 2001 map
of urban extent developed using an ensemble decision tree classification
of the spectral and temporal information in one year of 500 m MODIS
observations (Schneider, Friedl, & Potere, 2009). This map has been
shown to have the highest locational accuracy of the available maps
for the region and a zero omission rate of cities globally (Potere et al.,
2009). Circa 2010 point data were then used in all cases possible to en-
sure all cities >100,000 persons - including those that grew from small
settlements to cities > 100,000 from 2000 to 2010 - were included in the
study extent. In cases where the city points did not align with the 2001
MODIS map of urban areas, city point locations were manually checked
against Google Earth data and adjusted as necessary. Contiguous
patches of urban land >1 km? present in the c. 2001 MODIS map that
did not intersect with a city point from any point source were similarly
checked in Google Earth, labeled by place name, and included in the
dataset if the patch was indeed built-up. Finally, urban patches were
categorized into small, medium, and large classes based on their areal

Table 4
Tier one accuracy (urban vs. non-urban land) by country, including user's and producer's
accuracies for the urban class.

Country Tier one accuracy (%) Test sites (#)
Overall Producer's User's Overall,>0.56 km®> Total Urban
patches only
Myanmar 93 100 68 93 95 15
North Korea 93 88 64 92 67 8
South Korea 91 71 81 91 215 41
Laos 90 100 60 95 21 4
Cambodia 89 89 89 88 18 9
Thailand 87 73 58 88 324 51
Japan 86 91 74 87 563 185
Philippines 86 94 62 86 227 48
Indonesia 85 84 66 86 529 132
Singapore 85 89 80 85 20 9
Vietnam 85 77 68 86 209 53
China 83 85 62 83 4034 1042
Taiwan 80 0 80 5 0
Malaysia 79 97 60 78 201 63
Region 84 85 64 85 6528 1660

Note: Cells left blank indicate that there were no urban sites drawn in the sample.

extent and population, and then buffered by 5, 25, and 100 km, respec-
tively, to create the final study extent. The study extent represents 30%
of the total land area in the region.

Previous work has demonstrated that the controls exerted on land
cover and the structure of human settlements by climate, vegetation,
and ecosystem characteristics make biome designations useful for
stratifying data for continental-scale land cover change (Clark, Aide, &
Riner, 2012) and urban applications (Schneider et al., 2009). Using
Olson et al.'s (2001) biome classification, the study region was deli-
neated into nine biomes covering temperate, tropical and arid regions
(Fig. 1b) used for classification, change detection, and accuracy
assessment.

4.3. Remote sensing data

We exploit the spectral and temporal information in two separate
sources of MODIS data: (1) MODIS 500 m multispectral data, and
(2) MODIS 250 m enhanced vegetation index (EVI) data (Table 2).
Specifically, we use MODIS 500 m Nadir BRDF-Adjusted Reflectance
(NBAR) surface reflectance data (Schaaf et al., 2002) for the seven
“land” bands (visible to mid-infrared) for 37 tiles in Asia. NBAR data
are normalized to a nadir-viewing angle to reduce noise resulting
from varying illumination and viewing geometries (Schaaf et al.,
2002), and are produced on a temporally rolling 8-day interval to re-
duce cloud impacts (Roy, Lewis, Schaaf, Devadiga, & Boschetti, 2006).
We rely on EVI rather than the normalized difference vegetation index
(NDVI) due to EVI's higher sensitivity to medium- to high-biomass
vegetation, which allows EVI to provide better vegetation discrimina-
tion in the tropical region of the study area.

In the NBAR data, missing observations frequently occur within/near
cities since bright urban surfaces are often mistakenly removed during
cloud screening (Leinenkugel, Kuenzer, & Dech, 2013) (Fig. 2). Optimal
data were therefore selected for each tile (between 11 and 21 contiguous
8-day observations, Fig. 2e) based on the season with the greatest data
availability for urban areas (see S1 for more details). The 8-day NBAR
observations were then aggregated to 32-day mean value composites to
reduce the temporal correlation and the frequency of missing values
from cloud cover. Feature selection was undertaken manually by testing
different combinations of inputs, metrics, and compositing periods in
several pilot trials based on domain knowledge. The final input features
included the monthly (32-day) minima, maxima, means, and variances
for each band and vegetation indices, as well as annual metrics calculated
using only observations from the cloud-free season for each tile.

At 250 m resolution, we rely solely on EVI data, since vegetation re-
moval has been shown to be an important indicator of urban land con-
version (Schneider, 2012; Stefanov, Ramsey, & Christensen, 2001).
Because unfiltered MODIS 250 m data are noisy and have a large num-
ber of missing observations, we temporally smoothed the data using a
modified asymmetric Gaussian filter within an augmented version of
TIMESAT (Jonsson & Eklundh, 2002), and then fit a curve to the data
that approximates the phenological pattern to fill data gaps (Gao et al.,
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Fig. 6. Enhanced vegetation index (EVI) signatures (growing season maximum for each year 2001-2010, training data mean for each region) depicting differences in trajectories for urban

areas and urban expansion in different biomes.

2008; Tan, Morisette, & Wolfe, 2011). The result is a high-quality dataset
shown to be suitable for both classification and direct assessment of EVI
values (Tan et al., 2011). We selected the MODIS EVI data for the grow-
ing season in each tile, defined for all tiles as the 23 observations span-
ning March through September, and then computed the maximum EVI
from these values for each year, 2001-2010.

4.4, Classification of 2010 urban extent

To classify 2010 urban extent, we rely on an ensemble method
which uses a supervised decision tree as the base algorithm (C4.5,
Quinlan, 1993). Decision trees are capable of accommodating high
intra-class variability, and thus have been widely utilized for large
area mapping of land cover (Friedl et al., 2002; Hansen, Townshend,
Defries, & Carroll, 2005) and urban areas (Schneider et al., 2009). Ten
trees are estimated using boosting, a technique that improves class dis-
crimination by iteratively training classifiers based on different
weightings of the training data. Because a class label is assigned with
each iteration of the boosting algorithm, the ensemble of trees provides
a probability estimate for each class at every pixel (Mclver & Friedl,
2001). Although the least cloudy season was isolated for each tile
(Section 4.2), we used three years of MODIS 500 m data (2009-2011)
for the selected season to ensure at least one quality observation for
each pixel.

The training data for the 500 m MODIS classification included the
System for Terrestrial Ecosystem Parameterization (STEP) database, a
set of >2000 exemplars collected from Google Earth and Landsat data
for 17 classes (Friedl et al., 2002, 2010). This globally comprehensive
database was updated and augmented with >400 sites drawn from a
stratified random sample of 250 locations within East Asia (Fig. 3a, b).
All sites were collected as 0.5-2.0 km? polygons of uniform land cover
interpreted using Google Earth imagery.

The results of the MODIS 500 m classification characterized cities
well (Fig. 4a), but showed confusion between urban classes and
mixed vegetation classes in areas outside cities. To help resolve the
spectral ambiguities among these mixed classes, we employed a
decision-level data fusion technique using the vegetation informa-
tion within the 250 m MODIS EVI temporal profiles to refine the clas-
sification results (Fig. 4). Methods to monitor vegetation dynamics
often employ time-series spectral profiles of vegetation indices
(Bradley et al., 2007; Martinez & Gilabert, 2009; Zhang et al., 2003),
as the frequent data points provide better discrimination of signal
from noise and make it possible to link vegetation phenology to
spectral trajectories (Kennedy, Cohen, & Schroeder, 2007). When

the retrieval of phenological markers is not relevant, temporal
compositing can significantly reduce data volumes and negatively-
biased noise from cloud contamination (Fisher, Mustard, &
Vadeboncoeur, 2006) while still retaining the temporal characteris-
tics related to land cover (Borak, Lambin, & Strahler, 2000; Clark
et al., 2012). Past work has demonstrated that the peak greenness
achieved in urban areas is often distinct from nearby land cover
types (Schneider et al., 2010). However, this separability varies
with climate and biome (Fig. 5). Therefore, we leverage maximum
EVI data by biome to calculate probabilities of urban land. Although
they are weighted similarly to the probabilities derived from the
500 m MODIS data, we treat these as prior probabilities where the
ancillary vegetation information (EVI) provides a local likelihood es-
timate for membership in both the urban and nonurban classes, thus
allowing it to be incorporated into the classification using Bayes'
Rule.

To compute the prior probabilities, we defined a logistic regression
model using the growing season maxima for the smoothed, gap-filled
MODIS EVI data. The model is defined using a binomial distribution
and the expression

ei

P(Ug) = Toe%

(1)

where P(Uyg) is the probability that a pixel is urban, and V; is provided
by a multiple linear regression model. Several trials were conducted to
model the relationship between EVI and urban areas using different
predictor variables (Table 3, models 1-5). Based on the predictive
power of the model, given by the area under the receiver operating
characteristic (ROC) curve, and the hypothesis test of each variable
coefficient (Table 3), the results showed that model 3 outperformed
the others. Thus, we model V; as:

V; = By -+ B,EVI2009; + B,EVI2010; 2)

where EVI2009; and EVI2010; are the maximum EVI observations for
2009 and 2010 for the ith pixel, 8, and 3, are their coefficients, and 3y
is the intercept. We also found that a model trained with pixels from
visual interpretation of the 250 m data outperformed the model trained
with the relatively larger 0.5-2 km? STEP exemplars selected in Google
Earth (Table 3, models 6-7).

We constructed three separate logistic regression models for tem-
perate, tropical and arid regions (the biome groupings are shown in
Fig. 1b). Training data were collected for urban and non-urban sites
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Fig. 7. An illustration of the steps used to characterize urban expansion for the greater
Shanghai, China, region: (a) the final map of c. 2010 urban land is used to mask the area
of interest; (b) a multi-date composite change detection method is used to generate
the probability of urban expansion; and (c) the final map of urban land and urban
expansion, after the urban expansion probabilities have been thresholded based on
visual interpretation of the probability map (b) in Google Earth.

for each model (Fig. 3c) so greater local representation could be
achieved in each region. The regression coefficients were estimated
within MATLAB (2011) for each model using an iterative maximum
likelihood estimation method for 80% of the training data. The remain-
ing 20% of data were used to assess model performance (Table 4). The
Wald test results confirmed that the coefficients for each model were
significant at p < 0.05 and therefore contributed to the regression
(Table S2). The ROC areas were 92, 84, and 76% for temperate, tropical,
and arid biomes, respectively, indicating that these models are suitable
for predicting the presence of urban areas.

In the last step of the c. 2010 urban classification, we adjusted the
prior probabilities from the 250 m MODIS data, P(U;z) by the condition-
al probabilities from the decision trees P(Upy). Following Bayes' Rule, we
estimate the posterior probabilities P(Urban) as:

P(Upr) - P(Upg)

P(Urb = .
) = S~ b U P(Ue) + (1=P(Wpr) - (1=P(Uge))

()

The posterior probabilities are compared to Google Earth VHR imag-
ery to select an appropriate threshold for defining the urban class. These
thresholds were selected at a natural break in the data for each tile or
subset of tile (if the tile covers multiple biomes) based on local charac-
teristics and data quality in each area. In temperate biomes, for example,
a test of the training data indicated that urban pixels tend to achieve a
much higher probability of class membership in the urban class (on
average, 94%) than those in arid or tropical regions (on average 51%
and 35%, respectively). This occurs because temperate regions have
higher quality satellite data, larger amounts of training data, and greater
spectral separability between urban and surrounding land cover types
than in arid or tropical regions (Fig. 5).

Finally, post-processing refinements were made to finalize the urban
extent map. Spurious pixels were removed using a sieve filter, and
water bodies were masked using the MODIS 250 m land-water layer
(Carroll, Townshend, DiMiceli, Noojipady, & Sohlberg, 2009). As is nec-
essary with many remote sensing-derived maps, a final editing step was
conducted by comparing the maps to c. 2010 VHR data in Google Earth
and correcting misclassified pixels (note that approximately 10% of all
urban areas required some manual editing).

4.5. Mapping change areas (2000-2010)

Capitalizing on the assumption that urban land does not become
‘undeveloped’, the 2010 urban extent map was used to spatially con-
strain the change detection process. The change detection method
used ten years of growing season maximum EVI data (2001-2010) as
input to a boosted decision tree algorithm (C4.5) to classify the c.
2010 urban extent as: (1) built-up in 2000; or (2) urbanized during
the 2000-2010 period. The localized training data collected for the logis-
tic regressions (Fig. 3c) were revisited, and all urban sites were labeled
as extant urban land, or newly developed urban land, 2000-2010
(Fig. 3d).

This approach relies on the observed relationship between
EVI and urban areas established previously: any conversion from
agriculture, grassland, forest, etc., to developed land is detectable
through changes in vegetation (Fig. 6). As urban spectral trajectories
and magnitude of change in vegetation signal accompanying urban
expansion varies by the region and between different initial land
cover types (Fig. 6), it was necessary to construct decision trees
and choose breakpoints to threshold the decision tree urban expan-
sion probabilities by subregion (temperate, tropical, arid) in a similar
procedure used for the 2010 urban extent map (Fig. 7). Thresholds
were chosen using a procedure similar to the one used for the 2010
urban extent map.

(2014), http://dx.doi.org/10.1016/j.rse.2014.09.023

Please cite this article as: Mertes, C.M., et al., Detecting change in urban areas at continental scales with MODIS data, Remote Sensing of Environment



http://dx.doi.org/10.1016/j.rse.2014.09.023

10 C.M. Mertes et al. / Remote Sensing of Environment xxx (2014) XxX-Xxx

80 km

Arid/semi-arid
biomes

. Urban land, 2000 . Urban expansion, 2000-2010

Phnom Penh

Ho Chi Minh City

Shanghai

Temperate
biomes

Hangzhou

Kuala Lumpur

Tropical
biomes

Singapore

Fig. 8. Urban land and urban expansion 2000-2010 in East Asia for regions spanning several countries and biomes: (a) China — xeric/shrubland; (b) Cambodia and Vietnam — tropical dry
forest; (b) (c) China — temperate mixed forest; (d) Japan — temperate mixed forest; (e) Indonesia and Singapore — tropical moist forest; (f) Indonesia — tropical moist forest.

4.6. Accuracy assessment

We examine map accuracy using a two-tiered approach. First, we as-
sess the quality of the 2010 urban classification results, followed by an
evaluation of the change detection methodology and urban expansion
map accuracy. The tier one test sites were generated using Geodesic Dis-
crete Global Grids (DGGs) (Sahr, White, & Kimerling, 2003), a class of
equal-area, uniformly distributed hexagonal partitions of the Earth's
surface. To define the sites, we used a DGG with a facet size of
0.132 km? and a stratified random sample design drawn from within
the study extent. While the final maps were produced at 250 m, this

site-based analysis was designed to provide a sampling unit consistent
in size with the training data and the 500 m grid of the coarsest resolu-
tion MODIS data. The sites were assessed in Google Earth against VHR
data (<4 m) in a double-blind assessment procedure by a team of
photo-interpretation analysts, and labeled as urban/non-urban land
(tier one), and urban land/urban expansion 2000-2010 (tier two). In
all cases, a site had to be >50% of a given land cover type to be labeled
as such. A final review of all sites was conducted for quality control
and to assign labels in cases where analysts disagreed.

The second tier assessment was designed to quantify the accuracy
and efficacy of the change detection methodology, as well as evaluate
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Fig. 9. The overall accuracy results by country for the tier one and tier two assessments.

the accuracy of the urban expansion maps. First, samples were selected
in proportion to each country's share of urban land in the region (note
that for countries with <1% of urban land, we used a minimum of 20
sites). Second, we sampled across biomes, selecting sites in proportion
to the distribution of urban land across the nine biomes (Olson et al.,
2001). Once the sample distribution was established (Table S3), we se-
lected sites at random from within a tightly buffered region of the city
points using the 250 m MODIS raster grid to ensure that the sample in-
cluded urban expansion sites. Following the tier one procedure, each
site was assessed in Google Earth and assigned one of three labels:
urban land, urban expansion, or non-urban land.

5. Results
5.1. Regional and local views

We present the change detection results in Fig. 8 for a subset of met-
ropolitan areas. Visually, these views are in accordance with ground-
based evidence and spatial datasets produced at different time points
and/or scales. They also indicate that the methods capture new urban
development that is contiguous with the urban core across a range of
city sizes, as well as patchy growth in peri-urban areas far from the
city edge. While the objective of these mapping efforts was to capture
all cities >100,000 persons, small cities and villages were also mapped
in many areas where the size/composition of the settlements made
them spectrally and temporally distinct (e.g., outside Beijing, Fig. 8).
The lack of available data on urban expansion at comparable scales
limits our ability to cross-examine the map trends, but also underscores
an important result: up-to-date, consistent, and spatially-explicit infor-
mation on the extent and growth of cities is now available for the rapid-
ly evolving region of East-Southeast Asia.

5.2. Tier one accuracy assessment

The overall accuracy of the 2010 map of urban extent (tier one) is
84% (kappa = 0.62), and is fairly consistent across countries (ranging
from 79 to 93%, Fig. 9) and biomes (83-100%, Fig. 10). The accuracy
was not significantly affected by the inclusion of small patches of
urban land (Table 4); overall accuracy drops only 1-2% if these areas

are included. Producer's accuracy for the urban class is high for the
region (85%), indicating that urban areas are well captured, with few er-
rors of omission (Tables 4, 5). At 64%, the user's accuracy for the region
is reasonable, but suggests that map errors are predominantly the result
of commission errors where non-urban areas area mislabeled as urban
land. As a result, the total urban land area may be overestimated in
some locations, particularly Thailand, Malaysia, and Laos, where user's
accuracies are <61%.

5.3. Tier two accuracy assessment

The overall accuracy for the urban expansion maps is 75% (kappa =
0.36), slightly lower than the overall c. 2010 accuracy. Similar to the
2010 map, the accuracy measures are representative of urban areas as
defined in Section 3.1, with little difference in overall accuracy after
small settlements are removed (Table 6). More developed countries
(e.g. Japan, Taiwan, South Korea, etc.) generally have higher accuracies
(>80%) than other locations likely because of low growth rates in
these highly urbanized countries. Overall accuracy rates are higher in
temperate and forest biomes than in arid/semi-arid biomes, as are
producer's accuracies (9 to 25% above average for forest/temperate, 11
to 21% below average for arid/semi-arid biomes) (Table 7). This result
is related to the spectral and temporal signatures of the EVI data used
for change detection, since peak EVI in arid regions may be quite similar
before and after change (i.e. land outside the city that is spectrally bright
and sparsely vegetated is converted to spectrally bright urban land).

5.4. Sources of uncertainty and error in the maps

As expected, the tier two accuracy measures are slightly lower than
those for tier one, a result that is to be expected: the errors of the 2010
urban classification propagate through to the urban expansion maps,
thus lowering the overall achievable accuracy from the start. To evaluate
the methodology and the structure of possible map errors in a more
targeted manner, we assessed the source of uncertainty for each
misclassified site in the tier two results (n = 513). Each site was
reevaluated in Google Earth to determine the likely source of error,
and labeled accordingly (Table 8, Fig. 11).

The distribution of errors clearly shows the sensitivity of the tier two
assessment to the classification results: 43% of errors are due to clas-
sification errors from the initial map of c. 2010 urban land (issue 1,
Table 8). While obtaining a perfect classification of 2010 urban land is
unrealistic, we can hypothesize that an error-free map of urban land
might improve the change detection results. After removing sites
mislabeled as non-urban land from the tier two sample, accuracies
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Fig. 10. The overall accuracy results for the tier one and tier two assessments by biome.

(2014), http://dx.doi.org/10.1016/j.rse.2014.09.023

Please cite this article as: Mertes, C.M,, et al., Detecting change in urban areas at continental scales with MODIS data, Remote Sensing of Environment



http://dx.doi.org/10.1016/j.rse.2014.09.023

12 C.M. Mertes et al. / Remote Sensing of Environment xxx (2014) XxXx-Xxx

Table 5

Tier one accuracy (urban vs. non-urban land) by biome, including user's and producer's accuracies for the urban class.

Biome Tier one accuracy (%) Test sites (#)
Overall Producer's User's Overall, >0.56 km? patches only Total Urban

Temperate conifer 100 100 100 100 16 2
Tropical conifer 100 100 100 100 6 3
Mangrove 90 91 72 89 97 22
Temperate grass 89 87 70 89 135 30
Flooded grassland 89 92 69 92 53 12
Montane grassland 87 92 57 86 76 13
Xeric shrubland 86 83 74 85 81 24
Tropical moist 85 89 61 85 2390 534
Tropical dry 85 65 67 85 221 54
Temperate mixed 83 84 65 84 3453 965
Region 84 85 64 85 6528 1659

increase 5-15% depending on location, indicating that the change detec-
tion method is likely more effective than the overall accuracy results
indicate.

Twenty percent of errors appear to be commission error in the urban
expansion class, in locations where urban areas are redeveloped or
infilled (issue 2, Table 8). As some large cities expand, they consume
small villages and built-up areas by clearing old buildings and replacing
them with new, spectrally-bright development (Fig. 11d). Likewise, in
urbanized areas that are undergoing densification, the spectral response
may increase dramatically with new construction. Because our defini-
tion of urban land included any built-up areas or settlements, these
sites are technically ‘urban’ in 2000, and remain urban land in 2010.
The spectral difference is often large, however, and the change detection
approach characterizes these areas as urban expansion accordingly.

An additional 19% of the tier two errors are change detection errors
where urban land is mislabeled urban expansion or vice versa, without
an obvious indication as to the source of spectral or temporal confusion
(issue 3, Fig. 11d). Within this class of errors, the confusion between
urban land and urban expansion occurs at a similar frequency, suggest-
ing that there is no bias toward either over- or under-estimating change
in the method itself. This error is likely related to the change detection
algorithm.

Most of the remaining error (14%) can be traced to the density
threshold used to define urban land (issue 4, Table 8). In these cases,
the area has some built-up areas c. 2000, but does not meet the >50%
threshold to be considered urban land. By 2010, the area fills in, and

Table 6
Tier two accuracy (urban vs. urban expansion) by country, including user's and producer's
accuracies for the urban expansion class.

Country Tier two accuracy (%) Test sites (#)
Overall Producer's User's Overall,>0.56 km®> Total Expansion
patches only

Japan 91 100 17 91 243 5
North 90 0 89 20 0
Korea

Taiwan 86 71 50 86 28 3
Mongolia 85 0 85 20 0
South 82 71 59 85 40 10
Korea

Laos 80 75 86 84 20 7
Singapore 80 75 86 79 20 2
Indonesia 79 36 36 81 148 11
Malaysia 79 8 100 79 67 1
Philippines 78 100 33 78 36 5
Cambodia 75 71 71 75 20 7
Myanmar 75 33 50 79 20 2
Thailand 74 33 20 74 39 5
China 71 64 51 72 1324 166
Vietnam 70 53 80 77 43 15
Region 75 61 50 77 2086 419

Note: Cells left blank indicate that there were no expansion sites drawn in the sample.

these areas are then correctly classified as urban land in 2010. A misclas-
sification at the c. 2000 time point leads to a final label of stable urban
land when these areas should be labeled urban expansion (Fig. 11b).

6. Discussion and conclusions

Urban expansion remains one of the trickiest and most difficult of
land cover types to capture with remote sensing data: both urban land
and change areas are rare, and urban spectral classes are neither distinct
nor homogeneous, making them difficult to isolate using automated ap-
proaches. Therefore, one of the underlying goals of this research was to
show how to reduce urban change detection into a manageable prob-
lem by restricting the classification areas to those where they will
potentially occur. Our methodology leverages information on the loca-
tion and nature of urban areas and urban expansion using multiple
sources of moderate resolution remotely sensed data and several ancil-
lary data sources. We tested the approach for a large and diverse region
where urban expansion is often uncoordinated and patchy, and conse-
quently, where urban maps are most challenging to produce, yet most
needed. The results reveal several insights for monitoring urban change
that are relevant to future studies:

6.1. Data fusion helps yield high map accuracy in complex urban landscapes

While the amounts and quality of remote sensing data are unprece-
dented, there is still no one ‘perfect’ data source for the difficult task of
mapping urban expansion. We will continue to face limitations in
areal coverage and spatial detail, as well as missing data due to cloud
cover. Since missing or noisy observations have been shown to signifi-
cantly impact map accuracy even when advanced data mining algo-
rithms are employed (Rogan et al., 2008; Schneider, 2012), merging
data sources and/or products is an important way to overcome these
data availability issues.

This work has also shown that combining multiple data sources/
products is advantageous given the heterogeneity of urban land and
urban growth. Depending on the built-up density, building materials,
and amounts/types of vegetative cover, urban areas may resemble
other land cover classes more so than they resemble one another
(Schneider, 2012; Small, 2006). Our results show that urban areas re-
semble bare areas in EVI data, while confusion in broadband multi-
spectral data is often between urban areas and other mixed classes. By
treating these as complimentary datasets and fusing information
derived from both, many errors are offset and higher classification
accuracy is achieved.

6.2. Vegetation profiles can reveal urban expansion
Time series data, especially those based on vegetation indices like

EVI, have proven fundamental for distinguishing land surface character-
istics and monitoring vegetation dynamics in forested or agricultural

(2014), http://dx.doi.org/10.1016/j.rse.2014.09.023

Please cite this article as: Mertes, C.M.,, et al., Detecting change in urban areas at continental scales with MODIS data, Remote Sensing of Environment



http://dx.doi.org/10.1016/j.rse.2014.09.023

C.M. Mertes et al. / Remote Sensing of Environment xxx (2014) XXxX-Xxx 13

Table 7

Tier two accuracy (urban vs. urban expansion) by biome, including user's and producer's accuracies for the urban expansion class.

Biome Tier two accuracy (%) Test sites (#)
Overall Producer's User's Overall, >0.56 km? patches only Total Expansion

Mangrove 89 72 91 71 18 2
Temperate conifer 80 86 75 80 25 8
Temperate grassland 78 43 33 82 82 9
Tropical moist 76 46 45 77 654 99
Temperate mixed 75 70 51 76 1192 273
Xeric shrubland 74 40 67 78 19 3
Flooded grassland 73 50 100 73 15 1
Montane grassland 73 50 64 75 45 11
Tropical dry 69 73 62 78 36 13
Region 75 61 50 77 2086 419

landscapes (Alcantara et al.,, 2013; Martinez & Gilabert, 2009;
Rahman, Dragoni, Didan, Barreto-Munoz, & Hutabarat, 2013; Zhu,
Woodcock, & Olofsson, 2012). The temporal dynamics of EVI are
related to variability (e.g. seasonal variation, gradual fluctuation) as
well as land cover change (Verbesselt, Hyndman, Newnham, &
Culvenor, 2010). We capitalize on both of these frequency compo-
nents to classify urban land and detect change within urban areas.
First, urban areas and other land cover types are often separable if
information from multiple seasons is used, since built up lands are
predominantly non-vegetated year round while nearby fields or
open areas will likely have at least one vegetated season per year.
Second, the change information from the longer time series is critical
to detect land conversion once urban areas are delineated. Because
urban expansion is unidirectional, the use of images from multiple
years actually helps confirm whether an area has been developed
or whether the drop in the vegetation signal is related to other yearly
variability (e.g. crop rotations).

The efficacy and efficiency of EVI temporal information for change
detection also highlights the continued utility of MODIS data for urban
mapping. Although some urban applications may require greater spatial
detail than MODIS provides, the temporal frequency of MODIS is unpar-
alleled, allowing a large number of seasonal and yearly observations
that help overcome class confusion due to spectral similarity as well
as missing data due to clouds. Indeed, our work provides evidence
that it may be possible to pinpoint the timing of change (see Fig. 6). Pro-
cedures similar to those used in forest change studies could be adapted
for urban environments: given sufficient observations for each year of
the study period, a curve-fitting algorithm may be used to isolate a
sustained drop in EVI over a moving window of observations (Bradley

Table 8

etal., 2007; Verbesselt et al., 2010). The problem in our study area, how-
ever, is that more than half of the region is missing yearly information.
While the multitemporal composite method is highly suited to
detect urban change, this analysis also reveals biases that should be con-
sidered. First, this method relies on vegetation as an indicator of change,
so the technique is limited in some arid regions. Although cities in arid
and semi-arid locations are often surrounded by irrigated agriculture,
allowing for changes in EVI to be observed, there are locations where
bare ground outside the city is converted to built-up land. These chang-
es are difficult to detect using EVI, unless the conversion is accompanied
by a sufficient vegetation increase (e.g. street trees, garden plots).
For similar reasons, there is an inherent bias toward new, spectrally-
bright development; our approach is limited in areas where natural
roofing or building materials (e.g. thatched houses) have EVI signals
similar to nearby vegetation. In developing our methodology, we were
able to overcome both of these biases by tailoring our approach to the
biome or location at hand. This allows greater freedom with the meth-
od, but also leads to increased user input and greater subjectivity,
which may in turn, restrict the utility of the method for some users.
However, the range of metrics that can be estimated from time series
imagery is vast, and many features have not yet been explored for
urban areas (e.g. differences in foliage water content that might be cap-
tured by the normalized difference infrared index (NDII), Gao, 1996).

6.3. Ancillary information can help simplify the problem
Urban areas account for just 1-2% of total global land area, and urban

expansion within/near these areas occurs infrequently. While the exact
patterns and extents of urban areas are not well-known globally, their

The potential sources of error in the misclassified test sites of the tier two accuracy assessment.

Issue Occurrence (%) Description, examples Ground truth label Map label No. test sites
2000 » 2010* 2000 » 2010*
1 Classification error 43 Urban commission error where non-urban land is labeled urban  Non-urban » Non-urban Urban » urban 218

land in 2010. Confusion between land without built surfaces
(e.g. confusion between urban areas and extraction activities,
riparian areas, bare soil, agriculture, etc.) (a) or with

low density (<50%) surfaces may occur (b).

2 Redevelopment and/ 20
or increasing built-up
density

New development occurs in existent urban area, e.g.
settlement is cleared and rebuilt (a), or there is an increase in
buildings/impervious cover (b), leading to change in

Urban » Urban Non-urban » urban 105

spectral brightness. No change in label occurs.

3 Change detection error 19

Urban land and urban expansion are confused by classifier.

Urban » Urban Non-urban » urban 57

Non-urban » Urban Urban » urban 41
4 Low density urban 14 Area has some built-up areas c. 2000, but does not Non-urban » Urban Urban » urban 71
meet the >50% threshold to be considered urban.
Because the area increases to >50% built-up
density by 2010, it results in change omission.
5 Other 5 Other factor was cited, such as uncertainty in 21

photo-interpretation or limited reference imagery.

¢ The labels in the table correspond to the class structure as follows: non-urban land includes all non-urban — non-urban areas: stable urban land includes all urban — urban areas; and

urban expansion 2000-2010 includes non-urban — urban areas.
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Fig. 11. A sample of the types of issues associated with mislabeled sites in the tier two accuracy assessment of urban land and urban expansion (see x1 for a full description and the
frequency of occurrence). The locations of the sites from top to bottom are: Dashiqiao, China; Ibaraki, Japan; Langfang, China; Fuzhou, China; Luoyang, China; Yining City, China.
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central locations are captured in a variety of public/private databases,
including point datasets, city lists, and even online mapping engines.
We have shown that the use of very liberal buffers (up to 100 km) ap-
plied to a synthesis of these ancillary datasets (Table 1) eliminated
70% of the land extent from the image processing stream. Basing the
change detection methodology on the same premise of constraining
the area for classification, we were able to work ‘backwards’ from
2010 to map expansion for the 2000-2010 period. In addition, free,
highly-detailed Google Earth imagery was harnessed at nearly every
step, from training collection to validation. Our approach allowed
these data to be exploited without using them explicitly during image
processing, thereby limiting the propagation of errors into the final
results and extending the capabilities of free data.

6.4. Steps toward routine monitoring

The demand for maps that depict rates, patterns, and amounts of
urban land expansion at regional and continental scales is high and
growing, and as a result, smart, efficient ways to characterize change
using new and existing data sources will be necessary. Our results sug-
gest that classification of urban land remains a labor-intensive, location-
based exercise, but methods to detect urban change are moving closer
to routine monitoring if vegetation trajectories and multiple data
sources are exploited. Moreover, the method to map urban expansion
shown here is particularly relevant given the new c. 2010 global urban
maps (none of which depict change) that will become available in
2014-2015 (see proof-of-concept papers from Esch et al., 2013;
Gamba & Lisini, 2013; Pesaresi et al., 2013). These spatially-detailed,
highly accurate c. 2010 urban extent maps will help improve the meth-
odology by providing a better, more accurate way to constrain the study
extent. The majority of the error in our change detection results was at-
tributable to errors in the c. 2010 map we developed, so improvements
in this map means higher change detection accuracy can be achieved.

Finally, the emerging digital landscape is providing vast new data
sources on urban processes that could be incorporated into mapping
methodologies. Data from location-based social networks (e.g. Four-
square) or geo-located internet/social media posts (e.g. Twitter, Face-
book, FlickR) are increasingly being exploited to monitor and map
disease outbreaks (Signorini, Segre, & Polgreen, 2011) and natural di-
sasters (Gao, Barbier, & Goolsby, 2011; Yates & Paquette, 2011). While
the quality and reliability of crowd-sourced and volunteered geographic
information must be considered, these datasets provide opportunities
for innovation in using humans as sensors.

In sum, global mapping efforts are important because consistent
methodologies and definitions facilitate broad scale and comparative
analysis, but a ‘one size fits all’ approach will not provide the best results
everywhere. In covering large and diverse regions, specific datasets will
be more informative in some regions and less so in others. Likewise, dif-
ferent subsets of data are regionally appropriate. For this work, we pro-
cess data by subregions according to their cloud cover seasonality and
ecoclimatic characteristics. By accommodating regional differences but
maintaining consistent definitions, data sources, and methods, this
work has provided an up-to-date dataset suitable for both broad-scale
and comparative analysis, as well as a framework that can be extended
to map urban expansion globally.
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