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Since 2008, macroalgal blooms of Ulva prolifera (also called green tides) occurred every summer in the Yellow Sea
(YS), causing environmental and economic problems. A number of studies have used satellite observations to es-
timate the severity of the blooms through estimating the bloom size and duration. However, a critical bloom pa-
rameter, namely biomass, has never been objectively determined due to lack of measurements. In this study,
laboratory experiments were conducted to measure U. prolifera biomass (wet weight) per unit area and the cor-
responding spectral reflectance, through which a robust relationship has been established to link biomass per

5‘;‘{;/ ;rrzsifem area to the reflectance-based floating algae index (FAI). The lab-based model has been validated with in situ mea-
Green tide surements, with an estimated relative uncertainty of <16% for algae with FAI values <0.2 (corresponding to
MODIS ~2 kg/m? biomass and accounting for >99.5% of the algae-containing pixels in satellite images). The model
Remote sensing was further transferred to MODIS Rayleigh-corrected reflectance (R,.), where aerosol impacts on the model
Biomass were simulated under various atmospheric conditions. The simulations showed an average of 6.5% (up to
C%‘rbon 12.3% for the extreme case) uncertainties in biomass estimates when MODIS R, data were used as the model in-
Nitrogen puts. The dry biomass per wet biomass and carbon and nitrogen contents per dry biomass were also determined
through lab experiments, thus making their estimation possible from MODIS R;. data. The model was then ap-
plied to time-series of MODIS observations over the YS between 2008 and 2015 to determine the inter-annual
variability of these critical parameters. Results showed maximum daily biomass of >1.7 million tons during
June 2015 and minimum daily biomass of <0.09 million tons during 2012. The ability to estimate U. prolifera bio-
mass at given locations from the near real-time MODIS images is expected to significantly enhance the capacity of

an existing monitoring system to provide quantitative information for decision making.
© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction al.,, 2011) and 350 million U.S. dollars between 2008 and 2015 (China

Marine Disaster Bulletin, 2008-2013). Meanwhile, recurrent green

Green tides refer to the abnormal proliferation of floating green
macroalgae, which usually occur in the eutrophic waters of bays,
lakes, and other coastal waters (Nelson et al., 2003; Charlier et al.,
2006; Yabe et al., 2009). In summer 2008, an extensive green tide of
Ulva prolifera occurred in the Yellow Sea (YS, Fig. 1), especially in coastal
waters off Qingdao (China), causing trouble in sailing practice by ath-
letes to prepare for the upcoming Olympic sailing competition. The
event caused serious economic losses and environmental problems,
and caught national and international attention of news media and sci-
entists (Qingdao News, 2008; Mail Daily, 2008; Hu and He, 2008; Lii and
Qiao, 2008; Liang et al., 2008; Liu et al., 2009). Since 2008, similar green
tides occurred in the YS every summer. The economic cost for mitigation
(beach clean up and algae transportation) and aquaculture losses
exceeded 200 million U.S. dollars in 2008 (Wang et al., 2009b; Ye et
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tides caused a series of adverse impacts on the marine environment
(Liu et al., 2010; Liu et al., 2013a; Wang et al., 2015), and have been
regarded by the Chinese government as another ecological disaster in
addition to red tides along China's coasts.

Similar to most other single-species green tides worldwide (Taylor
et al.,, 2001; Nelson et al., 2003), the dominant species of green tides
in the YS is U. prolifera (Leliaert et al., 2009; Liu et al., 2009; Shen et
al., 2012). U. prolifera is a seaweed worldwide that can grow rapidly
under favorable conditions, leading to extensive blooms (green tides).
For the green tides in the YS, satellite remote sensing, ocean circulation
models, and field observations all indicate their origin in the Subei Shoal
of Jiangsu province (Fig. 1). From the Subei Shoal, although coastal
aquaculture ponds have been suggested to be the source of U. prolifera
(Pang et al., 2010; Liu et al., 2013b), more evidences led to the conclu-
sion that Porphyra aquaculture rafts should be the main source of U.
prolifera (Liu et al., 2009; Hu et al., 2010; Liu et al., 2010; Liu et al.,
2013a; Zhang et al., 2014; Wang et al., 2015). The initial U. prolifera in
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Fig. 1. Top: study region showing the Yellow Sea. The background image is MODIS false color Red-Green-Blue (R:Rrc_645, G: Rrc_859, B:Rrc_469) image on 12 June 2015, which shows the
U. prolifera algae slicks in greenish colors. Bottom (a-d): digital photos of U. prolifera macroalgae floating on the ocean surface taken from boat in coastal waters off Qingdao (black dot in

map) during the in situ experiment in July 2013.

the Subei Shoal first drifts to the YS following the dominant northward
currents, develops into a green tide under favorable sun light and water
clarity conditions, and then moves toward the Shandong Peninsula fol-
lowing the southeast monsoon and summer ocean surface currents (Hu
et al, 2010; Liu et al,, 2010; Keesing et al., 2011; Qiao et al., 2011; Xu et
al, 2016).

Among the various methods, satellite remote sensing has been
widely used to detect and track green tides in the YS due to it synop-
tic and frequent coverage. Indeed, the first report of the green tide
origin was from analysis of MODIS data, where MODIS normalized

difference vegetation index (NDVI) was used to examine image se-
ries to track the green tide origin (Hu and He, 2008; Liu et al.,
2009). This is because U. prolifera is simply a vegetation floating on
the sea surface. U. prolifera features a hollow tubular body composed
of monolayer cells, which release oxygen in the body during photo-
synthesis. The oxygen increases the algae's buoyancy, making them
float on the sea surface (Liang et al., 2008) and form algae mats
under the influence of wind and current (Gower et al., 2006; Hu,
2009). Fig. 1a-d show photos of U. prolifera with different density
floating on the sea surface.
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However, because of NDVI's strong sensitivity to atmospheric condi-
tions and observing geometry, it is difficult to use NDVI to quantify
green tide coverage (i.e., bloom size). Hu (2009) therefore developed a
new index to detect and quantify green tides, namely the floating
algae index (FAI), defined as the magnitude of the near-infrared (NIR)
reflectance against a linear baseline between the red and shortwave in-
frared bands. Compared with NDVI, FAl is less sensitive to changes in at-
mospheric conditions (aerosol optical thickness and type) or in solar/
viewing geometry, and it is also less sensitive to perturbations by thin
clouds or moderate sun glint. Most importantly, its linear design
makes it possible to estimate partial-pixel algae coverage using a linear
unmixing model. The FAI method enabled the first long-term time-se-
ries analysis of MODIS and Landsat data between 2000 and 2009 over
the YS and East China Sea, revealing inter-annual variability in green
tide location and size (Hu et al., 2010).

FAI and other methods have been used with remote sensing data to
estimate spatial distributions and temporal changes of green tides in a
number of studies (Hu et al., 2010; Keesing et al., 2011; Cui et al.,
2012; Garcia et al.,, 2013; Xu et al., 2014; Son et al., 2015; Qi et al.,
2016; Xing and Hu, 2016). Among these, each method has its own
strengths and weaknesses. Some sophisticated methods such as the
scaled algae index (SAI) method have been proposed (Keesing et al.,
2011; Garcia et al,, 2013) for image segmentation, yet they often require
manual adjustments of threshold and parameterization, and such ad-
justments may vary among images. Therefore, FAI was chosen in this
study for its simplicity, linear design (to facilitate pixel unmixing), and
tolerance to perturbations by aerosols, variable solar/viewing geometry,
and low to moderate sun glint (Hu, 2009). However, all these methods
focused on the detection of presence/absence of U. prolifera and/or the
area coverage of U. prolifera. To our knowledge, except for a limited sam-
pling effort to determine U. prolifera biomass in a local region (Liu et al.,
2015a; Wang et al., 2015), no study has attempted to estimate U.
prolifera biomass at synoptic scale using either remote sensing or field
measurements, due to lack of remote sensing biomass model for the for-
mer and lack of sufficient spatial/temporal coverage for the latter. On
the other hand, knowledge of U. prolifera total biomass is essential for
green macroalgae salvaging, cleaning up, and studies of carbon/nutrient
cycling (Fan et al., 2014).

The primary objective of this study is therefore to develop and vali-
date a remote sensing model to estimate U. prolifera biomass (wet
weight and dry weight) as well as its carbon and nitrogen content. A
secondary objective is to apply such a model to MODIS observations to
determine the maximum total biomass in each calendar month, thus
providing a reference for future mitigation efforts and ecological studies.

The structure of this manuscript is as follows. The laboratory (water
tank) experiment is first introduced, with a biomass model developed
and validated from independent in situ experiments. The model's sensi-
tivity to variable aerosols is studied in order to apply the model to
MODIS Rayleigh-corrected reflectance. The model is then applied to
MODIS data between 2008 and 2015 to estimate total U. prolifera bio-
mass as well as total carbon and nitrogen from daily images. Finally,
the implications of these findings in model development and regional
oceanography are discussed.

2. Data and method
2.1. Data collection - laboratory (water tank) experiment

In order to develop a model to convert reflectance to U. prolifera bio-
mass, a water tank experiment was conducted. Fig. 2 shows the exper-
imental setup. The water tank is 120 cm on each side and covered with
black fabric to prevent light reflection from the bottom and the wall. A
spectrometer (FieldSpec4, ASD Inc.) was used to measure reflectance
with a 1-nm resolution between 350 and 2500 nm. A fiber-optic
probe from the spectrometer was centered over the tank with a field-

ASD
FieldSpeed | Fiber—
i = 7 Sensor
j25ry
£
o
o
]
o~

U. Prolifera

30cm

Fig. 2. lllustration of the water tank experiment to measure spectral reflectance in order to
calculate FAI and determine its relationship with biomass per unit area. The set up was
adjusted until the sensor's field-of-view (25°) was just within the rectangular boundary.

of-view (FOV) of 25°, which covered most of the water tank surface.
The spectrometer was connected to a laptop computer to record data.

U. prolifera of known biomass and seawater were put in the tank to
measure their reflectance. The U. prolifera samples were collected
from coastal waters off Qingdao, whose biomasses (wet weights)
were determined before they were put in the tank. To determine the
biomass, the U. prolifera sample was put in a 2-cm mesh size net,
which was then shaken manually for 3-5 min to drain excess water.
Then, the wet weight of the sample was measured with a digital scale
with 1 g accuracy. After putting in the water tank, biomass per area
was determined as the wet weight divided by the water tank area
(1.2 m x 1.2 m). Specifically, the experiment was conducted as follows:
(1) Fill the water tank with seawater collected from coastal waters off
Qingdao; (2) Add 0.2 kg (wet weight) U. prolifera in the water tank;
(3) Measure reflectance of U. prolifera floating on the water surface
ten times (reflectance was measured against a white reference plaque
with a reflectance of 0.99); (4) Repeat the above steps but each time
with more U. prolifera added until reaching a total weight of 8.0 kg.
Fig. 3 shows the U. prolifera distribution with different biomass in the
water tank. When U. prolifera biomass per area was increased from
0.14 kg/m? to 1.39 kg/m?, the macroalgae partially covered the surface
of the water tank. When the biomass reached about 2.0 kg/m?, the sur-
face was nearly completely covered by the macroalgae. Additional
macroalgae after that did not to change the appearance in the digital
photo.

The relationship between U. prolifera biomass and reflectance-de-
rived FAI was used to establish a biomass remote sensing model,
which was validated using in situ experiments described below.

2.2. Data collection - in situ experiments for model validation and carbon/
nitrogen content.

In situ experiments were conducted on 11 July 2013 and 16 July
2015, respectively, in coastal waters off Qingdao. Fig. 4a shows the mea-
surement stations, while Fig. 4b shows how U. prolifera was collected
after reflectance was measured. In situ stations were selected through
visual judgement of the algae density, as shown in Fig. 1. A critical re-
quirement of the in situ experiment was to assure that reflectance and
algae biomass were determined from the same algae patch. In practice
this has been very difficult due to the movement of the boat. Therefore,
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Biomass=1.94 FA1=0.197

Biomass=3.33 FAI=0.256 Biomass=4.44 FAI=0.261

Biomass=5.55 FAI=0.275

Fig. 3. Digital photos of different amount of U. prolifera macroalgae floating in the water tank, with their corresponding biomass per area (kg/m?) and FAI values annotated.

such a difficulty was circumvented by conducting the two measure-
ments in a large, relatively homogenous (in area density) algae patch
at each station. From this patch, surface reflectance was first measured
10 times. Then, U.prolifera from the same patch was collected 3 times
using laboratory-made tools. This way, because the large patch was rel-
atively homogenous in area density, even if U. prolifera was collected
from a slightly different location in the same patch away from the reflec-
tance measurement, it would not cause a large mismatch between re-
flectance and biomass measurements. In the July 2013 experiment the
tool was a steel-framed net with a 0.3 m x 0.4 m surface area. In the
July 2015 experiment the tool was a fishing net with a diameter of
0.65 m (Fig. 4b). The net was carefully put underneath the algae with
minimal disturbance to the algae, and then lifted to collect the algae
just above its surface area. This way, the area (in m?) from which the
algae was collected was known. Such collected algae samples were
placed in labelled containers, with each sample's wet weight measured

with a digital scale in the laboratory after shaking off excessive waters
using the procedure described in Section 2.1. Biomass per area for
each sample was calculated as the wet weight divided by the surface
area of the tool.

In addition to in situ experiments for model validation, dry weight of
biomass as well as concentrations of carbon and nitrogen (per dry
weight) in five U. prolifera samples collected on 16 July 2015 were also
determined using an elemental analyzer (Vario EL III, Germany
ELEMENTAR). For each sample, the wet weight of small algae pieces
was determined with a high-precision (0.001 mg) scale (Germany
ELEMENTAR), and then dried in a heat oven (DHG-9070A) for 24 h at
80 °C to remove water in the body of algae. The dried sample was
weighed again using the same scale, and then ground to measure the
carbon and nitrogen contents with the elemental analyzer. This way,
for each sample, dry weight per weight wet and carbon/nitrogen con-
centrations (per dry weight) were determined.

Fig. 4. (a) Stations during the field experiments on 11 July 2013 (yellow dots) and 16 July 2015 (black dots) to measure U. prolifera biomass per area and spectral reflectance. (b) An
example of digital photos showing how U. prolifera was collected to determine biomass after reflectance was measured from the same U. prolifera patch.
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2.3. Biomass model development and validation

The biomass and reflectance measurements during the laboratory
experiment were used to establish a biomass remote sensing model
through the reflectance-derived FAI defined as (Hu, 2009)

ANRR—A
FAI = Rnir —Rrep — (Rswir —Rrep) ﬁ (1)

where R is the sea surface reflectance, A is the wavelength, the sub-
scripts RED, NIR, and SWIR represent the red, near infrared, and short-
wave infrared bands, respectively. For MODIS, Aggp = 645nm, Ang =
859nm, Aswir = 1240nm; For Landsat, Aggp = 660nm, Ayr=860-
nm, Aswir=1650nm.

In order to develop a model applicable to satellite measurements,
the hyperspectral reflectance (1 nmresolution) data were first averaged
for each band using the relative spectral response (RSR) functions of the
satellite sensor:

R(N)Sgrep (A
B
Ruig = JR(M)Snir (M)
JSnir(A)
Rwir — JR(N)Sswir (M)
JSswir(N)

where R (\) is the hyperspectral reflectance, and S (A) is the RSR of the
corresponding band, available through sensor specifications. In this
study, the focus is on MODIS measurements so MODIS RSRs were used
to calculate a MODIS FAI from the field-measured hyperspectral reflec-
tance through Eqgs. (1) and (2). To provide a reference for other sensors
(e.g., Landsat-8/OLI, NPP/VIIRS), RSRs from those sensors were also
used.

Biomass per area from all laboratory measurements and their corre-
sponding FAI values (using MODIS RSR functions) were used to estab-
lish a biomass remote sensing model through empirical regression
(see Results). The model was then applied to the FAI values determined
from the in situ measurements to estimate biomass per area, where the
estimates were evaluated against the field-measured biomass per area
with statistics derived to gauge the model performance.

2.4. Model application to satellite data: impacts of atmospheric effects

The biomass model was developed and validated from laboratory
and field experiments. When applied to satellite data, potential impacts
of the atmospheric effects must be quantified. In this study, the poten-
tial impacts were evaluated through simulations, following the ap-
proach outlined in Hu (2009).

Ideally, for each image pixel, all atmospheric effects should be esti-
mated and removed in order to derive a surface reflectance, which can
then be used as the input of the above model to estimate biomass. In
practice, this is extremely difficult because the large NIR and SWIR re-
flectance from the U. prolifera makes the “black-pixel” assumption in
traditional atmospheric correction approaches (Gordon and Wang,
1994; Wang and Shi, 2007; Wang et al., 2009a) no longer valid. A so-
phisticated approach to use the atmospheric properties derived from
the algae-free pixels as surrogates for the algae-containing pixels
through a “nearest-neighbor” method (Hu et al., 2000) could be devel-
oped (Shi and Wang, 2009), yet it requires pre-classification of all pixels
which is still subject to errors. Therefore, instead of a full correction, a
partial correction to remove the ozone absorption and Rayleigh scatter-
ing impacts was often used to derive a Rayleigh-corrected reflectance,
R;. (dimensionless), used as input of inversion models. The question
then becomes, can the biomass model developed from the laboratory
measurements be applied to MODIS R;. data? If so, what are the
uncertainties?

According to radiative transfer theory, R;. from an algae-containing
pixel can be expressed as:

ch = Ra + tOtRalgae (3)

where R, is the reflectance due to aerosol scattering and aerosol-mole-
cule interactions, Ryigae is the reflectance of U. prolifera macroalgae float-
ing on ocean surface (measured from in situ experiments), t is the
atmospheric diffuse transmittance from the pixel to the sensor and ¢y
is the atmospheric diffuse transmittance from the sun to the pixel.

The simulation was to determine that for each R,jgae (and Ryjgae - de-
rived FAI) how different combinations of R, and ¢ty t (from different
aerosol types and optical thickness) may impact R, (and R, - derived
FAI). In the simulation, two aerosol types were considered, with one
being maritime aerosol (90% humidity, M90) and the other being coast-
al aerosol (50% humidity, C50). Aerosol optical thickness (AOT) at
859 nm (7gs9) was varied from 0.03 to 0.4, representing clear and turbid
atmospheres, respectively (actually, pixels with Tgsg > 0.3 are treated as
clouds in the NASA standard data processing software SeaDAS, so 0.4
represents an extreme case). For each scenario, the (R,,t, to) parameters
were derived from the SeaDAS aerosol look-up tables (LUTSs). Then, for
each Ryigae, Rrc Was derived using Eq. (3), and the corresponding FAI
was calculated with such derived R, and then compared with FAI cal-
culated from Ryjgge.

2.5. Application to MODIS time-series data

MODIS Level-0 data between April and August for each year of
2008-2015 were obtained from NASA Goddard Space Flight Center
(GSFC), and then processed to generate MODIS R, data following the
approach of Hu (2009). MODIS FAI was then calculated from MODIS
R for each pixel. After cloud masking, the data were mapped to a rect-
angular projection for the area between 33°-38°N, 118°-123°E, with
each pixel representing 0.00227° (corresponding to about 250 m in
the N-S direction and 205 m in the E-W direction).

The above-established biomass model was applied to each image to
derive the biomass distribution. For images with minimal cloud cover,
the total biomass was calculated as the integration of all biomass values
from cloud-free pixels.

3. Results

3.1. Biomass and concentrations of carbon and nitrogen in U. prolifera
samples

Table 1 shows the wet weight, dry weight, and concentrations of car-
bon and nitrogen from the five U. prolifera green macroalgae samples.
While the wet weight was a function of sample size, the ratio between
dry weight and wet weight was very stable, with the mean and standard
deviation being 11.4% and 0.8%, respectively, indicating the most of the
wet weight of the U. prolifera samples is from water. The dry/wet ratio of
U. prolifera is actually very similar to that of Sargassum (a brown
macroalgae, 9% ~ 12.3%) (Wong and Phang, 2004). The concentrations

Table 1

Wet weight and dry weight of each of the 5 algae samples collected in the field in 2015.
Also shown are their carbon and nitrogen concentrations (weight per dry weight). In
2013 only wet weight was measured from the samples so they are not listed here.

Samples Wet weight Dry weight Dry/wet Nitrogen con.  Carbon con.
(mg) (mg) (%) (%) (%)
1 20.403 2428 119 1.52 29.22
2 15.640 1.564 10.0 133 28.45
3 15.393 1.878 12.2 143 28.37
4 14.241 1.652 11.6 1.24 28.81
5 14.574 1.676 115 1.25 28.09
Average 114408 1.35+0.12 28.594+0.44
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Fig. 5. (a) Reflectance spectra (dimensionless) collected from the U. prolifera macroalgae in the water tank experiment (Figs. 2 & 3), with total wet weight (kg/m?) annotated for several
selected spectra. (b) same as in (a) but data were collected from the in situ experiments (Fig. 4).

of carbon and nitrogen (per dry weight) were 28.59 + 0.44% and
1.35 £ 0.12%, respectively. The mean C:N ratio is about 21:1, much
higher than the typical Redfield ratio of 106:16 found in most phyto-
plankton, suggesting high carbon fixation capability by U. prolifera.

3.2. The biomass model, its validation, and uncertainty

Fig. 5a and b show the reflectance spectra of U. prolifera measured
from the laboratory and in situ experiments, respectively, where their
corresponding biomass (wet weight) per area are annotated for some
representative spectra. From visual inspection, the NIR reflectance in-
creased sharply with increasing biomass when concentration was
<~2 kg/m?. Beyond this concentration, the NIR reflectance appeared to
be saturated with further increased biomass and it increased at a
much slower pace, indicating that algae aggregates more in the vertical
direction rather than in the horizontal direction. This observation is con-
sistent from the visual appearance of the algae photos shown in Fig. 3.

Fig. 6 shows the relationship between FAI (calculated from surface
hyperspectral reflectance weighted by the MODIS RSR function using
Egs. (1) and (2)) and biomass per area from both laboratory and in
situ experiments, confirming the above visual inspection. Here biomass
ranged from 0.14 to 5.55 kg/m? (N = 28) from the laboratory experi-
ment and from 0.42 to 4.22 kg/m? (N = 21) from the in situ experi-
ments. Overall, FAI is a monotonic function of biomass, where the
latter can be derived from the former. Specifically, three findings could
be derived from the figure.

First, for FAI < 0.2, a linear, stable relationship was found between
FAI and biomass. Above this threshold, FAI appears to be saturated
with further increases in biomass and the relationship appears non-lin-
ear, with rapid increases in biomass following increases in FAIL

Second, for FAI < 0.2, the FAI-biomass relationship appeared to be
stable between laboratory and in situ measurements, suggesting that a
robust model could be developed to estimate biomass from FAIL Above
this threshold, laboratory and in situ experiments showed different
FAI-biomass relationship.

Third, in general, in situ measurements showed much higher un-
certainties (in both FAI and biomass) than laboratory measure-
ments, as shown by the higher standard deviations from the
former (5.9% for FAI and 12.4% for biomass in contrast to 1% from
the latter). This is apparently due to the difficulty in conducting ac-
curate measurements of the moving U. prolifera patch from a small
boat. However, both types of measurements showed nice agreement
for FAI <0.2.

Because of the lower uncertainties, the data from the laboratory ex-
periments (filled triangles in Fig. 6) were used to develop an empirical

model to estimate biomass per area from FAL A step-wise least-square
fitting was used to develop the model, expressed as

y — 9% + 0.014 —0.0015<x<0.2 A
y—e8102) 4 0814 0.2<x<0.3 )

where x is FAI (dimensionless) and y is the U. prolifera biomass per area
in kg/m?.

The model in Eq. (4) was evaluated using in situ data in Fig. 7a, which
shows the in situ biomass per area in the x-axis and modelled biomass
(from in situ reflectance) per area in the y-axis. For biomass < 2 kg/m?
(corresponding to FAI ~ 0.2), relative uncertainties are about 14-16%
with no bias. Here relative uncertainties were estimated as either rela-
tive Root-Mean-Square Difference (RMSD) or absolute Mean Relative
Difference (MRD), and bias was estimated as the Mean Ratio (MR).
For biomass > 2 kg/m?, not only did relative uncertainties increase to
~40%, but bias also increased to 40% (MR = 1.4), suggesting larger er-
rors when the algae density becomes higher.
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Fig. 6. Scatter plot showing the relationship between U. prolifera macroalgae biomass per
area and FAI determined from surface reflectance. Filled triangles represent data collected
from the water tank experiment, with the solid line represents the best fit through least-
square fitting. Filled and empty circles represent data collected from the field experiments
on 11 July 2013 and 16 July 2015, respectively. The horizontal bars are the standard
deviations of FAI values from 10 reflectance measurements, and the vertical bars are the
standard deviations of 3 wet weight measurements. Note that because for remote
sensing applications FAI is the independent variable and biomass is the dependent
variable, the x-axis and y-axis as well as the model in Eq. (4) are arranged accordingly.
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Fig. 7. (a) Validation of laboratory based biomass-FAI model (Eq. (4)) using field measurements. Note that below 2 kg/m? (corresponding to FAI = 0.2) the model is more accurate than
above 2 kg/m?; (b) For MODIS imagery, 99.5% of algae-containing pixels from 12 cloud-free MODIS images in summer 2015 have FAI < 0.2, suggesting that the model is accurate for nearly

all pixels.

However, in practice such increased uncertainties at high FAI values
will have negligible impact on estimating either biomass distribution or
total biomass. This is because very few algae-containing pixels will have
FAI > 0.2. Fig. 7b shows the histogram and cumulative histogram of FAI
values derived from 12 cloud-free MODIS images during summer 2015.
Only algae-containing pixels were used in the statistics. Clearly, >99.5%
of the algae-containing pixels have FAI values < 0.2. Therefore, for nearly
all pixels, the validation results obtained in Fig. 7a for FAI < 0.2 should be
applicable. For this reason, the upper bound FAI value corresponding to
100% algae coverage within a pixel was regarded to be 0.2. If a MODIS
pixel had FAI > 0.2 (this is very rare according to Fig. 7b), the second
part of Eq. (4) was applied. In the end, because the biomass of a pixel
was determined using its own FAI value through Fig. 6 and Eq. (4), the
selection of the upper bound value had no impact on biomass estimates
for either individual pixels or the entire image.

The simulation results by adding aerosol impacts (Eq. (3)) further
indicated that the model in Eq. (4), although derived from laboratory
measurements, may be applied directly to MODIS R, data with small
uncertainties. Fig. 8a shows one example of the simulated MODIS FAI
against field-measured FAI under variable aerosol optical thickness
T4(859) and aerosol types when field-measured FAI was 0.216. Clearly,
the simulated MODIS FAI decreased with increasing 7,(859) for both
aerosol types but with different changing rate. In both cases, however,
changes in the simulated MODIS were <10% even between the two ex-
treme AOT cases. Fig. 8b further shows the mean and standard deviation
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of simulated MODIS FAI against the in situ FAI under different environ-
mental conditions. Although small departures from the 1:1 line were
found, the agreement between the two was excellent. Under all simu-
lated conditions in this study, the average and maximum relative errors
in the simulated MODIS FAI values, as gauged by the corresponding in
situ FAI values, were 6.5% and 12.3%, respectively. Considering the
patchiness of U. prolifera mats in the field, such small uncertainties
should be regarded as acceptable, and the biomass model in Eq. (4)
can therefore be applied directly to MODIS R, data to derive biomass
distributions and total biomass from individual images.

3.3. MODIS-derived biomass distributions

U. prolifera often appeared in MODIS FAI imagery as small image
slicks in Subei Shoal at the end of April, which were advected north-
ward, forming a massive bloom in the YS during June and July. The bio-
mass images showed the same temporal and spatial changes as from the
FAI images, yet the biomass images provided additional information on
the U. prolifera abundance at each location. Fig. 9 shows two examples
on 25 June 2008 and 21 June 2015, where biomass per area is color
coded for each pixel. Most of the algae-containing pixels contained
very low density of algae (<0.3 kg/m?), while a small portion of the
pixels showed moderate densities around 0.4-0.5 kg/m?. The total
algae amount in June 2015 appeared to be much higher than in June
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Fig. 8. (a) Simulated MODIS FAl as a function of aerosol optical thickness at 859 nm (7,(859), dimensionless) for maritime and coastal aerosol types when the field-measured FAI is 0.216.
Note that when 7,(859) is >0.3, atmosphere is regarded being very turbid and ocean color retrievals are impossible in the standard NASA processing (i.e., the pixels are masked without
being further processed). Mean T,(859) for the study region (determined from NASA global data) is about 0.16. (b) Relationship between simulated MODIS FAI and field FAI for all aerosol

types and optical thickness used in the simulation.
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Fig. 9. Distributions of U. prolifera biomass (wet weight) per area derived from MODIS on 25 June 2008 (left) and 21 June 2015 (right), respectively. White color represents clouds, and the
green-reddish colors along the Subei Shoal are image artifacts due to extremely shallow bathymetry. The location of Qingdao is annotated with a black dot.

2008, yet most algae appeared near Qingdao in June 2008, explaining
the world-renowned green tide event that year.

Such an observation is reinforced by the 2008-2015 time series of
MODIS observations, shown in Fig. 10. Although due to frequent cloud
cover the time series was not continuous in time, the seasonal patterns
and inter-annual changes can still be clearly visualized. These patterns
agree well with those reported earlier, but with absolute total biomass
reported here. While each year showed similar temporal pattern
where U. prolifera biomass started to increase around day 140 and
peaked around day 170-180, significant inter-annual variability was
observed in the algae biomass, with the amount in 2015 at least doubled
those in other years for the peak months.

The total biomass, total carton, and total nitrogen contained in U.
prolifera on 8 maximum days between 2008 and 2015 are presented
in Table 2. The year of 2012 represented the minimal green tide year
while the year of 2015 was the maximum green tide year, with the
total algae biomass in the latter 20 times higher than in the former.
The factors leading to such extreme inter-annual variability, however,
are yet to be studied.
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Fig. 10. Total U. prolifera biomass (wet weight) in the YS derived from individual MODIS
images using the biomass model in Eq. (4) in relatively cloud-free days of each spring-
summer between 2008 and 2015. Each point represents total biomass corresponding to
the MODIS measurement time. The annotated number for each year represents the
mean daily biomass between day 140 and day 210. To account for uneven temporal
gaps due to cloud cover, the mean was not calculated as a simple average of the cloud-
free days, but calculated as an integration of cloud-free days divided by the temporal
interval (ie., the area covered by each curve divided by 70).

4. Discussion
4.1. Uncertainties in biomass estimates

Ideally, satellite-based estimates required field validation in order to
assess uncertainties. However, in the case of U. prolifera, it is impossible
to carry out such a direct validation and uncertainty assessment. This is
simply because that 1) U. prolifera is very patchy and its coverage is
often much smaller than a MODIS 250-m pixel; 2) technically it is nearly
impossible to collect all U. prolifera within just a MODIS pixel precisely;
3) the typical 0.5-pixel image registration error also makes it impossible
to find the exact area on the water surface corresponding to a MODIS
pixel. The difficulty in such a direct validation represents the most lim-
iting factor for the biomass model developed here, but it is an inherent
problem for any models that attempt to estimate coverage or area den-
sity of any floating materials in the ocean.

However, this does not mean that uncertainties cannot be evaluated
from the biomass estimates. The assessment of the laboratory-based
model using independent in situ data clearly showed model robustness
with small (14-16%) uncertainties for nearly all MODIS pixels (Fig. 7).
The aerosol simulations further showed additional uncertainties of
~6.5% (maximum 12.3%) when applied to MODIS R,. data (Fig. 8).
Thus, even in the worst case scenario, the total uncertainties would be

Table 2

Statistics of U. prolifera in the YS between 2008 and 2015. The first three columns show
maximum daily total wet biomass, carbon, and nitrogen during every year between
2008 and 2015 estimated from MODIS data using the biomass model developed in this
study. Also listed is the average daily growth rate calculated from multiple images. The last
column shows cumulative wet weight biomass of U. prolifera collected by local agency
during each year.

Year Total wet Total Total Average Annual cumulative wet
biomass carbon  nitrogen growth rate biomass collected by
(kiloton)  (kiloton) (kiloton) (% per day) local agency® (kiloton)

2008 591 19.26 091 11.6 76

2009 283 9.22 0.44 15.8

2010 120 391 0.18 17.5 32

2011 172 5.61 0.26 23.1 10

2012 88 2.87 0.14 16.5 12

2013 860 28.03 132 12.8 185

2014 742 24.18 1.14 9.7 101

2015 1791 58.37 2.76 125 265

@ Data from “Report on Marine Environmental Quality of Qingdao” between 2008 and
2015. Because some local group may have not reported algae collection and nearly all
these collection were from nearshore waters, these are provided here as a reference only,
and they represent the lower bounds from the mitigation efforts.
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the mean square root of 16% and 12.3% = 20% for most pixels. Consider-
ing that 35% was generally accepted as a standard for uncertainties in
chlorophyll retrievals at pixel level, 20% in the derived biomass should
be acceptable. On the other hand, these estimates are for U. prolifera in
offshore waters. For inshore waters near beaches, shorelines, or large
marine facilities, U. prolifera may aggregate and become thicker than
in offshore waters, resulting in FAI > 0.2 (last three panels in Fig. 3).
Under these circumstances, U. prolifera biomass will be underestimated
by ~40% for local regions (Fig. 7a). However, MODIS statistics in Fig. 7b
suggest that such circumstances are rare (<0.5%), therefore, not indicat-
ing a significant shortcoming of the biomass model. In addition, the sea-
sonality in every year and inter-annual variation patterns shown in Fig.
10 are all consistent with those reported in the published literature (Xu
etal., 2014; Qi et al,, 2016), thus providing an extra validity check. Note
that these annual variations are not due to changes in cloud covers be-
cause only cloud-free days were used in the MODIS estimates.

One may wonder whether the physically collected biomass, shown
in the last column of Table 2, could be used to partially validate the
MODIS-based biomass estimates. While in theory if the exact informa-
tion on the physical collection, such as the area and time interval of
the collection, were known, these numbers could provide a direct vali-
dation of the MODIS estimates for the same area and time interval. Un-
fortunately this is not the case. Instead, the physical collection was
mostly restricted to nearshore waters and those washed on the beaches,
which missed algae in offshore waters where most algae were found.
The exact collection times were not known either. In addition, not
every group reported their collection to the official agency in charge of
management and reports. Therefore, the reported values of biomass col-
lection in Table 2 represent only a small and also possibly disproportion-
al portion of the total algae amount floating on the sea surface as
estimated from MODIS, yet they can still provide useful information
for a partial, relative validation. For example, the relatively low-biomass
MODIS years (2010 —2012) also showed low collection amount as
compared with other years. Furthermore, excluding those low-biomass
years of 2010-2012 where algae collection could be significantly dispro-
portional to the total daily maximum amount, all other years showed
very close ratios (6.6 + 1.4, coefficient of variance = 21%) between
the two, suggesting a partial validation

4.2. Implications for mitigation and other studies

Each year, in order to maintain a clean environment to attract tour-
ism, local governmental agencies spent enormous amount of resources
to collect U. prolifera accumulated on both beaches and ocean surface.
Table 2 shows the total collected algae biomass (wet weight) during
each year reported by one agency. Considering that the algae weight
often contained sand particles from beaches and water from boat oper-
ations, perhaps only 50% of these weight numbers are from pure algae.
Then, compared with the daily maximum amount in Table 2, only 3-
13% of the total biomass from a single day (the maximum day) was
physically removed. Note that the total biomass estimated from
MODIS was from a single day without any consideration of the algae
growth. In reality, the cumulated algae biomass over the period of
April-July could only be higher than the single-day estimates. Clearly,
physical removal only accounted for a very small portion of the total
U. prolifera biomass. Even when considering that the actual amount
from the mitigation could be higher than those listed in Table 2 because
some groups may have chosen not to report, the “missing” values may
still be comparable to those reported values. However, given the fact
that most U. prolifera never landed but rather dissipated naturally in
the ocean, the physical removal may be an effective mitigation method
to keep a clean environment around the beaches.

Mitigation efforts require timely information on U. prolifera location
and amount. In the past, a web-based green tide online monitoring sys-
tem (ORSIFAI) was established using the FAI method and multi-sensor
satellite data (He et al., 2011; ORSIFAI 2009). The system produces

and shares Red-Green-Blue composite images, FAI images, green tide
thematic maps, as well as environmental variables such as sea surface
temperature (SST), chlorophyll-a concentration (Chla), photosyntheti-
cally active radiation (PAR), and sea surface wind (SSW). The system
has been running since 2009 as a prototype early-warning system to
alert the local government for possible mitigation effort. However, the
system only showed presence/absence of U. prolifera at certain loca-
tions. With the biomass model developed from this study and applied
to MODIS, the monitoring system will be able to provide quantitative es-
timate of U. prolifera biomass at any cloud-free location, thus helping to
make mitigation and other management decisions. The biomass infor-
mation near beaches may be particularly useful as it can help the man-
agement agencies to estimate how much resource (number of boats and
personnel) is required for mitigation.

U. prolifera growth rate has been determined in the past from field
culturing experiments. Here, during the first half of the bloom cycle
when U. prolifera started to appear in MODIS imagery and then reached
the daily maximum, daily growth rate (o, d=!) was estimated as
Ba n = Ba 1 (1 + a)", where d_1 is for day 1, day_n is for day n, n is
the number of days between the two MODIS observations, and B is inte-
grated biomass. The average daily growth rate for each year is listed in
Table 2. For all years, the average is 15 & 4% d~'. This is lower than
the reported value based on experiments over field cultures under con-
trolled conditions (23-26%) (Zhang et al., 2013; Wang et al., 2015). One
possible reason for the difference is that the “growth rate” estimated
from MODIS included algae mortality. The annual variations in such cal-
culated growth rate may result from changes in growth conditions,
which needs to be verified from more field experiments. On the other
hand, these MODIS-determined growth rates may be used in ecological
models to model the bloom's evolution in time and how the bloom re-
sponds to other environmental forcing.

To date, very few studies reported primary production or carbon fix-
ation of U. prolifera in the YS. The MODIS determined carbon and nitro-
gen contents from daily imagery in Table 2 may provide some
constraints to refine primary production models. They may also be com-
bined with carbon fixation data determined from field measurements
(Liu et al.,, 2015b; Song et al., 2008) to provide a better context for car-
bon studies.

4.3. Application to other satellite sensors

The model developed in this study is for MODIS FAI data. Actually
nearly all satellite sensors with the appropriate spectral bands can be
used for monitoring green tides. Some of these sensors have similar
RED, NIR, and SWIR bands to enable the derivation of sensor-specific
FAL These include Landsat-8/OLlI, sentinel-2/MSI, NPP/VIIRS, and FY-
3A&B/MERSI. However, their band widths and band centers differ
from those of MODIS, thus requiring some adjustments of the model co-
efficients. Specifically, the upper bound of FAI for 100% U. prolifera cov-
erage needs to be determined from each sensor. This has been achieved
through simulations using the hyperspectral reflectance corresponding
to 100% U. prolifera (i.e., MODIS FAI = 0.216), the relative spectral re-
sponse function of each sensor, and same radiative transfer simulations
to take account of variable aerosols when satellite-derived R, data are
used. The simulated FAI numbers for the various sensors were scaled
to MODIS FAI of 0.2 with the corresponding biomass of 2.0 kg/m?. The
results are listed in Table 3. Because a longer SWIR band was used (i.e.,
1.6 um versus MODIS 1.2 um), FAI from these sensors is higher than
the corresponding MODIS FAI The difference reaches 14% for the MSI
sensor. Considering the 20% uncertainties from the model and variable
aerosols, the total uncertainties would reach 25% when the MODIS
model developed here were to be applied to these sensors even in the
worst-case scenarios. Considering the complex situations of measuring
these patchy macroalgae, even this 25% uncertainty may still be
acceptable.
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Table 3

FAI values (last column) of Landsat-8/OLI, Sentinel-2/MSI, NPP/VIIRS, and FY3/MERSI corresponding to the field-measured MODIS FAI of 0.2 (i.e., 2 kg m~2 U. prolifera coverage on the
surface). These can be used to represent the upper bounds (i.e., 100%) U. prolifera coverage for the individual sensors when their satellite-derived FAI data are used to estimate biomass.
The lower bounds for the individual sensors need to be determined from their corresponding images. The upper bound and lower bound for an individual sensor can then be used to es-
timate biomass per pixel following the same approach of Qi et al. (2016). For completeness the 3 bands used for the FAI calculation and the spatial resolution for each sensor are also listed.

Satellite/sensor Agrep (um) Anir (Um) Aswir (um) Spatial resolution (m) FAI

Landsat-8/0LI 0.63-0.68 0.845-0.885 1.56-1.66 30 0.216 + 0.007
Sentinel-2/MSI 0.65-0.68 0.855-0.875 1.565-1.655 20 0.228 + 0.007
NPP/VIIRS 0.60-0.68 0.85-0.88 1.58-1.64 375 0.200 + 0.006
FY3/MERSI 0.635-0.675 0.84-0.88 1.615-1.665 250 0.211 + 0.007

4.4. Implications for monitoring Sargassum blooms

Since 2011, blooms of the brown macroalgae Sargassum spp. (mostly
S. fluitans and S. natans) occurred every year in the Caribbean (Wang
and Hu, 2016). Although Sargassum is a critical habitat for fish and
other marine animals, significant Sargassum beaching can cause similar
environmental and economical problems as U. prolifera beaching in
Qingdao (Hu et al., 2016). Due to lack of direct biomass measurements,
Wang and Hu (2016) could only use a density estimate (in % cover) to
describe Sargassum abundance and its spatial and temporal distribu-
tions. The approach developed here to estimate U. prolifera biomass
can be easily transferred to Sargassum measurements. Indeed, once Sar-
gassum biomass per area is determined from a pure (100% coverage)
Sargassum mat, the number can be applied to all results obtained in
Wang and Hu (2016) to convert the percent coverage to absolute total
biomass. Such an experiment may be conducted in the near future in
order to provide a more quantitative estimate of Sargassum blooms.

5. Conclusion

Remote sensing studies of U. prolifera green tides in the YS are not
new, but to date it has been impossible to estimate U. prolifera biomass,
not to mention its carbon and nitrogen content. This knowledge gap is
now filled by the current study through carefully designed experiments,
radiative transfer simulations, and a validated biomass model. All re-
sults showed the model robustness with known uncertainties, leading
to application of the model to MODIS imagery to derive biomass
distributions.

The findings will have direct impact on future mitigation efforts as
quantitative biomass estimates will now be available in near real-time
through an existing monitoring system. The findings also have signifi-
cant implications for monitoring blooms of other macroalgae such as
Sargassum spp. in the Intra-Americas Sea, as the model development ap-
proach may be extended to develop models for other macroalgae.
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