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A B S T R A C T

Mediterranean-climate oak woodlands are prized for their biodiversity, aesthetics, and ecosystem services.
Conservation and maintenance of these landscapes requires accurate observations of both present and historic
conditions capable of spanning millions of hectares. Decameter optical satellite image time series have the
observational coverage to meet this need, with almost 40 years of intercalibrated global observations from the
Landsat program alone. However, the optimal approach to leverage these observations for oak ecosystem
monitoring remains elusive. Temporal mixture models (TMMs) may offer a solution. TMMs use a linear inverse
model based on temporal endmembers (tEMs) chosen to optimize both parsimony and information content by 1)
possessing clear biophysical meaning, and 2) accurately representing the variance structure of the observations
in the temporal feature space (TFS) composed of low-order Principal Components. We apply this approach to oak
woodlands of the California Sierra Nevada foothills. Low-order TFS structure across the≈1200 km2 study area is
consistently bounded by 4 tEM phenologies: annual grasses, evergreen perennials, deciduous perennials +
shadow, and unvegetated areas. Satellite-based tEM phenologies correspond to ground-based PhenoCam time
series (correlations 0.8 to 0.9). Systematic temporal decimation is conducted to simulate years with varying
numbers of cloud free measurements. Fractional cover of temporal endmembers is observed to scale linearly
using as few as 6 images per year and coarse feature space topology is retained with as few as 4 well-timed
images per year. In comparing 10 m versus 30 m pixel resolution, linear scaling is observed with correlations of
0.78–0.95. Comparison of 10 m Sentinel-2 and LiDAR-derived tree cover estimates at San Joaquin Experimental
Range shows a correlation of 0.74. Visual orthophoto validation shows accuracies of annual, deciduous, and
evergreen cover fractions of 74–88% (n = 102). Multi-year analysis of August imagery at Sequoia National Park
to investigate dynamics associated with the 2012–2016 drought reveals 5 tEMs corresponding to: steady growth,
steady decline, early decline then regrowth, persistent vegetation, and no vegetation. Validation images are
sparse, but where available show accuracies in the 88 to 91% range for decrease, growth, and persistently
vegetated multiyear endmembers (n = 102). Decreases are observed in areas with oak mortality documented in
a recent field-based study. Overall, our results suggest the TMM approach has promise as an accurate, ex-
plainable, and linearly scalable method for retrospective analysis and prospective monitoring of Mediterranean-
climate oak landscapes.

1. Introduction

Mediterranean-climate oak woodlands and savannas are the focus of
considerable scientific, social, and aesthetic interest. Covering ap-
proximately 4 million hectares in California and 3 million hectares in
Spain and Portugal (Marañón et al., 2009), oak systems host thousands
of understory plant and animal species (California Department of Fish

and Wildlife (CDFW), 2014; Guisti et al., 1996; Swiecki et al., 1997). As
a consequence of their broad spatial extent and exceptional biodi-
versity, oak woodlands and savannas are a key component of the des-
ignation of both the California Floristic Province and Mediterranean
Basin as global biodiversity hotspots (Baldwin, 2014; Myers et al.,
2000). In addition to their ecological importance, Mediterranean-cli-
mate oak landscapes are important pastoral landscapes and also
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recognized for their intrinsic aesthetic and historic value (Allen-Diaz
et al., 2007; Davis et al., 2016; Pavlik et al., 1993).

Maintaining Mediterranean-climate oak landscapes is challenging
given the number of potential drivers of change. Some agents, such as
drought and fire, have existed for millennia and may be amplifying
(Borchert and Davis, 2018; Klausmeyer and Shaw, 2009; Loarie et al.,
2008; Mensing, 2006; Miller et al., 2009). Other processes, like sub-
urban sprawl (Cameron et al., 2014; Gaman and Firman, 2006) and
introduction of nonnative pests (Swiecki et al., 1997), are more recent
threats. The confluence of such factors, including observed low re-
cruitment rates of some oak species (Tyler et al., 2006), could sig-
nificantly alter the extent and composition of oak landscapes. Under-
standing both past and ongoing effects of these change drivers can both
provide valuable context for predicting future impacts and help guide
conservation efforts.

Quantitative evaluation of change at a landscape scale requires
accurate and spatially extensive methods for both retrospective analysis
and prospective monitoring. While optical remote sensing has been
used for decades for this purpose, recent advances in data availability
and quality have substantially increased the capability of satellite
imaging systems. Many of these developments are associated with the
Landsat program, including the opening of the Landsat archive (Wulder
et al., 2012); rigorous radiometric intercalibration (Chander et al.,
2009); subpixel geolocation and terrain correction (Storey et al., 2014);
and standardized atmospheric correction routines (Vermote et al.,
2018; Vermote and Saleous, 2007). In addition, the 2015 and 2016
launches of Sentinel-2a and -2b (Drusch et al., 2012), along with the
European Space Agency's free data availability policy (Berger et al.,
2012), provide increased spatial resolution and substantially shortened
revisit time. Considerable effort has also been devoted to merging the
Landsat and Sentinel-2 data streams, including the development of the
Harmonized Landsat Sentinel-2 (HLS) product (Claverie et al., 2018).
Taken together, these developments have been heralded as a “paradigm
shift” in optical remote sensing (Woodcock et al., 2019), offering new
opportunities to improve our understanding of oak landscapes in both
California and the Mediterranean region.

Advances in imaging systems and data availability have been ac-
companied by a concomitant increase in research on remote sensing of
oak woodlands and Mediterranean-climate ecosystems. A plethora of
monitoring and analysis methods have been proposed for
Mediterranean landscapes. Many of these methods are based on change
detection from image pairs or relatively small numbers of images (e.g.
Berberoglu and Akin, 2009; Recanatesi et al., 2018). While useful for
mapping changes associated with specific events, these methods do not
fully exploit the dense image time series that are now available. Other
methods focus on aerial orthophoto, imaging spectroscopy, and/or
LiDAR surveys (e.g. Asner et al., 2016; Bogan et al., 2019; Fricker et al.,
2019; Miraglio et al., 2020; Navarro et al., 2019; Swatantran et al.,
2011). These studies have achieved impressive results, but remain
spatially and temporally limited until data coverage expands con-
siderably – and even then will not allow for retrospective analysis. Fi-
nally, highly generalized approaches to automated operational mon-
itoring (e.g. Koltunov et al., 2019; Verbesselt et al., 2010) are under
continuous development and can be a useful tool for land managers.
However, they are intentionally designed not to be tailored to specific
ecosystem types. The need still exists for a method that is tailored to oak
woodland and savanna landscapes and can efficiently map and monitor
change at regional scales using existing multispectral satellite image
time series.

Temporal mixture models (TMMs) may offer a parsimonious solu-
tion. TMMs (Piwowar et al., 1998; Quarmby, 1992; Quarmby et al.,
1992) represent each pixel time series as a linear combination of con-
stituent endmember temporal processes. Using spatiotemporal char-
acterization (Small, 2012) and knowledge of the landscape, the end-
member processes can be chosen to represent straightforward, intuitive
landscape components (e.g. distinct vegetation phenologies). Unlike

many commonly used complex, multilayered statistical mapping algo-
rithms, the TMM approach rates highly on the metric of “explainability”
(Gunning, 2017), a factor deemed increasingly important by data sci-
entists. TMMs are most useful when objects on the landscape are: 1)
spatially mixed at the scale of the pixel, and 2) more distinct temporally
than spectrally. These conditions are met in many Mediterranean-cli-
mate oak landscapes where plant communities may be spatially het-
erogeneous and spectrally indistinct, but phenologically variable. Pre-
vious studies have implemented TMMs for the mapping of impervious
surfaces (Li and Wu, 2014; Yang et al., 2012), arctic sea ice (Chi et al.,
2016; Piwowar et al., 1998), seasonal cloud forest/grassland systems
(Sousa et al., 2019), agricultural dynamics (Jain et al., 2013; Lobell and
Asner, 2004; Quarmby et al., 1992; Sousa and Small, 2019), and tro-
pical mangrove forests (Small and Sousa, 2019), with promising results.
To our knowledge, however, TMMs remain untested both for Medi-
terranean systems in general and for California oak landscapes in par-
ticular.

In this work, we examine the TMM approach to the mapping and
monitoring of Mediterranean-climate oak landscapes. We focus on the
California Sierra Nevada foothill oak woodland system (hereafter
“Sierra foothills”) for reasons outlined below. Specifically, this work
addresses the following questions:

1) Characterization: What are the dominant spatiotemporal modes of
variability in these landscapes, as captured by decameter multi-
spectral satellite image time series? Which, and how many, unique
phenological signatures can be reliably identified? How do temporal
endmembers derived from satellite image series compare to in-
dependent ground-based phenology measurements?

2) Stability & Scaling: How does this characterization change across the
~500 km extent of the study area? With decreased temporal sam-
pling frequency? How do mapping results compare between 10 m
(current & future Sentinel-2) and 30 m (historic & current Landsat)
spatial scales?

3) Validation and Comparison: How does single-year mapping accuracy
compare against canopy height models derived from small-footprint
airborne LiDAR? How do estimates of drought-associated defolia-
tion compare to airphotos and meter resolution satellite images?

2. Background

2.1. Study area

The same landscape complexity that imparts much of the value of
oak landscapes also substantially complicates monitoring efforts. Oak
landscapes span a wide range of climate zones, elevations, soil types,
and land ownership regimes. Individual oaks span a broad continuum
of morphologies and sizes: for instance, oak canopies can range from
shrublike,< 1 m diameter to arborescent, > 30 m diameter. Tree
heights can also vary at a similar scale. Structurally, oak landscapes
range from open, grass-dominated savannas with sparse tree cover to
dense, closed canopy woodlands and forests. Trees can occur in
monospecific or mixed stands. Oak species can be evergreen, seasonally
deciduous, and/or drought-deciduous. Substantial phenologic variation
exists within species and even within canopies of individuals. Any
comprehensive analysis and monitoring approach must contend with
this formidable multiscale complexity.

One approach to accommodate this diversity is to decompose the
full spatial domain of oak woodlands and savannas into smaller sub-
regions with more manageable properties. California's Sierra Nevada
foothills (white outline in Fig. 1) is one such subregion. This area is
largely under private ownership and predominantly managed for cattle
ranching, but in recent decades the Sierra foothills have also experi-
enced extensive conversion from oak woodlands to rural residential
development, especially areas east of Sacramento (Cameron et al.,
2014; Gaman and Firman, 2006). Extreme drought from 2013 to 2016
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has also been associated with elevated rates of oak mortality here (e.g.,
(Das et al., 2020; McLaughlin et al., 2020).

We specifically focus on the ≈1200 km2 area mapped by the Jepson
Flora Project (Baldwin et al., 2020) as Northern, Central, and Southern
Sierra Nevada Foothills: Oak Woodlands. The ~500 km × 25 km study
area ranges in elevation from ~200 to 600 m ASL and is comprised of
rolling hills dissected by east-west running canyons. The climate of the
study area is classified as hot summer Mediterranean (Köppen Csa).

The San Joaquin Experimental Range (SJER), a longstanding re-
search station (est. 1934), is chosen as the location of our LiDAR-based
validation/comparison on the basis of extensive ancillary data asso-
ciated with its status as a Core Terrestrial site of the National Ecological
Observatory Network (NEON). Quercus douglasii (blue oak) and Q. wi-
slizeni (interior live oak) are the dominant oaks here. Herb layer com-
position is diverse and spatially variable but dominated by
Mediterranean annual grasses such as Avena barbata, Bromus diandrus,
B. hordeaceous, and Festuca myuros, as well as native and non-native
annual forbs such as Lupinus bicolor, Erodium cicutarium and Medicago
polymorpha (McClaran and Bartolome, 1989). Scattered shrubs include
evergreen chaparral species, notably Ceanothus cuneatus.

Sequoia National Park (SNP) is a longstanding federally protected
area (est. 1890). Most of the park is characterized by rugged topo-
graphy, with an elevation gradient spanning over 4000 m. A diverse set
of vegetation communities exist in the park. We focus on the relatively
small spatial subset of SNP which hosts blue oak woodlands, found at
low elevations near the western park boundary. These woodlands are
dominated by Q. douglasii, and also commonly include Q. wislizeni,
Aesculus californica (California buckeye) and Fraxinus dipetala
(California ash). This area was the subject of a recent study by (Das
et al., 2020) which presented field evidence of drought-associated oak
mortality. We focus our multi-year demonstration in this region.

2.2. The mixed pixel

The combination of discontinuous tree canopy and strongly con-
trasting herb and soil makes oak woodland spectral properties highly
sensitive to sensor spatial resolution (Franklin et al., 1991). Most

individual tree crowns are< 10 m in diameter and therefore fall below
the scale of the Sentinel-2 and Landsat-series sensors. Because the
spatial scale of the objects of interest on the landscape is finer than the
spatial resolution of the sensor, most pixels in these images are spatially
mixed – i.e., they integrate signal from more than one object on the
landscape. This phenomenon is illustrated in Fig. 2. While the 30 cm
resolution of the airphoto is sufficient to resolve all individual trees and
most shrubs, the area integrated by most Landsat and Sentinel-2 pixels
(gray squares) clearly extends beyond individual canopies. The mixed
pixel is thus a fundamental characteristic of decameter resolution
imagery of the Sierra foothills (and many other landscapes), suggesting
the applicability of L-resolution models – and intrinsic limitations of H-
resolution models – as described by (Strahler et al., 1986). Spectral and
temporal mixture models take just such an L-resolution approach by
fundamentally acknowledging that the objects of interest are finer than
the scale of the pixel and treating this subpixel heterogeneity in an
explicit and transparent way.

Spectral mixture analysis (SMA; Adams et al., 1986; Gillespie, 1990;
Settle and Drake, 1993) is one well-understood approach to the mixed
pixel problem for single image acquisitions. SMA optimizes the ex-
traction of information from a multispectral image by considering the
radiance (or reflectance) measured by each pixel as a linear combina-
tion of the radiance (or reflectance) of spectral endmember materials,
plus error. The areal cover of each endmember within the spatial extent
of each pixel can then be estimated accurately using least squares. The
subpixel areal abundances of each EM are estimated through the in-
version of a system of linear equations of the form:

+ + + =f E f E f E ε RS S λ V V λ D D λ λ, , ,i i i i

Where Rλi is the observed reflectance at a given wavelength; fS, fV, fD
are the fractional subpixel area cover of the Substrate (S), Vegetation
(V) and Dark (D) EMs; ES,λi, EV,λi, ED,λi are the reflectances of the S, V
and D EMs at each wavelength; λi ∈ {482 nm; 561 nm; 655 nm; 865 nm;
1609 nm; 2201 nm} (in the instance of unmixing with bands 2–7 of
Landsat 8 OLI), and ε is model misfit, respectively.

A fundamental assumption of spectral mixture analysis is that the
landscape is comprised of a small number of materials with distinct

Fig. 1. Index map. White outline shows approximate extent of Blue Oak (Quercus douglasii) in woodlands, savannas, and grasslands of the Sierra Nevada foothills.
Yellow dots indicate PhenoCam locations used in Figs. 3 and 4. Black/cyan box and right panel show extent of the Sentinel-2 tile (11SKB) containing the San Joaquin
Experimental Range (SJER, yellow dot and vector), used for the single-year mapping example in Figs. 5, 7a, 8 and 9. Cyan dot shows approximate location of Sequoia
National Park (SNP), site of multi-year analysis and validation example in Figs. 6 and 7b. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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spectral signatures. Linear mixing is also assumed. This concept is illu-
strated in Fig. 2b (center row), where the reflectance of an example
mixed pixel (black curve on right) is considered to be a weighted sum of
the reflectances of constituent spectral endmember reflectances (red,
green and blue curves on left). SMA has been shown to accurately es-
timate vegetation cover, even in sparse and multiple scattering en-
vironments like semiarid shrublands (Smith et al., 1990), exceeding the
accuracy of spectral indices like NDVI in field validation exercises
(Elmore et al., 2000) and not suffering from the well-known issues with
NDVI stemming from the impact of soil background and atmospheric
effects (Sousa and Small, 2017).

In some cases, the concept of subpixel mixing can be profitably
extended to the time domain. Using this approach, a landscape is
considered to be comprised of a small number of “materials” with distinct
temporal signatures. Usually, a single variable is first extracted from each
image in the multispectral time series (e.g. subpixel cover of a single
material, like photosynthetic vegetation, from SMA; or a spectral
index). This reduces the dimensionality of the observation space from (t
x b) to t, where t is the number of images in the time series and b is the
number of spectral bands in each multispectral image. The result of this
step is a substantial conceptual simplification and reduction of com-
putational load. Temporal mixing is conceptually illustrated in Fig. 2c
(bottom row), where an example vegetation cover time series of a
mixed pixel (black curve on right) is considered to be a linear sum of

endmember vegetation phenologies (red, green, magenta and blue
curves on left). The subpixel areal abundances of each temporal EM can
then be estimated through the inversion of a system of linear equations
analogous to the spectral mixing equations:

+ + + …+ + =f E f E f E f E ε VtEM tEM t tEM tEM t tEM tEM t tEMn tEMn t t1 1, 2 2, 3 3, ,i i i i i

Where Vti is the SMA-estimated vegetation cover at a given time; ftEM1,
ftEM2, ftEM3, … ftEMn are the fractional subpixel area cover of the 1st,
2nd, 3rd, … nth temporal endmembers; EtEM1,τi, EtEM2,τi, EtEM3,τI, …
EtEMn,τi are the vegetation cover values of the 1st, 2nd, 3rd, … nth

temporal endmembers at each time step ti; ti ∈ {1st image date, 2nd
image date, 3rd image date, … last image date}, and ε is model misfit
respectively.

Notably, the temporal mixing approach is fundamentally different
from statistical approaches to multitemporal analysis of the land cover
fractions derived from SMA because it treats the pixel time series as
area-weighted fractions of constituent temporal patterns. Many studies
have used SMA to generate inputs to further multitemporal statistical
analyses, such as using vegetation cover as the basis of logistic phe-
nology models (Fisher et al., 2006) or Tasseled Cap brightness/green-
ness/wetness as inputs to multitemporal unsupervised classifications of
land cover (Kuemmerle et al., 2006). However, far fewer have used
SMA fraction estimates as the basis for temporal mixture models (e.g.
Small, 2012; Sousa and Small, 2019). This temporal mixing approach is

Fig. 2. Subpixel mixing. A. Oak woodlands and savannas are spatially undersampled by decameter resolution sensors like Landsat and Sentinel-2. Example shown for
an area within the San Joaquin Experimental Range (SJER). At 30 cm airphoto resolution (left), the landscape can be profitably segmented into discrete objects - and
their shadows. At the scale of 30 m Landsat/HLS and 10 m Sentinel-2 VNIR image time series, however, most pixels are comprised of varying mixtures of biotic and
abiotic materials. B. Spectral mixture modeling estimates area abundance of spectrally distinct endmember materials within each mixed pixel. C. Temporal mixture
modeling simply extends this concept to the time domain, estimating subpixel area abundance of temporally distinct phenologies or multi-year trajectories.
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investigated in the present analysis.
Obviously, the implementation of temporal mixture analysis is

considerably less straightforward than spectral mixture analysis. A
number of stringent data quality and standardization requirements
must be met in order for this approach to be tractable: e.g. subpixel
coregistration, radiometric calibration, and consistent atmospheric
correction. In addition, the formulation of the temporal mixing inverse
problem is generally less well-posed than the spectral mixing inverse
problem because biogeophysical parameters (e.g. vegetation cover) can
change with time in many more ways than reflectance can change with
wavelength. Potential impacts of this complexity include a much higher
dimensional feature space and more poorly conditioned endmember
matrix for the temporal case than the spectral case. Adding to this
complexity, variations in illumination and viewing geometry can in-
troduce systematic artifacts which confound straightforward inter-
pretation, particularly in savannas where tall trees with voluminous
canopies can cast laterally extensive and seasonally variable shadows
(Franklin et al., 1991). Topography also compounds these effects.
However, while these challenges complicate temporal mixture analysis,
they also impact any method for satellite image time series analysis.
Fortunately, decades of effort in development and implementation of
preprocessing routines has succeeded in mitigating – albeit never truly
eliminating – the most severe of these complications.

Furthermore, the single- and multi-year temporal mixing cases are
characterized by important conceptual differences. The product of the
single-year unmixing problem is essentially a phenology map. Single-
year temporal endmembers generally correspond to plants with varying
annual cycles in leaf area and primary productivity. Considering a pixel
time series to be a linear mixture of areal cover of plants with varying
phenologies is bears clear conceptual similarities to the spectral mixing
problem. However, the application of temporal mixture modeling to
multi-year time series is more complex, and in many cases may not
provide a reasonable representation of the ecological dynamics at play.
The critical confounding factor is the potentially immense number of
life histories of individual trees and shrubs, occurring at varying rates
and with varying start times. If this range of trajectories is too large or
complex to be represented by a relatively small number of temporal
endmembers, a simple mixing model is unlikely to yield satisfactory
results.

However, in the case of Mediterranean systems, ecoclimatic shocks
often occur synchronously across large swaths of landscapes (e.g.
drought, spatially extensive wildfires). In these cases, it is plausible that
the complex life history space of the landscape may collapse onto a
small number of trajectories with similar initiation times. If the ecolo-
gical purpose of the analysis is to detect and quantify spatiotemporal
patterns of change associated with the event, these trajectories may
provide sufficient information to make the approach profitable. The
conceptual model of spatial mixing still holds because an individual
30 × 30 m Landsat pixel could easily be comprised of individual trees
and shrubs with disparate levels of impact (e.g. 1 deciduous oak
strongly impacted by drought; 1 evergreen oak unimpacted by drought;
several young and growing shrubs; ….). We examine whether multi-
year vegetation trajectories exhibit generally synchronous response to
severe drought by examining model outputs in an area with field
documented oak decline in Sequoia National Park (Das et al., 2020).
While temporal mixture modeling is clearly not the only approach that
can be taken to this problem (McLaughlin et al., 2020), the relative
novelty and conceptual simplicity of the method make the application
to tree mortality monitoring worth examining.

3. Materials and methods

3.1. Single-year phenology mapping

The single-year (phenology) portion of the analysis was based on
the time period July 1, 2018 through July 1, 2019. The Harmonized

Landsat-Sentinel (HLS) S30 data product was the source of 30 m data,
downloaded from: https://hls.gsfc.nasa.gov/. HLS data are produced
free of charge and have undergone standardized radiometric, atmo-
spheric, terrain, and BRDF correction. All available HLS images for tiles
10SFH, 10SFJ, 10SGH, 11SKA, 11SKB, 11SLA and 11SLV over the study
period were downloaded and visually inspected. Images with visible
cloud cover and swath edge images with partial spatial coverage were
removed. Linear spectral mixture analysis was then performed on each
remaining image based on standardized global spectral endmembers
from (Small, 2018). These endmember spectra are qualitatively similar
to previously published Landsat 7 and 8 endmembers from global
analyses (Small, 2004; Small and Milesi, 2013; Sousa and Small, 2017),
as well as Landsat 8 and AVIRIS endmembers from coincident acqui-
sitions in spatially constrained but spectrally diverse California land-
scapes (Sousa and Small, 2018). A unit sum constraint with a weight of
unity was used for all instances of spectral and temporal mixture ana-
lysis. This approach has proven satisfactory for the spectral mixing case
in previous studies (Small, 2003; Small, 2001; Sousa and Small, 2017).
For the temporal mixing cases, varying unit sum constraint weights
were compared for the tiles containing the SJER and SNP validation
areas, including unconstrained models. Results did not change appre-
ciably with varying weights, and RMS misfits were low (e.g. 97% of
pixels with RMSE<0.05 for the single-year TMM), so the same unit
sum weight (1) was used in all unmixing cases for consistency. Shade/
dark normalization was also investigated for these two tiles. Upon
shade normalization, however, the geometric configuration of the TFS
was partially collapsed, endmember clarity was reduced, and resulting
TMM maps were noisier than those estimated without applying the
additional normalization step. We suspect that this may be because 1)
dark fraction can provide information about subpixel vegetation
structure which is a source of signal for the TMM, and 2) we do not have
sufficient information to accurately partition shade/dark fractional area
into substrate vs vegetation cover. We acknowledge shade/dark nor-
malization can be appropriate in some circumstances, but do not apply
it throughout this analysis for these reasons. The vegetation cover
images were stacked to produce a single image time series for each tile.
The images used for each tile are listed in Table S1. The single-year
30 m stacks were used for PhenoCam comparison (Fig. 4), single-year
example TMM (Fig. 5), and investigations of spatial scaling (Fig. 8),
temporal aliasing (Fig. 9), and cross-tile consistency (Fig. 10).

10 m maps used for LiDAR comparison (Fig. 7a) and spatial scaling
(Fig. 8) were derived from Sentinel-2 data downloaded free of charge
from the Copernicus data portal: https://scihub.copernicus.eu/dhus/.
Images were downloaded as Level 1C Top of Atmosphere (TOA) re-
flectance and processed to Level 2 Surface Reflectance using the
Sen2Cor processing module available within the ESA SNAP freeware
program. 20 m bands were resampled to 10 m resolution. Surface re-
flectance images were then unmixed to produce subpixel vegetation
cover estimates using the same globally standardized spectral end-
members referenced above. Only tile 11SKB (encompassing the SJER
field site) was used for the 10 m maps. The same image dates (Table S1)
were used to make the 10 m and 30 m single-year stacks.

3.2. Multi-year change mapping

The multi-year portion of the analysis was based on the time period
from August 2000 through August 2019. Thirty meter resolution maps
for the multi-year analysis were derived from Landsat 5 and 8 imagery,
viewed at: https://glovis.usgs.gov/. All available August images from
Path 42, Row 35 were visually examined. Level-2 surface reflectance
images for all visibly cloud-free acquisitions were ordered from
EarthExplorer (https://earthexplorer.usgs.gov/) and downloaded from
the ESPA download hub (https://espa.cr.usgs.gov/). Although the
sidelap of Path 41, Row 35 also includes much of Sequoia National
Park, this tile was not included in the analysis to minimize BRDF-re-
lated uncertainty and because spatial coverage of the oak landscapes of
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interest is incomplete. August was chosen to optimize viewing & illu-
mination geometry, maximize the probability that healthy winter-de-
ciduous blue oaks would be leaf-on, and minimize the probability that
summer-deciduous trees like the California Buckeye would be leaf-on.
Linear spectral mixture analysis was then performed on each image
based on cross-calibrated global spectral endmembers from (Sousa and
Small, 2017). A unit sum constraint with a weight of unity was again
used for all instances of spectral and temporal mixture analysis. The
vegetation cover images were stacked to produce a single multi-year
image time series and used for the SNP analysis (Fig. 6). The images
used are listed in Table S2.

3.3. Ancillary field and airborne observations

PhenoCam data were downloaded free of charge from the
PhenoCam webpage: https://phenocam.sr.unh.edu/. Plots were made
using 3-day maximum midday green chromatic coordinate (GCC) and
standard regions of interest available on the PhenoCam website. The
SJER top-of-tower PhenoCam was repositioned partway through the
time series, so only images from after the repositioning (September 28,
2018 onward) were used.

The NEON Airborne Observation Platform (AOP) collected 30 cm
resolution orthophotos and LiDAR at the SJER site in June 2013, and
March/April 2017, 2018, and 2019. These data were downloaded free
of charge from the NEON data portal (https://data.neonscience.org/
home). The 1 m 2018 LiDAR canopy height model (CHM) was con-
verted to tree presence/absence by simple thresholding. A number of
thresholds were tested, and a conservative 3 m threshold was ultimately
adopted. The 1 m image was then aggregated to 10 m resolution and
convolved with a 9 × 9 pixel low-pass Gaussian blurring filter to ap-
proximate the point spread function of Sentinel-2 sensor. Because both
the “deciduous perennial” and “evergreen perennial” endmembers are
associated with trees and shrubs, these two cover fractions were
summed to form a “tree” cover estimate in the single-year dataset.

Unfortunately, healthy leaf-off deciduous oaks could not be

confidently discriminated from defoliated/standing dead oaks in the
2017, 2018 and 2019 NEON AOP airphotos due to flight timing (late
March to early April) occurring prior to full greenup of deciduous oaks.
Validation of the single-year TMM was done by comparison to the 2018
and 2019 NEON AOP (to discriminate among grasslands, evergreen
trees, and deciduous/dead trees), then cross-checked against ortho-
photos and meter-resolution satellite imagery available on Google
Earth. Validation of the multi-year TMM was done by comparison to
Google Earth imagery alone. Availability of summer validation images
at SNP were limited (single image pair from 6/27/2010 and 5/31/
2014), not allowing for confident assessment of the early decline +
revegetation endmember fraction.

4. Results

Results are presented in the following sequence. First, we leverage
the PhenoCam sites to visually display the field-based time varying
optical properties of representative landscapes in the study area, qua-
litatively connect satellite image time series to ground-based phenology
observations, and compare quantitative field-based and satellite-based
metrics (Subsection A). Next, we present an illustrative example of the
workflow of characterization and modeling (B), followed by validation
and comparison (C) of both single-year phenology mapping and multi-
year change mapping. We then examine the sensitivity (D) of the re-
sulting maps to pixel size, temporal sampling, and spatial consistency
across the Sierra foothill spatial domain.

4.1. Relating ground and satellite observations

Initial characterization is performed using time lapse field photo-
graphy from the PhenoCam program (locations shown in Fig. 1). These
images provide useful qualitative and quantitative information for re-
lating time-varying surface biophysical properties to satellite image
time series (Fig. 3). Sites include a spatially extensive annual grassland
(Forbes Plot at the Sierra Foothill Experimental Range), a deciduous

Fig. 3. PhenoCam field photos. Oak density in Sierra foothill landscapes grades continuously from open, nearly treeless grasslands to closed canopy woodlands. The
PhenoCam network captures sites which span much of this range. Spatially averaged phenology of open grasslands (Forbes Plot at Sierra Foothill Experimental
Range) is visibly different from oak-dominated woodlands (Tonzi Ranch). Evergreen in the mixed landscape of the San Joaquin Experimental Range have yet
different phenology. Annual cycles for each location are shown using mid-day images. In areas dominated by annual grasses and deciduous oaks, maximum
vegetation cover (and primary production) occurs in the spring, when temperatures warm and root zone water content is greatest. Non-native grasses senesce rapidly
in late spring, but oaks (as well as some grasses, forbs, and shrubs) generally remain green through fall. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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blue oak woodland (Tonzi Ranch), and a mixed grassland/evergreen
oak/deciduous oak/conifer landscape (SJER) (Fig. 3).

Strong seasonality in photosynthetic vegetation cover is readily
apparent at each location, but with plant types differing widely in
amplitude and rate. Spatially averaged estimates for each location are
shown using both ground-based and satellite-based metrics in Fig. 4.
Because of the differences in GCC and Fv metrics used across sensors
(detailed in Materials and Methods), each plot is converted into stan-
dard scores (z-scores) by subtracting data values by the time series
mean and dividing by the standard deviation. Correlation coefficients of
ground-based and satellite-based time series range from 0.8 to 0.9.

Clear differences in amplitude and timing exist among the three
sites. The grass-dominated, northernmost Forbes site shows a gradual
green-up throughout the winter as grass growth is enabled by winter
precipitation but rate-limited by cold winter temperatures. Following
the peak in early spring, the grasses senesce rapidly as water becomes
limited, with a brief plateau in late spring/early summer. The blue oak
woodland at the Tonzi site shows a rapid green-up in late spring as grass
growth coincides with abrupt leaf-on of the deciduous oak canopy.
Senescence also begins rapidly as the grass understory dries, but then
slows and continues throughout the summer and into late fall/early
winter, as the chlorophylls in blue oak leaves slowly degrade over the
course of several months. Deciduous blue oak leaves then fall to the
ground, resulting in an abrupt drop in greenness toward the end of the
calendar year. Finally, the temporal signature of vegetation cover in the
mixed landscape at SJER shows less pronounced seasonality as a result
of a greater cover of evergreen oaks and conifers.

In short, the three exemplary PhenoCam sites illustrate three dis-
tinct phenologies present in the Sierra foothill oak woodland study area
– annual grasses at Forbes; deciduous trees and shrubs at Tonzi; and a
mixture including evergreen trees and shrubs at SJER. These phenolo-
gies can be quantified with comparable fidelity using both ground-
based and satellite-based metrics. This context is invaluable for TMM
implementation and interpretation, presented next.

4.2. Spatiotemporal characterization & temporal mixture modeling

The following methodology is based in two stages: 1) characteriza-
tion of the dominant spatiotemporal patterns present in the image time
series, and 2) modeling the data as a linear combination of these end-
member patterns. Characterization consists of Empirical Orthogonal

Function (EOF) analysis of the image time series, followed by inter-
rogation of the associated Temporal Feature Space (TFS) to find
bounding temporal endmembers (tEMs) as described by (Small, 2012).
Modeling is performed by least squares. For the sake of brevity, we omit
detailed discussion of the partition of variance, covariability matrices,
and higher order dimensions in the current analysis. Instead we focus
on the geometric structure of the low-order (Dimensions 1–3) projec-
tions of the TFS. We also focus the following portion of the analysis
(Figs. 5-9) on single tile spatial domains, deferring extension of the
results to the remainder of the study area until Fig. 10. In order to
illustrate the range of potential uses of the method, both single-year and
multi-year use cases are investigated.

4.2.1. Single-year
We begin by applying a covariance-based Principal Components

transform to the single-year time series. The associated low-order TFS
with bounding tEM phenology time series (left) and TMM phenology
map (right) are shown in Fig. 5. The single-year vegetation cover image
time series is characterized by four distinct tEM phenologies located in
clearly defined corners of the low-order temporal feature space: annual
grasses (Ag), deciduous perennials + seasonal shadow (D), evergreen
perennials (E), and unvegetated surfaces (U). Importantly, the annual
cycle of subpixel photosynthetic vegetation for deciduous trees and
shrubs is mimicked by the annual cycle of shadowing. This fundamental
ambiguity reduces the accuracy of the deciduous cover estimate. The
choice of Ag, D, and E single-year endmembers from the HLS spatio-
temporal characterization is further reinforced by clear correspondence
to the PhenoCam time series (Fig. 3).

The Ag, D, E and U tEMs bound a roughly tetrahedral mixing space,
illustrated by the white lines drawn on the TFS for conceptual guidance.
The TMM constructed from these tEMs represents the vegetation time
series of each pixel as a linear combination of the constituent tEM
phenologies. The contribution of each tEM to a pixel time series can be
visualized as the Euclidean distance of that pixel from the corner of the
tetrahedron corresponding to each tEM.

When displayed in geographic space, the relative contribution of
each tEM generates a phenology map. This map represents the Sierra
foothill landscape within tile 11SKB in terms of subpixel spatial cover of
deciduous perennials (red), evergreen perennials (green) and annual
grasses (blue). Plant communities with homogenous phenologies are
represented by the additive primary colors. Plant communities with

Fig. 4. Phenocam versus satellite time series for the 2018–2019 water year. Forbes grassland (left), Tonzi Ranch blue oak woodland (center) and San Joaquin
Experimental Range (right) are compared. 3-day average Green Chromatic Coordinate (GCC; lighter curve) from standard PhenoCam regions of interest is compared
with Harmonized Landsat-Sentinel (HLS) estimates of illuminated photosynthetic vegetation cover (Fv) from the pixels nearest the viewshed of each PhenoCam. For
comparison, time series are normalized by transformation into Standard (z) Scores [i.e. (x-m)/s]. Grasses show gradual greenup throughout winter followed by
abrupt late spring senescence. Blue oak woodlands show leaf loss in late fall/early winter and remain defoliated until spring. Mixed landscape at SJER has a less
distinct phenology signal. The level of PhenoCam/HLS agreement (correlations in the 0.8 to 0.9 range) is encouraging given differences in spatial coverage, sensing
modalities and view angle. Differences are likely due to a combination of BRDF effects and nonlinearities between the GCC and Fv metrics. The spectral mixture
model also produces simultaneous estimates of two other land cover fractions (Substrate and Dark). Correlation between the Substrate fraction and PhenoCam Red
Chromatic Coordinate (RCC) time series (not shown, 0.75 to 0.9) is also encouraging. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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intermixed phenologies correspond to areally weighted color combi-
nations of the additive primaries. As noted above, the deciduous signal
is mimicked by seasonal shadow. Despite this fundamental ambiguity,
the overall spatial pattern associated with the single-year TMM is
consistent with well-documented vegetation gradients over the region.
The validation location (Section C) is indicated by the green box.

4.2.2. Multi-year
Another approach to analysis focuses on multi-year change rather

than single-year phenology. To illustrate this analogous approach, we
use the 2000–2019 August image time series of Sequoia National Park.
This time period was chosen to span the duration of the historic
2012–2016 drought (Flint et al., 2018) as well as provide over 10 years
preceding the event to understand the pre-drought baseline. The cor-
responding TFS with bounding tEM multi-year trajectories (left) and

Fig. 5. Single year example. The temporal feature space (TFS; left) and associated temporal mixture model (TMM; right) map are illustrated using a single year time
series of vegetation abundance in tile 11SKB. The first three dimensions of the single year TFS clearly allow for discrimination between annual grasses (Ag),
deciduous perennials + seasonal shadow (D), evergreen perennials (E), and unvegetated areas (U). Temporal endmembers (tEMs) representing each phenology are
selected from the corners of the TFS and plotted in the lower right quadrant. These tEMs are then used to unmix the vegetation time series, generating a phenology
map. The area surrounding San Joaquin Experimental Range (J; green box) is used for LiDAR comparison in Fig. 7a. Fire perimeters (2015 onward) shown by white
vectors. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Multi-year example. TFS (left) and associated TMM map (right) show a multi-year change analog to the single-year phenology example from Fig. 5. Model is
based on a 20-year Landsat 5 and 8 time series of August vegetation cover for Sequoia National Park and environs. Locations of example validation sites (A, B & C)
shown in Fig. 7b are indicated with yellow boxes. The low-order TFS forms a mixing space approximating a trigonal dihedral geometry, outlined by white lines.
Temporal endmembers correspond to unvegetated (U; white), persistent (P; white), multiyear growth (G; green), decline during 2011–2017 drought (D; red), and
decline in early years of drought followed by regrowth (R; blue). Beginning and ending of drought indicated by vertical gray lines. TMM shows spatial patterns
corresponding to the R, D, and G tEMs. Park boundary shown with green vector and fire boundaries (1990-present) shown with white vectors. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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TMM multi-year change map (right) are shown in Fig. 6. A number of
fires occurred in the area over the duration of the time series. Fire
perimeters are shown as white vectors.

In this case, the spatial structure of the TFS is characterized by
additional complexity. Endmembers corresponding to multi-year
growth (G), decline during the drought years (D) and early decline
followed by revegetation (R) are observed, as well as tEMs representing
unvegetated locations (U) and locations which maintained persistent
August vegetation cover throughout the drought (P). Again, the TMM
bounds the mixing space defined by each tEM, in this case forming a
roughly trigonal dipyramidal structure (white lines).

The spatial pattern of vegetation response to drought suggests a
number of hypotheses regarding the relationship between drought
stress and topography. Detailed examination of landscape-scale pat-
terns of drought response is beyond the scope of this work, but some
potential paths for future work are further elaborated in the Discussion.
The locations of example meter-scale validation images (Fig. 7b) are
shown by yellow boxes (A-C).

4.3. Comparison & validation

Comparison of the single-year TMM to the 2018 NEON AOP LiDAR
dataset from SJER is shown in Fig. 7a. The spatial extent of the vali-
dation corresponds to the area shown in the green box in Fig. 5. The
resulting correlation between the Sentinel-2 derived TMM and the
LiDAR-derived tree map is 0.74. The strength of the relationship is
significantly improved by using the deciduous/shadow + evergreen
cover sum described in the Materials & Methods section (upper right) as
opposed to a single endmember fraction alone (lower right). This is in
accord with the mixture of evergreen and deciduous trees and shrubs at
the site.

Additional validation of the single-year phenology map was per-
formed at SJER by comparing single-year phenology maps against sub-
meter resolution airphotos and meter-resolution commercial satellite
imagery. The continuous TMM was converted to a binary classification
by thresholding. Annual grasslands were mapped as> 0.9 Annual tEM
cover; evergreen oak woodlands were mapped as> 0.9 Evergreen tEM
cover, and deciduous oak woodlands were mapped as> 0.9 Deciduous
+ Shadow tEM cover. 34 points were randomly selected from each
class and manually compared against airphotos. Classification

accuracies were highest for the evergreen woodland (88%) class, with
the few observed misclassifications (4 of 34) all occurring in grassland/
shrubland environments near lakes and/or in swales. Accuracy for the
annual grassland (85%) class was comparable, with the misclassifica-
tions (5 of 34) occurring in areas with defoliated (likely dead) tree
canopies, rock outcrops, or areas with dense deciduous shrub cover.
The lowest accuracy was observed for the deciduous oak class (74%).
As expected, misclassifications (8 of 34) were primarily located in areas
in which topography generated a seasonal shadow signal that mimicked
the deciduous vegetation time series. Some misclassifications were also
observed in areas with deciduous (non-oak) shrubs, rock outcrops,
swales in open grasslands, or near ponds. The associated single-year
confusion matrix is shown in Table S3.

Validation of the multi-year change map was more difficult given
the paucity of historic summer meter-resolution imagery and relatively
constrained spatial extent of the oak woodlands within Sequoia
National Park. However, sufficient imagery was available in 2010 and
2014 to provide some constraints on the Landsat based analysis. Again,
the continuous TMM was converted into a discrete classification though
simple thresholding. Winter deciduous and evergreen systems with no
change were mapped using a rule of Persistent Green tEM cover> 0.9.
Systems showing decreased August vegetation cover through the
2012–2016 drought were mapped by using a rule of Decrease tEM
cover> 0.9. Systems showing systematically increasing August vege-
tation cover were mapped by using a rule of Decrease tEM cover> 0.9.
Systems showing early decline followed by regrowth were unable to be
validated due to absence of available summer meter-resolution imagery
after 2014. 34 points were randomly selected and manually in-
vestigated for each of the three classes investigated. Spatial extent of
validation points was confined to the oak woodland portion of the park
as mapped by (Das et al., 2020). Classification accuracy was highest for
the pixels showing increased and decreased August vegetation cover
through the drought, with 91% of pixels identified correctly in each
case. The misclassified points showed either no definitive change in the
validation image pair or changes clearly associated with anthropogenic
activity. Classification accuracy was lower for the pixels showing per-
sistently high August vegetation cover, with 88% of pixels showing no
visible change in the validation imagery. The 4 misclassified points all
showed anthropogenic landscape modification. The associated multi-
year confusion matrix is shown in Table S4. Example validation image

Fig. 7. (a) Comparison of tree cover estimate to SJER LiDAR. Sentinel-2 single year evergreen + deciduous fraction sum correlates with 2018 NEON AOP LiDAR
canopy height model> 3 m at a level of 0.74. Sentinel-2 fractions slightly overestimate tree abundance at low fractions and underestimate tree abundance at high
fractions. Correlation is substantially weaker for Sentinel-2 evergreen or deciduous fraction alone, as expected given mixed tree phenology. (b) Example multi-year
validation. Visual comparison of meter-resolution imagery for locations indicated as decreasing through the drought. Image availability is limited, requiring the use
of early summer (late May and late June) images. Despite this limitation, clear evidence of browning/defoliation is observed in 31 of the 34 areas indicated by the
TMM as> 0.9 fraction of the Decrease temporal endmember. These results agree with the field measurements of (Das et al., 2020) and provide additional context in
the form of spatial and temporal constraints on canopy loss.
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pairs for the Decrease endmember are shown in Fig. 7b. Most of the
observed canopy browning was found to correspond to spatially con-
tiguous clusters (e.g. panels A and B). In some cases, even browning of
individual canopies (e.g. panel C) is detected.

Taken together, the combination of comparison to LiDAR-based tree
cover and visual validation of both single-year and multi-year TMMs is
encouraging for the potential utility of this for retrospective analysis
and prospective monitoring of Mediterranean-climate oak landscapes.
However, in order for the results to be maximally generalizable, im-
portant questions of sensitivity to spatial resolution, temporal sampling,
and sensitivity to spatial domain must be investigated. These factors are
considered in the following section.

4.4. Scaling & consistency

We first examine the effect of scaling single-year TMMs from 10 m
to 30 m resolution. TFS characterization was done in parallel and tEMs
were found to derive from the same pixels in both cases. Each image
time series was unmixed using its respective temporal endmembers and
cover estimates were compared. Results are shown in Fig. 8. Ten to
30 m scaling of the single-year TMM is generally linear, with best re-
sults for deciduous and annual cover estimates (correlations 0.95 and
0.91), and worst results for evergreen (correlation 0.78). Importantly,
model misfit also scales linearly and is< 5% for> 99% of pixels.

We next investigate the effect of reductions in temporal sampling by
systematic decimation, using the single-year 30 m TMM as our example.
Fig. 9 shows these results using a range of 24 images/year (full cloud-
free HLS time series) down to 3 images/year. The effects on low-order
TFS (A), tEMs (B), as well as linearity and bias relative to the full time
series (C and D) are documented. While minor differences in the low-
order TFS are noticeable in all cases, the geometric structure of the
space as well as number and location of bounding tEMs are generally
consistent with as few as 4 images per year. Cover estimates show
minimal bias or dispersion when subsampling at the 12 image per year
level. Nonlinearity is present in the annual cover estimates at 8 images
per year, with even more dispersion at 6 images per year but still only
minor nonlinearity. Severe nonlinearities and dispersions are observed
when sampling is reduced to 4 images per year or fewer.

Finally, we investigate the consistency of the low-order TFS and
tEMs across the extent of the study area. Comparable vegetation image
time series are constructed for each of the 7 HLS tiles which span the
Sierra foothill study area. For consistency, the same number of images
in each tile are used, chosen on the basis of atmospheric clarity and
maximally evenly spaced temporal sampling. The low-order TFS for
each tile is rendered and bounding tEMs are selected. Results for 5 of
the 7 tiles are shown in Fig. 10. The two tiles not shown also conform to
the pattern and are omitted for display purposes.

The results of the multi-tile experiment confirm that similar low-

Fig. 7. (continued)
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order TFS geometry and tEMs clearly characterize all but one of the
tiles. The tile comprising the exception (11SKA) does not show a clear
evergreen tEM. The absence of this tEM is consistent with its relatively
minimal spatial extent within the Sierra foothill zone and nearly com-
plete absence of pixels at higher elevations which comprise the bulk of
the evergreeen corner of the feature space. The observed consistency in
TFS structure, tEM time series, and data dimensionality is taken as
further support for the validity of the inferences made in this work
across the ≈ 1250 km2 spatial extent of the Sierra foothill grassland –
oak savanna – oak woodland ecosystem.

5. Discussion

5.1. Benefits of the methodology

The methodology presented here possesses a number of benefits for
the analysis and monitoring of Mediterranean-climate oak landscapes.
Among the primary features are conceptual simplicity, interpretability,
and parsimony. These features arise from the linearity of the mixing
equations and compact geometric interpretation of the TFS and TMM.
By explicitly accommodating the structure of the TFS, the approach is
designed such that maximum explanatory power is also retained. Once
tEMs are selected, the only tunable parameter is the weight associated
with the unit sum constraint.

In addition, the single-year tEMs have clear biophysical inter-
pretation. The phenology signatures present in the PhenoCam time
series, HLS time series from single pixels in PhenoCam viewsheds, and

independently derived landscape-scale tEMs derived from TFS structure
provide mutually reinforcing signals. We interpret this consistency as
strong evidence that: 1) the tEMs selected here are stable features of the
Sierra foothills spatial domain, 2) the tEMs accurately represent char-
acteristic vegetation phenologies of dominant plant functional types,
and 3) multispectral satellite time series of the study area can be well
described by these tEMs. We interpret these results as agreeing with
previous studies which have favorably compared PhenoCam spectral
indices to MODIS/VIIRS spectral indices (Liu et al., 2017; Richardson
et al., 2018; Zhang et al., 2018), Landsat/Sentinel-2 spectral indices
(Melaas et al., 2016), and Landsat spectral mixture models (Elmore
et al., 2012).

At least as important as the features discussed above, however, are
the benefits of the robustness and portability of the approach.
Supporting observations include linear 10 to 30 m scaling (Fig. 8), in-
sensitivity to (modest) temporal degradation (Fig. 9), and insensitivity
to changes in spatial extent across the study domain (Fig. 10). As a
further practical consideration, the approach is not computationally
onerous (< 1 min unmixing time per tile on laptop computer for 4 EM
single-year time series) and does not require extensive training data.
These strengths suggest that there is considerable potential for retro-
spective analysis and prospective monitoring across California foothill
oak woodlands. A similar model may also be applicable to biophysically
similar Mediterranean-climate oak landscapes in the Mediterranean
basin.

Fig. 8. 10 to 30 m spatial scaling. Temporal mixture model fractions are compared for 10 m Sentinel-2 and 30 m Harmonized Landsat-Sentinel (HLS). Fractions
generally scale linearly with correlations between 0.78 and 0.95. Minor bias between datasets is easily correctable with a linear transformation. This suggests that the
temporal mixture model approach may be profitably applied for retrospective analysis at Landsat 4–8 spatial resolution.
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5.2. Limitations

Effects due to observational geometry and atmospheric conditions
are fundamental limitations that must be considered by all satellite
image time series analysis approaches. As noted throughout this ana-
lysis, the most prominent way these factor into the model presented

here is as potential sources of ambiguity between deciduous vegetation
and seasonal shadow. Ongoing improvements in ancillary observations
(e.g. digital elevation models, atmospheric constraints) and preproces-
sing algorithms mitigate the severity of these problems, but are unlikely
to ever fully eliminate them – and may introduce additional unintended
artifacts. Fortunately, topographic/BRDF effects are relatively minor in

Fig. 9. Temporal aliasing. Effect of degradation of temporal sampling on the single-year temporal feature space (A), temporal endmembers (B), and resulting
temporal mixture model fractions (C and D) for the example HLS tile. PC 1 vs 3 topologic relations are generally retained with as few as 6 images. Fraction agreement
remains linear down to the 6-image stack. Mean fraction differences are< 10% for each fraction even when the temporal signal is degraded from 24 to 6 images per
year. Degradation down to 4- and 3- images per year results in instability in the 4-EM inversion.
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the Sierra foothills due to moderate topography – but are likely to be
more severe in more rugged oak woodland landscapes in California as
well as for other ecosystem types. Data loss during times of spatially
extensive cloud cover (e.g. winter in the Sierra foothills) remains an
unavoidable limitation. This is particularly problematic for retro-
spective studies which are not able to leverage recent advances cap-
ability with respect to shortened revisit time.

Phenology-based studies relying on vegetation cover (or any
“greenness” metric) are fundamentally limited by the phenomenon of
“phenological mimicking”, analogous to spectral mimicking (Adams
and Gillespie, 2006). Because the operative signal is derived from
temporal variations in photosynthetic vegetation, in many landscapes it
is probable that several dominant plant species may possess annual
cycles that are indistinct using this metric alone. Careful consideration
of sources of uncertainty as well as field validation (wherever possible)
is important here as in any mapping and modeling approach based on
multispectral satellite imagery.

Additional limitations are specific to the TMM methodology. The
unmixing model requires that processing be done on a per-tile basis,
adding computational inconvenience when processing over large areas.
One important assumption is the linear mixing of a small number of
endmembers. While this is generally not limiting for the spectral mixing
case (Small, 2004; Small and Milesi, 2013; Sousa and Small, 2017), the
testing of this assumption has been less thorough for the temporal mixing
case. Two pieces of supporting evidence for the validity of linear tem-
poral mixing assumption in this study are: 1) the presence of corners
and edges in the TFS, suggesting binary linear mixing lines, and 2) the
linearity of land cover estimate scaling from 10 to 30 m resolution.
However, the observed binary mixing lines are admittedly more am-
biguous in the temporal mixing case than the spectral mixing case, and
some deviation from the 1:1 line is observed in the spatial scaling in-
vestigation. This fundamental question, as well as further considera-
tions about model performance such as the conditioning of the inver-
sion and higher-order complexity due to large non-noise data
dimensionality, are interesting and potentially informative. We defer
detailed investigation of these factors to a future study.

It is also important to note that the success of the method in the
foothill oak study area analyzed here is largely achievable because of
the biophysical properties of the landscape. The grassland-savanna-
woodland continuum present here is well-suited to a spatial mixing

approach that explicitly includes shadow due to the distinctive phe-
nology of Mediterranean-climate winter and spring annuals compared
to overstory deciduous or evergreen trees. We have intentionally con-
strained the geography of the problem to yield a study area which is
tractable for our purposes and acknowledge that the method is unlikely
to work as well in some other locations as it does here. However, we do
note that 1) this study area is spatially extensive and inclusive of much
of the range of some of the oak species under consideration, and 2) the
properties of this study area likely are generalizable to many other
Mediterranean oak systems with comparable levels of floristic and cli-
matic complexity.

5.3. Potential applications and research directions

The simplicity and consistency of the method could be compared to
other approaches for monitoring of regional oak cover dynamics and
trends due to changing land use (Cameron et al., 2014), climate
anomalies such as the 2013–2017 drought (Das et al., 2020; McLaughin
et al. 2020), and wildfire (Koltunov et al., 2019; Mallek et al., 2013).
Range managers may find the approach useful for monitoring forage
amount and rangeland conditions (Li et al., 2012). One strength of the
temporal mixture model for such applications is the provision of a
continuous field output which can then be geographically delimited and
classified to suit specific management and monitoring requirements.

The recent and ongoing surge in remote observational capacity
provides a number of avenues of potential research and development.
Measurements with higher spatial resolution and/or shorter revisit time
(e.g. Planet) might be used to improve measurement density – if critical
data quality metrics such as subpixel geolocation and science-grade
radiometry are capable of consistently being met. In addition, time
series provided by orbital hyperspectral sensors could provide nar-
rowband absorption characteristics at each time step, allowing for more
refined biophysical interpretation of the spectral metric used beyond
areal photosynthetic vegetation cover (Thenkabail et al., 2018). Land-
scape partitioning and/or object based analysis using spatially ex-
tensive LiDAR could provide further constraints to provide context and
improve a multispectral-only approach for prospective monitoring
(Bergen et al., 2009; Simonson et al., 2012).

Fig. 10. Cross-tile consistency. Despite spanning hundreds of kilometers, the low-order topology of the foothill oak woodland temporal feature space remains
remarkably consistent across HLS tiles. Endmembers located on the PC 1 vs 2 projection represent corresponding phenological signals (evergreen, E; deciduous
perennial; D, annual grass, Ag; and unvegetated, U) in each case. The sole exception is tile 11SKA, which does not show an E tEM because its spatial domain within
the oak woodland mask does not include sufficient coverage of high elevations. Despite the consistency of the low-order temporal feature space, variation exists in
higher dimensions, as revealed by the partition of variance (lower left). For instance, the first 2 dimensions to contain 62–75% of the overall variance in the dataset.
The cumulative distribution of variance (inset) also shows this point. In some tiles (e.g. 10SFH), 90% of data variance is contained in the first 4 dimensions; other tiles
(e.g. 10SLA) require as many as 10 dimensions to capture 90% of data variance. Tile 11SLA and 11SLV are not shown for brevity.
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6. Conclusions

The results of this study suggest that single-year temporal mixture
models (TMMs) can produce maps of Mediterranean-climate oak
woodlands which are spatially consistent, robust to temporal sampling
variability, insensitive to differences in Landsat and Sentinel-2 spatial
resolution, and compare favorably to airborne and field surveys. The
example in Sequoia National Park also suggests that the TMM approach
can be further extended to provide useful information about multi-year
vegetation dynamics in Mediterranean-climate oak woodlands, espe-
cially in the cases of synchronous vegetation community responses
following disturbances like drought and fire. Taken together, these re-
sults suggest that TMMs may provide a parsimonious, accurate, and
scalable framework for assessment and monitoring of Mediterranean-
climate oak woodlands.
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