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The main motivation of this paper is to shed new light on the problem of spatial identification of urban and rural
areas globally, and to provide a compatible disaggregation framework for linking associated country-specific,
non-spatial data compilations, such as building type inventories. Existing homogeneously set-up global urban ex-
tent models commonly ignore local-level specifics. While global consistency and regional comparability of urban
characteristics are much strived-for goals in the global development and remote sensing communities, non-con-
formity at the national level often renders such models inapplicable for effective decision-making. Furthermore,
the focus on identifying ‘urban’ leads to an ill-defined ‘rural’, which is simply defined by contrast as ‘everything
else’; a questionable definition when referring to strongly spatially localized residential patterns. In this paper we
introduce the novel iURBAN geospatial modeling approach, identifying Urban-Rural patterns in Built-up-Adjust-
ed and Nationally-adaptive manner. The model operates at global scale, but at the same time conforms to country
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Global s;ale ) specifics. In this model, high-resolution, satellite-derived, built-up data is used to consistently detect global
EZOSPf‘Uﬂl modeling human settlements at unprecedented spatial detail. In combination with global gridded population data, and
aptive

with reference to national level statistical information on urban population ratios globally compiled in the annu-
ally-released UN World Urbanization Prospects, iURBAN identifies matching urban extents. Additionally, a novel
reallocation algorithm is introduced which addresses the poor representation of rural areas that is inherent in
existing global population grids. Associating all of the population with inhabitable, built-up area and conforming
to national urban-rural ratios, iURBAN sets a new standard by enabling careful consideration of both urban and
rural as opposed to traditional urban-biased approaches.
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their own situational circumstances and internal needs. The United
Nation's biannually-released World Urbanization Prospects (WUP), in
its latest edition (UN-DESA, 2015), compiles national definitions of
urban as defined by >230 countries in statistical terms. More than half
of these use a variety of minimum population size and density thresh-

1. Introduction
1.1. Defining urban

What is urban? This is a seemingly simple question for which there

is, however, no simple answer. When analyzing different geographical
regions urban characteristics materialize very differently in different
parts of the world. Looking at urban and rural as a holistic concept,
that concept clearly addresses the human environment. Both urban
and rural fundamentally refer to certain geographical areas which
are shaped by human activities; in this context, urban points to
nonagricultural tasks (Weeks, 2010) and focuses strongly on the built
environment.

Although people at a local level usually find it entirely self-evident as
to whether the place in which they live is considered urban or rural,
there is no international agreement of how urban areas are defined. In
defining urban spaces, national governments first aim at best matching
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olds to identify areas as urban. Further criteria utilized refer to social,
economic, and functional characteristics and services, such as water
supply, the sewerage system, and access to electricity (Aubrecht et al.,
2014). In line with the WUP, the World Bank's World Development
Indicators (WDI) database annually reports the urban proportion of
population at the national level for every country. These global data
compilations providing aggregated urban statistics are widely referred
to for illustrating global trends. One of the most popular conclusions re-
ferring to those statistics points at the year 2008, when for the first time
in history the 50% urban population milestone was crossed according to
WUP. That means the majority of the human population are now living
in what is considered urban environments. The latest numbers pub-
lished in WUP-2014 indicate a 54% current global urban ratio, with a
projected increase to 66% by 2050 (UN-DESA, 2015). The virtual cross-
ing of the 50% milestone in 2008 has prominently been proclaimed
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the start of the ‘urban age’ (Katz et al., 2006; Kreibich, 2010), or the ‘rise
of homo urbanis’ (Saunders, 2010). While such constructed milestones
compellingly attract public and political attention, it must always be
kept in mind that in fact incomparable and often incompatible defini-
tions of urban are used for those types of aggregated statistics. The
‘urban age’ thesis has even been referred to as a “flawed basis on
which to conceptualize world urbanization patterns, an empirically un-
tenable statistical artifact and a theoretically incoherent chaotic concep-
tion” (Brenner and Schmid, 2014).

Human activities and population obviously play a central role in
characterizing urban areas, and all these activities happen at certain
identifiable locations. Weeks (2011) defined urban as “a characteristic
of a place, rather than of people”. A spatial approach to identifying and
describing urban can therefore be considered indispensable. With re-
spect to spatial parameters for urban extent identification, basic admin-
istrative criteria are still prominently used by >50% of the WUP-listed
countries in making the distinction between urban and rural; for
approximately 30%, it is even the sole criteria (UN-DESA, 2015).
Attempting to circumvent the locally-biased and heterogeneous nature
of administrative boundaries, urban researchers and the international
development community have been active in trying to find a globally
homogeneous and commonly accepted definition of urban by using
spatially-explicit criteria independent of administrative parameters
(see Potere et al., 2009; Gamba and Herold, 2009 for a comparative
overview). Global consistency, and regional as well as international
comparability, are major goals in better understanding and addressing
cross-boundary urbanization issues, and enabling corresponding global
policy development. The main challenge therefore is the different un-
derstanding of ‘urban’ in different parts of the world. Current global ap-
proaches to a homogeneous definition of urban extents mostly ignore
local specifics for the sake of methodological consistency.

1.2. Spatial delineation of urban areas

There are several approaches described in the literature, addressing
spatial delineation of urban areas from different perspectives and using
different kinds of input data. It is essential to give a detailed overview of
these approaches at the beginning to highlight methodological gaps and
thereby illustrate the need for the novel model approach introduced in
this paper.

Remote sensing data and derived products have played an impor-
tant role in guaranteeing global methodological consistency from a
data acquisition perspective. Satellite technology applied to observation
of the Earth surface enables the detection of basic physical parameters
of reflectance or emission. These physical parameters consequently
need to be transformed into meaningful information about objects on
the ground. In the identification of the distribution patterns of human
activity, two features have been most prominently referred to; one
being artificial light at night, and the other being built-up area.

Satellite-observed nighttime lights data was first identified as a po-
tential proxy measure for human activity in the early 1970s (Croft,
1973), when this ‘hidden’ source of information was discovered in im-
agery from the Operational Linescan System (OLS) onboard the Defense
Meteorological Satellite Program (DMSP). The DMSP platform was ini-
tially designed to monitor cloud cover and cloud temperatures, but
due to its unique capability to detect low visible light levels, it was
found that the sensor also records light at night from artificial and an-
thropogenic sources such as human settlements, gas flares, and various
combustion sources. In those early studies by Croft, it was already stated
that “inhabited areas are clearly outlined” (Croft, 1973). Subsequent re-
search then found strong correlation between the illuminated areas and
census population distribution data (Welch, 1980). However, it was not
until the late 1990s that nightlights data from the (by then) digital
DMSP-OLS archive was first used to specifically delineate urban areas
in spatially-explicit form (Imhoff et al., 1997). That study investigated
applying uniform thresholds to data on cumulative percentage of light

occurrence in a multi-month OLS composite product for the continental
United States, to convert lights into ‘urban cover’. Different thresholds
empirically derived to extract urban extents of different metropolitan
areas were averaged to come up with one country-wide value (89% cu-
mulative percentage of light occurrence), and overall good agreement
was found at the national level compared to urban metrics reported in
census data. At the state level, however, large variations of mismatch
were observed (i.e. false positives of wrongly identified urban areas
and false negatives of unidentified urban areas), questioning its applica-
bility at coarser spatial scales. Further studies over the years tested
thresholding stable nighttime lights data for urban delineation at the
global scale, identifying different thresholds in different geographical
settings. The main conclusion was that there is no single threshold ap-
plicable for different countries, or even for different cities within one
country (Henderson et al., 2003; Small et al., 2005; Sutton et al.,
2010). Despite these findings of methodological inapplicability at re-
gional scale, nighttime lights data have been heavily used as proxy mea-
sures for urban areas. Early studies include the GLC 2000 Database
(Global Land Cover) (Bartholome et al., 2002) as well as the Global
Rural-urban Mapping Project (GRUMP) that uses primarily DMSP-
OLS-derived urban extents in combination with ancillary data, such as
populated places from the Digital Chart of the World (DCW) for refined
population disaggregation purposes (Balk et al., 2005).

Artificial surface or built-up area is an obvious alternative proxy fea-
ture in the delineation of urban areas. Following up on the early global
modeling efforts of GLC 2000, more recent global land cover products,
such as the European Space Agency's GlobCover (Arino et al., 2007)
and CCI Land Cover (Bontemps et al., 2015), analyze artificial surface
area in optical medium resolution data (e.g. 300 m ENVISAT-MERIS sat-
ellite imagery) as an alternative to night lights for the classification of
associated urban areas. Other notable efforts of global built-up area
mapping include Boston University's (BU)-MODIS approach, based pri-
marily on 1 km MODIS data from NASA's Terra/Aqua satellites
(Schneider et al., 2003). Due to spectral similarities between built-up
and bare soil at the 1 km level, ancillary data sources had to be used to
define urban, including DMSP nightlights and population density from
the Gridded Population of the World (GPW) product. Subsequent ef-
forts using higher-resolution (500 m) MODIS data as exclusive data
source for urban extent delineation resulted in an urban mask dataset
(Schneider et al., 2010), that has widely been considered the most de-
tailed available option, and which thus became the global standard for
the scientific modeling community. Most recent developments have
further refined the scale of analysis in terms of spatial resolution, for ex-
ample using MODIS-250 m data (Mertes et al., 2015). At another order
of magnitude higher spatial resolution, the Chinese GLC-30 mapping
project resulted in a global 30 m product, extracted from Landsat imag-
ery (Chen et al., 2015).

With the earlier BU-MODIS efforts already hinting at the potential
value of joint use of built-up and population density measures for re-
fined urban area identification, gridded population density data has
since become a much-used, additional input data source. In particular,
the regularly updated LandScan data set has been widely implemented
in multiple application contexts since its first release that illustrated
global population distribution patterns for the year 1998 (Dobson et
al., 2000). While there have been various attempts to use gridded pop-
ulation density data as sole input for areal identification of urban pat-
terns (Gallego, 2004; Dijkstra and Poelman, 2014; Christenson et al.,
2014a), other studies integrate population with land cover and specific
built-up parameters. The global Geopolis database, for example, defines
urban agglomerations based on satellite-derived contiguous built-up
areas containing a population of >10,000 people (Moriconi-Ebrard et
al., 2008). This is one of the first approaches where built-up contiguity
is explicitly mentioned as a defining factor. In that study, population
numbers are derived from sub-national local administrative census
units. Contiguity is also accounted for as a parameter of urban-ness in
a joint effort of European Commission (EC) and OECD (Dijkstra and
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Poelman, 2014) where gridded population is clustered (in terms of
high-density cells), as opposed to identifying contiguous built-up area.
A cutoff-point of 5000 people is thereby defined as the threshold for
urban clusters in developed countries (Europe, United States, Canada,
Japan). Christenson et al. (2014b) perform a similar analysis for a case
study in Africa (Nigeria), although their study applies a much higher
threshold (20,000 people), being subject to the respective national sta-
tistical definition. Focusing on the spatial extraction of the urban share
of a country's total population, various integrations have been proposed
for extracting LandScan population numbers from spatially pre-defined
urban areas, as identified via nighttime lights (Salvatore et al., 2005),
MODIS-500 (de Bono and Mora, 2014), the more recently released
built-up reference layer (BUREF) (de Bono and Chatenoux, 2014), or fu-
sion of several of those (Kasimu and Tateishi, 2008).

A limited number of studies have attempted to include further pa-
rameters for wide-scale urban identification modeling, in particular fo-
cusing on dynamic aspects as opposed to the commonly-used static
residential patterns and physical attributes. In an attempt to conceptu-
ally extend the above-cited EC-OECD approach, commuting information
was integrated as an additional factor, resulting in a notion of functional
urban areas (OECD, 2012). Travel time was also one major input vari-
able in the setup of the World Bank's so-called agglomeration index,
proposing an alternative measure of urban concentration (Uchida and
Nelson, 2008). Furthermore, another study presented the extraction of
urban footprints by applying population density thresholds to a dynam-
ic population distribution grid for the United States that accounted for
daytime work fluctuations (Burian et al., 2006).

Using one globally uniform definition of urban has its benefits, espe-
cially in terms of efficiency, transparency, and comparability across re-
gions. However, as outlined above, basic socio-economic and urban
composition vary significantly from region to region, in particular be-
tween the developed and the developing world. It has therefore been
largely concluded that applying fixed thresholds at the global scale, be
it to nightlights, built-up, or population distribution data, is not appro-
priate if applicability at national and local level needs to be ensured.
Criticism on the ‘urban age thesis’ and on taking the United Nations'
compiled urban statistics as a given without questioning their composi-
tion is entirely justified, legitimate, and understandable, when ap-
proaching from a global perspective. Nonetheless, at the national level,
the respective individual national definitions are likely to represent
the urban character of a country better than a globally imposed stan-
dard. Salvatore et al. (2005) highlight that whether to use nationally-
defined statistical figures on urban-rural population counts or uniform
globally-modeled approximations depends on the objectives of a specif-
ic research application. That study was the first in trying to combine
global spatial and national statistical approaches by experimenting on
iterative thresholding of nighttime lights intensity data to reach compli-
ancy with national WUP-released figures. It was concluded that the ap-
proach seemed too simplistic, with the resulting urban mask being very
fragmented. More recent research (Christenson et al., 2014a) builds
upon that initial concept, replacing nightlights as spatial basis with
LandScan population distribution data.

Residential population is directly associated with settlement struc-
tures. Built-up area approximating building structures has therefore
proven to be the main spatial linking variable. Novel global high-resolu-
tion built-up data, such as the German Aerospace Center (DLR)’s Global
Urban Footprint (GUF) (Esch et al.,, 2012), or the Global Human Settle-
ment Layer (GHSL) (Pesaresi et al., 2013) of the European Commission's
Joint Research Centre (JRC), enable for the first time a globally-consis-
tent look not only at urban agglomerations, but also at the flipside of
urban. The identification of previously undetected small settlements in
rural regions thus allows a conceptual refinement of the urban-rural
spectrum, and a move from a binary ‘urban vs. rural’ to a more spatial-
ly-explicit ‘urban and rural’. Spatial identification of settlements is, how-
ever, only one step towards urban-rural pattern characterization.
Population figures need to be associated with those settlements for

further considerations (see for example, Freire et al., 2015). Notably,
existing global population grids are not designed or calibrated for the
analysis of rural settlements. The evaluation of sub-national figures on
urban-rural proportions and cross-validation with existing population
grids’ spatial allocation within pre-identified built-up area, reveals a
clear and statistically significant correlation of the degree of urban-
ness of a certain region and how many people existing global distribu-
tion models allocate to built-up area in the disaggregation process
(see Section 2.2 for further detail on the related population-urban-
built-up regression model). The identified strong linear correlation
leads to the conclusion that while existing global population grids cap-
ture urban population well within built-up area, rural population pat-
terns are unreliable and vague in terms of their explicit spatial
distribution. More precisely, total population numbers add up correctly
at the administrative base unit level used as disaggregation input, but
population is dispersed widely outside of built-up area in rural regions.
The main reason is that for the set-up of current population distribution
models the type of high-resolution settlement information described
above has not been available at the global scale as disaggregation
input. Current standards, such as the earlier-outlined urban extents de-
rived from MODIS-500 or DMSP nighttime lights, operate at an order of
magnitude different scale levels, and are thus much less sensitive to de-
tection of smaller built-up areas.

1.3. Introducing the iURBAN model

In this paper, we present a novel geospatial modeling approach -
iURBAN - identifying Urban-Rural patterns in Built-up-Adjusted
and Nationally-adaptive manner. The model has been developed
under the framework of the World Bank's Country Disaster Risk Profiles
(CDRP) project implemented in Central America and the Caribbean
(Gunasekera et al,, 2015) under the Latin America and Caribbean Region
Probabilistic Risk Assessment (CAPRA) Program. In that context, iURBAN
provides the geospatial basis for the building stock exposure model
which is consequently integrated with hazard and vulnerability mod-
ules for probabilistic risk and loss assessment. In several aspects, the
model is novel in design and provides a refined perspective on the def-
initions and implementations outlined above. The most recent high res-
olution GUF built-up area product, as derived from the TanDEM-X radar
mission (Esch etal.,, 2012), has been provided for the CDRP project prior
to public release, in an internal collaboration agreement with DLR. In a
first step, GUF serves as spatial basis to accurately delimit human settle-
ments from uninhabited land. For classification of those detected settle-
ments in urban and rural, GUF built-up contiguity and built-up density
are used as contributing variables aside from LandScan population dis-
tribution. In a composite index approach, the degree of urban-ness
is defined for each contiguous built-up patch. Patches are then
ranked and iteratively added up until the patch-inherent population
numbers match the national urban share, as provided in WUP. In
order to address the weakness of current global population grids in ac-
curately representing rural distribution patterns, the rural population is
reallocated to settlements identified as rural in a counter-weighted, spa-
tial disaggregation approach. The final iURBAN output is consequently
fully compliant with WUP, not only with regard to its urban ratio, but
also in its identification and allocation of rural population to actual
inhabited land.

2. Materials and methods
2.1. Data

The Global Urban Footprint (GUF) product is used as built-up data.
DLR provided a preliminary binary mask at 75 m resolution for CDRP
implementation. GUF is derived from TanDEM-X Radar imagery,
which implies significant advantage with regard to distinguishing
built structures from flat terrain, compared to optical satellite imagery.
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LandScan (v2012) is used as population data. Compared to other
existing global population grids, LandScan has a strong focus on urban
areas that shows in clear peak density patterns. Annual urban ratios
and national population counts and projections are taken from UN-
WUP. While perhaps not comparable globally, the use of national defini-
tions provides a consistency in terms of local-level applicability. iURBAN
consequently follows the same path, i.e. applying a global methodolog-
ical design while keeping national plausibility.

2.2. Population-urban-built-up regression model

The hypothesis that existing global population grids, such as
LandScan, spatially allocate population well to built-up area (as identi-
fied in high-resolution GUF data) in urban areas, but fail to do so in
rural areas, is one of the main underlying assumptions of the iURBAN
model (see Section 2.3 below). Based on that assumption, LandScan
population numbers are not altered in identified urban areas, whereas
a population reallocation model is proposed for rural areas. The hypoth-
esis is grounded in the fact that high-resolution built-up data (such as
the used GUF) has to date not been accessible for global population
modeling efforts. More coarse-scale, publicly available built-up data
(such as MODIS or nighttime lights data) has therefore been used,
which leads to a vast under-representation of small rural settlements
that are not detected in these data sets. Larger urban agglomerations,
on the other hand, are also well identified in coarse-scale, built-up
data products, and are therefore reasonably represented in existing
population disaggregation models (such as LandScan).

Qualitatively, the hypothesis is outlined in a straightforward man-
ner. For quantitative evaluation, however, the data correlation patterns
need to be statistically analyzed. We consequently perform a weighted
linear regression referring to the following parameters. GUF built-up
data is aggregated from the initially available 75 m resolution to a 30
arc-sec grid (hence called built-up mask) in order to be spatially com-
patible with LandScan. For each province in every Central American
country, the share of LandScan population counts that is allocated with-
in that built-up mask is calculated. That relative share is labeled the cap-
ture ratio (i.e. the share of a province's population captured by LandScan
within the GUF built-up mask). The assumption is that the more urban a
province, the higher the capture ratio should be. The provinces' degree
of urban-ness (urban ratio) is derived from the most recent sub-nation-
al census data for each country. In a basic linear regression, R? values
vary from country to country between 0.75 (El Salvador) and 0.95
(Panama), with an overall value of 0.78 determined for Central America.
Basic linear regression, however, does not represent the hypothesis in
appropriate terms. It basically implies that every province is equally
weighted, independent of its population size. For example, the province
Embera (Panama) with just over 10,000 inhabitants has the same statis-
tical influence on the R? estimation as the province of Guatemala City
(Guatemala), with almost 3.2 million inhabitants. To account for that in-
equality (given that more densely populated provinces are almost cer-
tainly more urban), we introduce population size as a weighting factor
in the regression analysis. In this weighted linear regression model,
each of the two parameters (capture ratio and urban ratio) is multiplied
with the square root of the respective province's total population. The
resulting R? value for Central America is 0.95, thus showing a highly
significant correlation and quantitatively supporting the above-stated
hypothesis, and accordingly, backing the iURBAN approach presented
in this paper.

It should be noted that the result, while clearly statistically relevant
in the current setting, could in fact be influenced by varying data acqui-
sition times. The GUF built-up data represents the situation in 2012
(when the Radar imagery serving as input was acquired). Latest census
collection years in Central America (and thus the used urban ratio
values) vary in a range between 2002 (Guatemala) and 2011 (Costa
Rica). LandScan, in turn, while not documented, also seems to represent
different years (based on comparison of aggregated country totals to

annual national projections as reported in WUP), ranging from 2006
(El Salvador) to 2014 (Honduras). For statistical analysis, it would be
optimal to have all data sets harmonized to a 2012 reference year. How-
ever, this is not possible with sub-national urban ratio projections not
being available annually, and LandScan not representing one homoge-
neous time stamp. The data used in this study is therefore considered
the best input available.

2.3. iURBAN model assumptions

Assuming that, as outlined above, the locational population informa-
tion from LandScan is reasonably accurate in urban areas, these urban
areas need to be identified at the grid level. Population numbers can
be maintained as input for further modeling steps, while the more
‘rural’ an area, the less ‘trust-worthy’ the population numbers are con-
sidered. In order to measure the urban-ness of an area at a 15 arc-sec
grid scale, two assumptions are made:

(1) the larger a contiguous built-up patch, the more likely it is to be
considered urban (larger in terms of the summed-up area of in-
dividual high-resolution built-up patches detected in the 75 m
GUF data), and

(2) the greater a population (in absolute terms) clustered within a
contiguous built-up patch, the more likely that patch is to be con-
sidered urban.

After a 30 arc-sec grid (corresponding to the final CDRP output cell
size) was initially tested, a 15 arc-sec grid was eventually chosen as spa-
tial modeling unit, thereby following Week's conclusion that such a grid
size (i.e. around 500 m cells) would ensure proper understanding of “var-
iability both between and within human settlements” (Weeks, 2010).

24. iURBAN model steps

In a first step, the nationally aggregated LandScan sum is compared
to WUP country totals. There is no documentation on which population
input data LandScan uses for a specific country, thus the reference year
is also unclear. In other words, taking LandScan v2012 as an example,
that version number does not necessarily indicate that population dis-
tribution is consistently shown for the year 2012. LandScan country
data are updated following specific internal needs and priorities that
are not revealed to the external user. For urbanization studies, this
practice makes application of the data product difficult. In iURBAN, the
respective reference year per country is identified by comparing popu-
lation totals to the annual WUP figures, i.e. the year for which the
WUP value and nationally aggregated LandScan value best match.

For the identification of urban areas, a composite, normalized
weighting index is introduced, weighting every contiguous built-up
patch in the 15 arc-sec grid, accounting for its:

(1) built-up area (inherent summed-up patches), and
(2) absolute population count.

Both indicators are normalized to a 0-1 range; the patch with the
highest built-up area value within one country is assigned 1. Multiplica-
tive composition is applied for the index in order to put stronger focus
on particularly high values of individual indicators. The built-up patches
are then ordered according to their index value and iteratively added up
using their respective population values until the national-level urban-
rural split (according to WUP/WDI) is reached. The same reference year
is thereby taken for the urban ratio as identified before in LandScan for a
specific country. The selected patches are consequently classified as
urban. The remaining contiguous built-up patches are considered rural.

Fig. 1 shows a fictitious ‘country’ with several contiguous built-up
patches. Table 1 illustrates the iURBAN methodology for identifying
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Fig. 1. Fictitious ‘country’ with various contiguous built-up patches, labeled A-].

urban areas. After normalization of both the built-up area and the pop-
ulation value for each patch, the index is calculated by multiplication of
the two normalized values. Subsequently, all patches are ranked accord-
ing to their index value. The total population within the identified built-
up patches is 134,400. However, the actual population count of this fic-
titious country is 162,000 people (considering that global population
grids such as LandScan also distribute outside of built-up area as identi-
fied in the GUF data). Referring to a given national urban ratio of 60% (as
reported in WUP), roughly 97,000 people are living in urban areas. To
reach that value, the contiguous built-up patches are iteratively added
following the ranking order. In this illustrated case, that would imply
adding patches D, E, and I, after which a population count of 97,000 is
reached. Those patches are then classified as urban, and all other
patches considered rural.

As existing global gridded population data only allocate or capture a
minor share of the rural population within the identified built-up area
(for example, around 35% in Guatemala and Costa Rica, and <30% in Pan-
ama), a novel reallocation approach has been developed to overcome
this limitation. iURBAN's objective is to have the entire population allo-
cated to built-up area in order to subsequently be able to use population
counts as a proxy for other related parameters, such as building distribu-
tion. Absolute population counts in existing global grids are not consid-
ered trustworthy for rural areas, considering the poor population
representation within built-up area in rural regions. As a starting point
for built-up-adjusted rural population reallocation, the entire national-
level rural share is taken as disaggregation basis. The contiguous built-
up patches that were pre-identified as rural serve as disaggregation tar-
get zones. Following the assumption that the larger and denser such a
patch (in terms of its inherent summed-up built-up area derived from
the original high-resolution GUF data), the more likely larger population
counts are; all patches are weighted and normalized accordingly. Those

Table 1

[llustration of iURBAN methodology for identification of urban areas.
Built-up  Built-up area Population Index Ranking
patch Absolute Normalized Absolute Normalized

[km?] [0-1] [people] [0-1]

A 1.10 0.07 1100 0.03 0.0019 8
B 0.70 0.05 500 0.01 0.0005 9
C 0.20 0.01 700 0.02 0.0002 10
D 15.00 1.00 43,000 1.00 1.0000 1
E 410 0.27 39,000 091 0.2479 2
F 5.30 0.35 8700 0.20 0.0715 5
G 1.85 0.12 3500 0.08 0.0100 6
H 3.30 0.22 22,000 0.51 0.1126 4
I 6.00 0.40 15,000 0.35 0.1395 3
] 1.60 0.11 900 0.02 0.0022 7

134,400 Identified within built-up
162,000 Actual national population

Table 2
[lustration of iURBAN methodology for rural population reallocation.
Built-up Built-up area Population
patch . -
Absolute Relative Original Reallocated
[km?] weights [people] [people]
A 1.10 0.08 1100 5073
B 0.70 0.05 500 3228
C 0.20 0.01 700 922
F 5.30 0.38 8700 24,444
G 1.85 0.13 3500 8532
H 3.30 0.23 22,000 15,220
] 1.60 0.11 900 7379
Rural population in BU 37,400
Actual rural population 64,800

weights are then used to disaggregate the national level rural share of
the population, resulting in a new patch population number.

Referring again to the fictitious country in Fig. 1 for illustrative pur-
poses, Table 2 shows the iURBAN patch-level population reallocation ap-
proach for rural areas. In that case, the used population distribution grid
(e.g. LandScan), allocates 37,400 people to the identified rural built-up
patches. The actual rural population, however, is 64,800 people. <60%
of the rural population is therefore captured correctly within built-up
area. The inherent built-up area values of the rural patches are used as
weights (in relative terms) to disaggregate the total rural population
of 64,800 people to the rural patches. Consequently, the entire national
population, both urban and rural, is allocated to built-up area.

As the next step, patch-internal population distribution patterns at
the cell level need to be determined. This approach refers back to the as-
pect that population is being better captured in areas that are more like-
ly urban, as well as to the prior assumption that the larger a contiguous
built-up patch, the more likely it is to be urban. It is therefore concluded
that for the largest contiguous rural patches - despite not relying on ab-
solute population counts - the patch-internal distribution patterns can
be considered as reallocation weighting factor (see relative relevance
of the ‘population’ indicator for the largest rural patch [F] in Table 3).
This means the cell with the highest population value (in the original
population grid) within a contiguous built-up patch is correspondingly
weighted strongest for the patch-internal disaggregation. However, the
smaller a patch becomes (thus the higher its potential degree of rural-
ness), the less reliable even the relative internal distribution patterns
of existing global population grids are considered. Therefore, the indi-
vidual cells' built-up ratio is introduced as a counter-weighting factor,
complementing the above relative population distribution weight in
normalized manner (see relative relevance of the ‘built-up area’ indica-
tor in Table 3). Taking the fictitious small rural patch A as an example,
the ‘population’ weighting factor (or relative relevance) is determined
at 0.21 and the complementing ‘built-up area’ counter-weight is
consequently set at 0.79. In other words, for such a patch at the cell
level, alarge built-up ratio is considered a higher influence for the disag-
gregation process, compared to a high original population value. Fig. 2
illustrates the steps of the patch-internal reallocation for the rural

Table 3
[llustration of iURBAN methodology for determining relative relevance of contributing fac-
tors (population and built-up area) for patch-internal rural population reallocation.

Built-up  Built-up area Population Relative relevance
patch Absolute [km?]  Reallocated [people]  Indicator Indicator *
‘population’  built-up area’
A 1.10 5073 0.21 0.79
B 0.70 3228 0.13 0.87
C 0.20 922 0.04 0.96
F 5.30 24,444 1.00 0.00
G 1.85 8532 0.35 0.65
H 3.30 15,220 0.62 038
] 1.60 7379 0.30 0.70




C. Aubrecht et al. /| Remote Sensing of Environment 187 (2016) 230-240

\ |
Rural Patch A

0.36 0.09 0.23
0.18 0.23 0.14

0.05 0.14
0.18 0.23

150 0.14
0.05 0.05

Relative weights [0 ... 1]

| |
Rural Patch A

400 100 250
0.20 0.25 0.15

50 150
0.20 0.25

Original population: 1,100

Built-up area: 1.1 km? Relative weights [0 ... 1]
1 1 | 1
| | \ |
Rural Patch A Rural Patch A
0.08 0.02 0.05
0.22 | 0.20 | 0.16 1,116 | 1,008 | 789
0.14 0.18 0.11
0.01 0.03
0.15 | 0.21 777 | 1,056
0.14 0.18
0.03
0.06 327
0.04

Population relevance: 0.21 Reallocated population: 5,073
Built-up relevance: 0.79 Built-up area: 1.1 km?
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Fig. 2. Patch-internal 2-factor weighted population reallocation for the fictitious rural
patch A.

patch A. First, the patch-internal weights for population and built-up
area are calculated. Then, those weights are weighted according to the
indicators' relevance for the respective patch, and summed to a final
cell weight value. That value, in turn, is used for internal disaggregation
of the pre-determined patch population.

Applying that 2-factor weighted disaggregation approach results in a
new built-up-adjusted population distribution that, when summed-up
from individual cell level to country level, equals the sum of the used
original LandScan grid for the respectively identified reference year. In
order to come up with a temporally consistent output, in an iterative
process, iURBAN adjusts every country's reference year to the year
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2012, which is determined as output time stamp. 2012 was chosen as
it reflects the status of the GUF data which is derived from Radar imag-
ery acquired during 2011/12. The adjustment works in a way that first
population counts at cell-level are linearly projected from the identified
reference year to 2012, using WUP's respective country totals. Then, the
urban identification is re-run using the 2012 urban ratio.

3. Results

To date, iURBAN has been implemented for the countries modeled
under the umbrella of the World Bank's CDRP project. These include
all Central American countries (excluding Mexico) as well as several
islands in the Caribbean, the latest additions being Jamaica, Saint
Lucia, and Grenada. With easy transferability and upscaling in mind, a
fully-automated geoprocessing tool has been developed that allows
consistent implementation of iURBAN for other countries in a fast and
straightforward manner. The ultimate goal of iURBAN in the context of
CDRP is to provide a nationally consistent and spatially disaggregated
basis for building stock analysis, in terms of building type-specific re-
placement value calculation and structural vulnerability assignments
for consequent probabilistic risk assessment. In this paper we do not
focus on those follow-up products (see Gunasekera et al., 2015), but
rather on (see Fig. 3):

(1) the urban-rural classification as main output, and
(2) refined population distribution patterns (after urban-rural real-
location) as side product.

It should be clarified that, regarding the population pattern refine-
ment, iURBAN is not a population distribution model per se. Rather, it re-
fers to an existing modeled grid as input (both LandScan and WorldPop
have been tested) and refines distribution patterns, in particular for
rural areas, by integrating very high resolution built-up data as target
features for reallocation. Rural population distribution patterns are
problematic in existing global grids due to the hitherto unavailability
of such local-level settlement data at global scale. As outlined in detail
in Section 2.4, iURBAN eventually allocates all of the population to iden-
tified built-up structures, with resulting national level population sums
and urban ratios compliant to WUP figures.

iURBAN
Central America
< (15 arc-sec grid)
\L )
> —
®
, ; °
H ¥ %) i
A /\" -
B a7 e AT ‘/
N _’\‘-;_}i% { g
NG ) '
A i
‘\\ /
< —
'K
\\\’;‘\\k"»s
1 > SN g <&
N W) AR,
\*ﬁ \ et R S\
Urban-rural mask N\ 5
r rur. J ﬁ\ {) \,S\
Rural X o N
"
ichai ? 100 200 300 400 5(])?‘"' {
T 1

)/ : iURBAN
7 Central America
(15 arc-sec grid)

By ; 5
\\ P '
\.\\ P
\ Q\
< N
2 R
o
Population distribution \:}‘} » h. e
- 250 \) > N g T
> 250 - 500 \NJ b ;\)\\i;.\ N\
s )
> 500 - 1,000 Q\% h e
e I
B > 1,000 - 2,500 X
M >2,500 y

Fig. 3. Spatial overview of iURBAN output for Central America: 1) urban-rural mask (left), and 2) population distribution (right).
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3.1. Urban-rural mask

Fig. 4 illustrates the output of the {URBAN model, taking Panama City
as an example, in comparison to other existing urban identification ap-
proaches outlined above. Other urban layers include GRUMP urban ex-
tents (Balk et al., 2005), an urban mask based on uniform stable
nighttime lights thresholding (>14DN) as replicated from Small et al.
(2005), MODIS-500 urban areas (Schneider et al., 2010) which were
e.g. used in the Global Assessment Report 2013 (de Bono and Mora,
2014), an urban mask based on uniform BUREF thresholding (>10%)
as used in the Global Assessment Report 2015 (de Bono and
Chatenoux, 2014), a WUP-adjusted urban mask using LandScan as rep-
licated from Christenson et al. (2014a), and an urban mask as replicated
from the EC-OECD approach presented by Dijkstra and Poelman (2014),
also using LandScan. While at this stage it is not yet possible to provide
evaluative true-false statements at cell level due to the lack of a corre-
sponding reference source, it is clear that GRUMP and the nightlights-
based approach overestimate the urban area (including large portions
of non-built-up, uninhabited land), whereas MODIS and the BUREF-
thresholding approach underestimate the built-up extent (failing to de-
tect small settlements in rural areas in particular). The method present-
ed by Christenson et al. (2014a) is the only one (other than iURBAN)
that adjusts the urban classification to the WUP national urban
ratio. Urban patches are rather scattered, with a number of falsely
identified urban cells likely resulting from the LandScan-inherent
road network bias (i.e. strong population disaggregation weight on

road vectors, whereas high-resolution built-up data has not been inte-
grated). The EC-OECD approach provides a higher degree of urban clus-
tering, but does not conform to national WUP statistics. None of the
presented approaches had access to high-resolution built-up data,
which makes iURBAN vastly superior in the initial identification of set-
tlement structures in urban environments, and even more so, in rural
environments. The index-based approach at contiguous patch-level
also ensures the proper clustering and compactness of derived urban
extents.

3.2. Population distribution

Fig. 5 shows the iURBAN population reallocation output in compari-
son to six existing global gridded population distribution modeling ap-
proaches, again taking Panama City as the example. Exemplified
population grids include the GPW version 3 (Balk et al., 2010) and ver-
sion 4 (Doxsey-Whitfield et al., 2015) data sets, the follow-up GRUMP
with urban refinement (Balk et al., 2010), WorldPop (Sorichetta et al.,
2015), LandScan (Dobson et al., 2000), as well as the regional Latin
American and Caribbean Population Database (LACD) (Hyman et al.,
2000). The GPW data sets uniformly distribute population counts from
administrative units to a predefined output grid. In that regard, GPW
version 4 provides major improvement in terms of a much higher out-
put resolution (i.e. 30 arc-sec compared to the 2.5 arc-min of GPW ver-
sion 3) due to the increased availability of sub-national census data.
GRUMP uses the GPW (version 3) population data as input, and further
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Fig. 5. Comparison of population distribution data sets, Panama City example. iURBAN vs. six existing global/continental population grids.

refines the distribution patterns by putting stronger weight on pre-
identified urban areas. LACD, WorldPop, and LandScan all apply more
complex modeling techniques to derive population disaggregation
weights. To date, WorldPop and LandScan provide the most fine-
grained distribution patterns. WorldPop clusters population more
than LandScan, thus excluding more actual uninhabited land. LandScan,
on the other hand, puts more focus on allocating peaks in urban centers,
the latter being favorable for the iURBAN implementation approach. One
aspect unites all of these data sets: very vague representation of rural
population patterns. iURBAN provides significant improvement in that
context by reallocating population to actual built structures as identified
in the high resolution GUF data.

4. Accuracy and uncertainty

Accuracy and uncertainty are two crucial aspects contributing to the
overall quality of every geospatial model. In remote sensing science, ac-
curacy usually refers to the degree of ‘correctness’ of a map or classifica-
tion (e.g. land cover), and is commonly analyzed using a confusion
matrix, showing, amongst other measures, omission and commission
errors (Foody, 2002). Respective quality assessment of iURBAN is, how-
ever, not that straightforward. The reason is there is simply no ground
reference for what iURBAN is attempting to measure at the relevant
scale level, i.e. whether a particular pixel is either urban or rural. There
may be individual government maps of selected urban areas, but to
our knowledge, there is no consistent reference at continental or even

national scale available in that regard, that would allow adequate statis-
tical accuracy assessment. National and regional land cover maps (such
as the European CORINE or the US National Land Cover Database NLCD
2011) commonly depict built-up as opposed to urban land. It is not the
intention of this paper to evaluate the accuracy of the built-up data we
use (i.e. GUF) as there have already been various publications on that
(e.g. Klotz et al., 2014, Felbier et al., 2014).

Urban-rural ratios are usually reported at the sub-national adminis-
trative level, referring to urban and rural population distribution from
census collections. Inter-model comparative statistics can be calculated
in that context, aggregating individual cells to sub-national units and
using the census figures as reference. Taking Panama as an example,
we compared modeled urban-rural ratios from different approaches
at sub-national level to census figures (see Table 4). In addition to
iURBAN, we selected three of the urban identification approaches illus-
trated in Section 3.1, namely GRUMP (using nighttime lights), BUREF-
10 (using MODIS and LandScan), and LS-OECD (using certain clustering
methods), for their inherent methodological differences. It should be
specifically noted in this context that the reference years for all the var-
ious models can differ significantly. The most recent census in Panama
was conducted in 2010. iURBAN, however, provides output consistently
for the reference year 2012 (i.e. projected to match WUP 2012 total pop-
ulation counts and urban-rural ratios). GRUMP refers to population
data from 2000, whereas LandScan v2012 (for Panama matching most
closely the WUP 2007 total population count) is used for implementa-
tion of the BUREF-10 and LS-OECD approaches.
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Table 4

Comparison of modeled urban ratios and deviations to census, Panama example. iURBAN vs. three existing global/continental urban identification models.

Province Urban ratios Deviation from census

Census iURBAN GRUMP BUREF-10 LS-OECD’ iURBAN GRUMP BUREF-10 LS-OECD'
Bocas del Toro 0.3976 0.5016 0.4914 0.4068 0.5493 0.1039 0.0937 0.0092 0.1517
Chiriqui 0.5069 0.4725 0.3899 0.4598 0.5880 —0.0344 —0.1170 —0.0471 0.0811
Coclé 0.3446 0.4895 0.1828 0.2508 0.5195 0.1449 —0.1619 —0.0938 0.1749
Colén 0.6841 0.5793 0.8162 0.5884 0.7529 —0.1047 0.1321 —0.0956 0.0688
Darién 0.0832 0.0000 0.0000 0.0000 0.0000 —0.0832 —0.0832 —0.0832 —0.0832
Embera 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Herrera 0.5414 0.4831 0.4681 0.3130 0.4472 —0.0583 —0.0732 —0.2284 —0.0942
Kuna Yala 0.0000 0.0000 0.3694 0.0000 0.0000 0.0000 0.3694 0.0000 0.0000
Los Santos 0.3180 0.2124 0.3756 0.1466 0.2802 —0.1056 0.0575 —0.1715 —0.0378
Ng6be Buglé 0.0000 0.0000 0.0000 0.0000 0.1542 0.0000 0.0000 0.0000 0.1542
Panama 0.9008 0.8367 0.8075 0.7730 0.9137 —0.0641 —0.0933 —0.1279 0.0128
Veraguas 0.3264 0.2368 0.3015 0.2383 0.2755 —0.0896 —0.0249 —0.0880 —0.0509
Average absolute deviation 0.0657 0.1005 0.0787 0.0758
Population-weighted® sum of absolute deviations 0.0802 0.1962 0.2028 0.1059

2 National population totals differ for census, iURBAN, GRUMP, LandScan.

Two statistical measures are chosen for describing model output dif-
ferences. The average absolute deviation (AAD) of the modeled urban
ratios to the census reference gives an indication on the statistical dis-
persion, or the general magnitude of error at province level. iURBAN
has the lowest AAD at 6.6%, with GRUMP having the highest value at
10.1%. The AAD considers all provinces statistically equally relevant
and does not account for the size of a province in terms of its population.
This is, however, crucial for urban ratios that inherently refer to popula-
tion numbers. Therefore, we also report the population-weighted sum
of absolute deviations as an additional quality parameter. The lower
that value, the better the measured model output accuracy. Populous
provinces therefore have a stronger statistical influence on the output,
compared to sparsely population provinces. iURBAN again outperforms
the other models with a value of 0.08, whereby BUREF-10 is at the
other end of the scale with a value of 0.20.

The above statistical comparison of urban ratio deviations does,
however, actually only illustrate one extracted aspect. Urban definitions
follow different rules in different countries, some of which have multi-
ple facets and are very ambiguous. Some settlements could thus even
be considered partly urban (which iURBAN does not account for due
to its consideration of built-up contiguity as one defining parameter).
Furthermore - and this moves the discussion to the aspect of uncertain-
ty - iURBAN is conceptually designed to provide the best quality at na-
tional level (i.e. as input for the Country Disaster Risk Profiles
initiative) by adjusting for national WUP values. The fact that iURBAN
provides better statistical values (i.e. lower deviations) at sub-national
level compared to other global/continental approaches, is obviously a
very positive result. However, that is more a favorable side effect, as
the sub-national unit was never intended to be a primary reporting
scale level.

LandScan, one of the major input sources for iURBAN (and various
other models too), provides a lot of detail regarding local physical settle-
ment features for population disaggregation (thus including more
inner-urban variation). However, at sub-national level, aggregated
LandScan totals rarely match census counts. Assumedly, the reason for
this is not only census but also spatially coarse projection data are
used for disaggregation (details on the methodology are not document-
ed). iURBAN reallocates rural population to within built-up area in order
to provide a closer match to the reality on the ground in terms of distri-
butional patterns. Also, absolute population counts are adjusted for
high-resolution built-up density, which is assumed to be most accurate
(following common practice in dasymetric mapping).

With regard to population distribution patterns, e.g., GPW - when
aggregated to sub-national level - will certainly provide the best accura-
cy compared to census counts, simply because GPW uses the highest
level census data as disaggregation input. That does not signify, howev-
er, that GPW would be suitable to use at grid cell level for urban-rural

identification. Considering built-up contiguity as an essential parameter
of an urban settlement, this parameter would be undetectable in GPW
as population is uniformly distributed within an administrative area.
On the other hand, GPW could be used as a reallocation basis for iURBAN
(as has been done, e.g. for the currently developed GHSL-based popula-
tion distribution data of Freire et al., 2015). That would, however, conse-
quently mean losing out on the complex distributional inner-urban
detail that LandScan provides.

Given all the above, the quality of iURBAN should be viewed from dif-
ferent perspectives. Accuracy and uncertainty issues are deeply
intertwined in the model setup and design, a fact that basically applies
to all global and continental urban identification models. As outlined
above, iURBAN provides a statistically measureable improvement for
sub-national urban ratio identification even though this was not the ini-
tial goal of the model. The model's main strength lies in the use of much
finer detection of settlement patterns via high-resolution, satellite-de-
rived, built-up area. This implies a completely different basis for urban
identification as well as detailed distributional population reallocation
that is hard to illustrate adequately in statistical terms, due to the lack
of appropriate ground reference data.

5. Discussion and conclusions

Taking on board the various different perspectives outlined above,
the question which arises is why the choice of urban definition is such
a major concern. While ascertaining what urban consists of is neither
obvious nor straightforward, it is clear that the very definition of
urban has many implications and ramifications, and is therefore of ut-
most relevance and importance. For instance, the targeting of national
development or educational assistance programs, criteria for eligibility,
as well as allocation of funds from those programs, depend on whether
an area is classified as urban or rural. National data compilations such as
census, housing, health, and living surveys, use national statistical defi-
nitions as guidelines for data collection and reporting. Consequently,
when ancillary non-spatial data needs to be integrated with spatial
urban extents for a specific application, accounting for the respective
national statistical delineation approaches is crucial in order to ensure
valid and retraceable linking. Remotely sensed information is often
not used as an exclusive input data source for urban and regional devel-
opment studies, but commonly linked to ancillary data for more inte-
grative information retrieval (Aubrecht et al,, 2013). Ancillary data, as
derived using traditional methods such as surveys and public records,
can include contextual information such as building typologies and pop-
ulation characteristics, as well as more complex indicators, such as ex-
plicit vulnerability aspects (Aubrecht and Ozceylan, 2013). The
prerequisite for the proper linking of two related data sets is always
the availability of a common parameter, a distinct key in terms of
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relational database management. Focusing on regional and global scale
urban research, high-to-medium spatial resolution remote sensing data
can provide information on land cover patterns in a straightforward
manner. When it comes to illustrating functional relationships and dif-
ferent use categories however, proxy measures are often applied,
thus physical parameters are identified via remote sensing that are cor-
related to functional aspects. Data compilations which are not explicitly
spatial, such as national censuses, encyclopedias, gazetteers, etc.,
commonly use classification schemes which introduce a typological
structure for large data volumes. Global and national level databases,
such as the World Housing Encyclopedia and the USGS PAGER (Prompt
Assessment of Global Earthquakes for Response) initiative, refer to sim-
ple inventory region schemes such as urban and rural for their data col-
lection (Jaiswal et al., 2010). When attempting to link such information
properly to spatially-explicit data, the same classification scheme needs
to be applied at both ends, i.e. non-spatial data collected for urban areas
need to be spatially linked to according pre-identified urban locations.

‘Link-ability’ was highlighted as major issue of concern in integrating
inventory region based tabular data with a spatial base framework. All
the above-presented approaches have their objective firmly set on the
identification of urban areas. However, many of the global challenges,
such as poverty or natural hazards, have significant impacts in rural
areas. For example, more than three quarters of the extreme poor live
in rural areas, with those areas often being the most vulnerable to disas-
ter risk and associated multi-faceted consequences (World Bank, 2013).
It is therefore an issue of urgent necessity to take a closer look at the
‘flipside of urban’ (Aubrecht et al., 2015) in the context of spatial identi-
fication or urban-rural patterns. Whether existing approaches derive
urban extent via the thresholding of nightlights or population density
data, or via contiguous built-up area data, one assumption remains the
same: the entire remaining area outside of urban is consequently de-
fined as rural (Balk et al., 2010). Binary definitions of urban-rural do
not capture the gradual spectrum between a city and its agricultural
surrounding, with a peri-urban perimeter or suburban transition zone.
Furthermore, uninhabited areas are conflated with low population den-
sity areas in an overarching definition of rural (Christenson et al.,
2014a). While the conceptual urban-rural dichotomy is specifically
evident in non-spatial databases, a consequently linkable, spatially-di-
chotomous representation should at least aim at excluding uninhabited
and uncultivated land, and distinctly depict rural settlements. iURBAN
addresses this issue by classifying spatially-explicit settlement struc-
tures in rural and urban, and leaving non-built land unclassified. Fur-
thermore, allocating the entire population to those built-up areas
guarantees full link-ability and conceptual compatibility, for joining
non-spatial data collected based on urban-rural inventory region
schemes. This compatibility consequently refers to both building- and
population-based data compilations. In the CDRP project implementa-
tion, both building and population components are relevant as building
typology data is disaggregated via an inventory region schema to cell
level, where population counts are required as one proxy measure for
final asset value calculation. Caution is advised when considering rural
cultivated land and agricultural productivity, given that iURBAN specifi-
cally addresses the built environment.
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