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Accurate areal measurements of snow cover extent are important for hydrological and climate modeling. The
traditional method of mapping snow cover is binary where a pixel is considered either snow-covered or
snow-free. Fractional snow cover (FSC) mapping can achieve a more precise estimate of areal snow cover
extent by estimating the fraction of a pixel that is snow-covered. The most common snow fraction methods
applied to Moderate Resolution Imaging Spectroradiometer (MODIS) images have been spectral unmixing
and an empirical Normalized Difference Snow Index (NDSI). Machine learning is an alternative for estimating

ls(;);‘\l,vvofrf;c'tion FSC as artificial neural networks (ANNs) have been successfully used for estimating the subpixel abundances
Snow cover of other surfaces. The advantages of ANNs are that they can easily incorporate auxiliary information such as
Artificial neural networks land cover type and are capable of learning nonlinear relationships between surface reflectance and snow
MODIS fraction. ANNs are especially applicable to mapping snow cover extent in forested areas where spatial mixing

of surface components is nonlinear. This study developed a multilayer feed-forward ANN trained through
backpropagation to estimate FSC using MODIS surface reflectance, NDSI, Normalized Difference Vegetation
Index (NDVI) and land cover as inputs. The ANN was trained and validated with higher spatial-resolution FSC
maps derived from Landsat Enhanced Thematic Mapper Plus (ETM+) binary snow cover maps. Testing of the
network was accomplished over training and independent test areas. The developed network performed
adequately with RMSE of 12% over training areas and slightly less accurately over the independent test scenes
with RMSE of 14%. The developed ANN also compared favorably to the standard MODIS FSC product. The study
also presents a comprehensive validation of the standard MODIS snow fraction product whose performance
was found to be similar to that of the ANN.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Snow cover has important implications for the hydrology and
climate of mid- to high-latitude and mountain environments. As a
frozen-water reservoir, snow holds precipitation until snowmelt
runoff is released. Snowmelt runoff can pose a flooding hazard
because it is often released rapidly during spring (Rango, 1996).
However, snow is essential for the water supply of more than one-
sixth of world's population that relies on fresh water from seasonal
and glacial snowmelt (Barnett et al., 2005), including over 60 million
people in the western United States (Bales et al., 2006). Runoff
predictions from snowmelt are made by including snow cover
information in hydrological models.

Runoff from snow also supplies the necessary water for sustaining
forest ecosystems in watersheds (Douville et al., 2002). There is a
recognized need to incorporate snow cover extent and Snow Water
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Equivalent (SWE) within hydrologic models to derive snowmelt
runoff estimates for improved forecast accuracy for water supply,
runoff rates and soil moisture recharge (Dozier, 1992). Thus, various
snowmelt algorithms incorporate information about the evolution of
snow covered areas during the winter season (Liston, 1999).

Snow is also an important component of the climate system
because of its characteristically high albedo in the visible and near-
infrared portions of the electromagnetic spectrum. It reflects most of
the incoming solar radiation which in turn modifies the energy
exchanges between the Earth's surface and the atmosphere over snow
covered areas causing these areas to experience lower temperatures
than those without a snowpack (Arnfield, 2006). Snow is also a poor
conductor of heat, and snow cover acts as an insulator not allowing
the release of heat from Earth (Berry, 1981).

Because snow cover affects energy exchanges at the surface, the
areal extent of snow cover is incorporated in General Circulation
Models (GCMs) and in weather forecasting models (Marshall et al.,
1994; Roesch et al., 2001). However, difficulties arise in modeling the
snow's interactions with the atmosphere when inaccurate estimates
of snow cover extent are incorporated into climate models (Niu &
Yang, 2007). For example, a warm bias over snow covered regions in
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several of the National Center for Atmospheric Research Community
Land Models has been attributed to inaccurate estimates of snow
cover extent inputs (Dickinson et al., 2006).

Remote sensing is the most appropriate tool for monitoring snow
cover extent because of the large spatial extent and remoteness of
snow covered areas, and the adverse weather conditions typical of
winters (Derksen & LeDrew, 2000). A further advantage of satellite
remote sensing for snow cover mapping is that it offers consistent
data collection over large areas. In this respect, long term studies and
environmental models have a continuous supply of snow cover
measurements (Konig et al., 2001).

Traditional snow cover maps are binary where each pixel is
mapped as either snow-covered or snow-free. The current standard
algorithm for producing global daily snow cover maps from Moderate
Resolution Imaging Spectroradiometer (MODIS) uses Normalized
Difference Snow Index (NDSI) as a threshold to delineate snow. A
Normalized Difference Vegetation Index (NDVI) threshold is also used
to improve snow detection in forests (Hall et al., 1995, 2002; Klein et
al., 1998).

Fractional snow cover (FSC) maps provide an enhancement to the
binary maps. A pixel contains the spectral information from all surface
components within a sensor's Instantaneous Field Of View (IFOV) and
a number of approaches have been developed to estimate the
percentage of the snow component in a pixel. Even so, the snowpack
cannot be spatially located within a pixel because spectral information
is integrated over the entire IFOV. Estimating the snow covered
fraction of pixels represents an improvement over binary snow cover
maps where a pixel is ideally classified as containing snow if at least
approximately fifty percent of its area is snow-covered (Hall et al.,
2002).

The most common approach to estimating FSC is linear mixture
analysis which is performed under the assumption that the
reflectance of a pixel is a linear combination of the surface
components within that pixel and that the weight of each component
is proportional to the percent of the pixel's IFOV containing that
component (Jensen, 2005). These endmembers are idealized, pure
spectral signatures for a surface type (Schowengerdt, 1997). The
performance of the spectral unmixing model depends on availability
of complete and accurate endmembers. The method has been applied
extensively in snow fraction mapping (Foppa et al., 2004; Hongen &
Suhong, 2004; Metsamaki et al., 2005; Nolin & Dozier, 1993; Painter et
al., 2003, 2009; Romanov et al., 2003; Shi, 1999; Simpson et al., 1998;
Simpson & Mclntire, 2001; Vikhamar & Solberg, 2002, 2003). These
studies differ on how endmembers are collected and how the
mapping algorithm determines which endmembers should be
included in unmixing each pixel to determine FSC.

Another approach to snow fraction mapping has been through
development of an empirical relationship between satellite reflec-
tance and FSC. A method developed for images from the Terra and
Aqua MODIS instruments (Salomonson & Appel, 2004, 2006) uses the
NDSI constructed from MODIS bands 4 (0.545-0.565um) and 6
(1.628-1.652 um) for Terra and bands 4 and 7 (2.105-2.155 pm) for
Aqua, which record reflectance in the green and short-wave infrared
ranges of the spectrum, respectively. A statistical linear relationship
between NDSI and snow fraction in a MODIS pixel was established by
using higher resolution Landsat snow maps as an estimate of
reference snow cover fraction. This method (Salomonson & Appel,
2004, 2006) is currently used to create the standard MODIS/Terra
Snow Cover Daily L3 Global 500 m Grid (MOD10) product (Hall et al.,
1995, 2002; Riggs et al., 2006). The only previous validation of this
approach was that orginally performed during algorithm develop-
ment (Salomonson & Appel, 2004, 2006).

Machine learning represents an alternative to the statistical
methods for estimating snow fraction. Artificial neural networks
(ANNs) are a machine learning technique which can learn relation-
ships between specified input and output variables. Neural networks

constitute an information processing model that stores empirical
knowledge through a learning process and subsequently makes the
stored knowledge available for future use (Haykin, 1999). Various
remote sensing applications have utilized ANNs for subpixel estima-
tion of a number of surface types (Foody et al., 1997; Lee & Lathrop,
2006; Shabanov et al., 2005; Tatem et al., 2002). Neural networks are
advantageous over other approaches as it is unnecessary to assume
linear mixing of signals in a pixel. Endmembers are not required and
auxiliary information such as land cover is easily incorporated. Once
the neural network is trained it is computationally efficient to produce
snow fraction maps on both regional and global scales, even though in
this application the ANN is trained over North America.

ANNs have been applied in only a few snow studies. Simpson and
McIntire (2001) used a recurrent ANN to differentiate between cloud,
land, snow-covered and mixed pixels. The mixed pixels were then
used in a spectral linear unmixing method to derive snow fraction.
ANNs were also applied for deriving SWE and snow depth (Tedesco et
al., 2004), and brightness temperatures clusters related to different
snow conditions (Sun et al., 1997) from Special Sensor Microwave
Imager (SSM/I) brightness temperatures. Most recently, a neural
network approach was implemented for predicting changes in snow
cover duration and distribution in the Black Forest mountain range of
Germany (Sauter et al., 2010).

This study investigated the applicability of ANNs to successful
mapping of snow fraction with a particular interest in improving FSC
mapping in forests. To accomplish this aim, a mutlilayer feed-forward
ANN was trained with backpropagation and tested on Landsat
Enhanced Thematic Mapper Plus (ETM+) scenes within North
America representative of the different land covers typical of the
snow covered portions of the Northern Hemisphere. This attempt did
not consider complex mountainous terrain and training and test
scenes were selected over relatively flat terrain. Inputs to the network
included MODIS land surface reflectance, NDSI, NDVI, and land cover
(Table 1).

The reference snow fraction was determined by applying the
MODIS binary snow mapping algorithm from the initial MODIS
algorithm (Hall et al,, 1995) to higher resolution Landsat ETM+
images. The neural network was then trained on nine Landsat snow
maps representative of different land covers characteristic of a
number of snow covered areas in the Northern Hemisphere. The
developed network and the standard MOD10 snow fraction product
were then tested on independent pixels from the training scenes and
also on four Landsat scenes which were not used during training of the

Table 1
Artificial neural networks inputs.

Input Description

MODO09GA Reflectance in the red portion of the electromagnetic spectrum
Band 1 (620-670 nm)

MODO9GA Reflectance in the near infrared portion of the electromagnetic
Band 2 spectrum(841-876 nm)

MODO9GA Reflectance in the blue portion of the electromagnetic spectrum
Band 3 (459-479 nm)

MODO09GA Reflectance in the green portion of the electromagnetic spectrum
Band 4  545-565 nm (Painter et al.)

MODO9GA Reflectance in the shortwave infrared portion of the electromagnetic
Band 5  spectrum (1230-1250 nm)

MODO09GA Reflectance in the shortwave infrared portion of the electromagnetic
Band 6  spectrum (1628-1652 nm)

MODO09GA Reflectance in the shortwave infrared portion of the electromagnetic

Nll;SaInd ’ ;\Ipoeri;raul;?es:lzll)?gf;rzelnsci rSlr:o)w Index _(Band4 —Band6)_
(Band4 + Band 6)
NDVI Normalized Difference Vegetation Index (Band2 —Band1)

(Band2 + Band 1)

Land cover Yearly land cover classification in the International Geosphere-
(IGBP) Biosphere Programme (IGBP) classification system
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ANN (Fig. 1). Finally, the snow fraction maps produced through the
ANN approach were compared to the MOD10 snow fraction product.

2. Satellite images and reference snow fraction
2.1. MODIS surface reflectance

MODIS is the primary global environmental monitoring instrument
aboard the Terra and Aqua satellites. MODIS acquires images from every
location on Earth at least once every 1 or 2 days in 36 discrete spectral
bands, cloud-cover permitting (Barnes et al., 1998). Science teams have
developed a variety of standard data products which are distributed free
of charge. The MODIS Surface Reflectance Daily L2G Global 500 m and
1 km product provides surface spectral reflectance in seven bands in the
visible and near-infrared portion of the electromagnetic spectrum and is
corrected for atmospheric effects (Vermote et al., 2011). The product is
distributed by the Land Processes Distributed Active Archive Center:
https://Ipdaac.usgs.gov. The seven land surface reflectance bands at
500 m spatial resolution were used in the study. The product also
contains ancillary datasets describing cloud cover and data quality for
each pixel and these were used to exclude from further analysis pixels
that were identified as cloud-covered, mixed, fell within cloud shadow
or were less than ideal quality. Water was also excluded from the
analysis using a water mask acquired from MODIS land cover product.
The datasets in the surface reflectance product are provided in a
sinusoidal projection. In the current study they were re-projected to a

140°W  130°W

50°N

‘

0 250 500  1,000km
L 1 1 |

120°W  110°W 100°W  90°W

UTM projection with a WGS84 datum to match the projection of the
respective Landsat scenes.

2.2. Landsat reference snow fraction maps

Selection of Landsat ETM+ training and test scenes was restricted
to partially snow-covered images acquired within North America
during different months of the snow season. The scenes (Table 2)
were also selected for minimal cloud cover and were acquired
between 2000 when MODIS became operational and 2003 when the
Landsat ETM+ Scan Line Corrector (SLC) failed which degraded the
ETM+ image quality. The main objective in selecting the training
scenes was to represent land covers typical of the snow covered mid-
to high-latitudes. Land cover classification in the International
Geosphere-Biosphere Programme (IGBP) classification scheme was
provided in the Terra Land Cover 96 Day L3 Global 1 km Integerized
Sinusoidal (ISIN) Grid (MOD12) product (Friedl et al.,, 2002). The
land cover classification system used in selecting samples collapsed
the seventeen IGBP land cover classes into eight: evergreen forest,
deciduous forest, mixed forest, mixed agriculture, barren/sparsely
vegetated, savannas, grasslands/shrublands and wetlands (Table 3). A
similar approach was used previously by Hall et al. (2001) to assess
the accuracy of the MODIS snow product. Two of the selected training
scenes were previously used in developing the standard MODIS
MOD10 snow fraction product (Salomonson & Appel, 2004, 2006).
The careful selection of Landsat ETM+ scenes ensured that the neural
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Fig. 1. Training and test Landsat scenes were located in North America. Training sites were selected to be representative of different land covers and snow fractions.
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Table 2
Landsat ETM+ training (1 through 9) and test (A, B, C and D) scenes.

Scene WRS-2 Date Land covers Number of Number
path/  acquired training of test
row samples samples

Training scenes

12° 24/23  04/24/2000 Savannas, 4366 88,285

grasslands/shrublands,
wetlands

2 24/28 12/10/2002 Deciduous forests, mixed 5826 58,972

forests, mixed agriculture

3 26/29  02/07/2002 Deciduous forests, mixed 2408 93,063

forests, mixed agriculture

4 26/30 02/07/2002 Mixed agriculture 1281 123,430

5 38/22 03/18/2003 Evergreen forests, mixed 2207 67,871

forests, savannas

6 39/22 11/01/2002 Evergreen forests, mixed 4506 56,376

forests, mixed agriculture,
savannas

7 39/24 11/01/2002 Mixed agriculture, 2,000 72,078

grasslands/shrublands

8*P¢  65/17  05/12/2001 Savannas, 3308 73,156

grasslands/shrublands

9*P¢ 73/11  05/23/2002 Barren/sparsely vegetated, 1772 55,006

grasslands/shrublands

Test scenes

A 25/28 04/08/2003 Deciduous forests, mixed 0 96,282

forests, mixed agriculture

B 30/25 05/10/2002 Evergreen forests, mixed 0 42,527

forests, mixed agriculture

C 30/26  03/20/2001 Evergreen forests, mixed 0 116,151

forests, mixed agriculture

D 43/21 04/19/2002 Evergreen forests, mixed 0 116,874

forests

2 Modified Black Body Atmospheric correction used instead of FLAASH.
b Additional georeferencing was not performed.
¢ Scene used in developing MODIS FSC product (Salomonson & Appel, 2004, 2006).

network was trained and tested over areas representative of North
American winter conditions.

The Landsat ETM+ images were obtained free of charge from the
United States Geological Survey (USGS) Earth Resources Observation
and Science (EROS) data center: http://glovis.usgs.gov. This product
was provided after correction from distortions related to sensor,
satellite and Earth effects. Each of the Landsat ETM+ images was
converted to radiance using a standard approach (Chander et al.,
2009). Conversion to reflectance and atmospheric correction was then
performed using the Fast Line-of-sight Atmospheric Analysis of
Spectral Hypercubes (FLAASH) method as implemented in ENVI 4.5
software package (Kaufman et al., 1997). For three of the scenes
FLAASH was unsuccessful due to the absence of a dark object in these
snow covered scenes and therefore a simpler modified black body

Table 3
Land cover classes used in the study.

Original IGBP land cover classes Reclassified land cover classes

Evergreen needleleaf forest
Evergreen broadleaf forest
Deciduous needleleaf forest
Deciduous broadleaf forest
Mixed forests

Croplands

Urban and built-up
Cropland/natural vegetation mosaic
Barren/sparsely vegetated
Woody savannas

Savannas

Closed shrublands

Open shrublands
Grasslands

Evergreen forests
Deciduous forests

Mixed forests

Mixed agriculture
Barren/sparsely vegetated

Savannas

Grasslands/shrublands

Permanent wetlands Wetlands
Permanent snow and ice n/a
Water n/a

correction (Chavez, 1988) was applied. The atmospherically-corrected
scenes were compared to orthorectified Landsat ETM+ images which
were acquired through the Global Land Cover Facility: http://glcf.
umiacs.umd.edu. Most of the scenes were then georegistered through
selection of Ground Control Points (GCPs) to compensate for geoloca-
tion differences between the orthorectified scenes and those used in the
study. In these cases at least fifteen GCPs were selected for each scene
with a root mean square error of less than 0.1 pixels. Any portion of the
scenes that was cloud-covered or shadowed by clouds was masked and
excluded from further analysis.

The pre-processed Landsat ETM+ images were then used as input
to a snow cover mapping algorithm (Hall et al., 1995) which classified
pixels as either snow-covered or snow-free. The classification
algorithm is the Landsat ETM+ equivalent of the algorithm used for
the production of the standard MODIS binary snow cover product.
These 30 m Landsat binary snow maps were used to calculate snow
fraction within each MODIS pixel. Snow fraction was calculated as
percent snow covered area to the total area within a 750 m radius of
the center of a MODIS pixel. The study did not calculate the percent
snow cover within the exact area delimited by a MODIS pixel because
of reported MODIS geolocation uncertainties (Wolfe, 2006; Wolfe et
al., 2002). Calculating the snow fraction within a larger spatial
footprint than the pixel extent is a common approach for dealing with
the geolocation uncertainties. For example, in the validation of the
snow fraction method described by Painter et al. (2009) sampling was
performed within a circular footprint with radius ranging from 500 m
to 2000 m. In this study, a 750 m radius from the center of each MODIS
pixel was applied to delimit the area from which the snow fraction
value of the pixel was calculated (Fig. 2).

3. Methodology
3.1. Artificial neural networks (ANNs)

ANNs constitute an information processing model that stores
empirical knowledge and subsequently makes the stored knowledge
available for future use. ANNs are loosely modeled after the brain of
living organisms and resemble the brain in that knowledge is acquired
from the environment through a learning process and is stored in the
form of interneuron connection strengths (Basheer & Hajmeer, 2000;
Haykin, 1999).

The fundamental processing unit of ANNs is the neuron. A neuron
consists of connection links (synapses) characterized with certain
weights (strength). Input is passed from one end of the synapse,
multiplied by the connection weight and passed on to the summing
junction (adder) of the neuron. The adder sums the weighted inputs:

we = 2" WX (1)
where x; represents the j™ input signal from a total of m inputs; Wi

represents the strength of the connection weight from the j™ input
signal to neuron k, and uy is the sum of the weighted input signals.

Snow
Fraction

0.4

480 m Landsat
snow fraction map

30 m Landsat
binary snow map

Fig. 2. Binary snow cover maps were resampled to MODIS resolution within a 750-m
circular radius around each MODIS pixel.
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A bias by is added to the linear combined output uy to derive the
activation potential of vy of the neuron:

Vi = Uy + by (2)

The activation potential vy is then passed to the transfer
(activation or squashing) function ¢, which computes the output yj
of the neuron:

Vi = @(Vy) 3)

The two most common transfer functions are the threshold and
sigmoid functions (Haykin, 1999). The threshold function returns
discrete output values depending on whether a neuron's activation
potential is above or below a predefined threshold. The sigmoid
function returns a continuous range of output values and is the most
common transfer function (Haykin, 1999). It has a typical S-shape
curve which balances linear and nonlinear behavior. Furthermore, it is
differentiable, which is necessary for some types of supervised neural
network learning methods including backpropagation used in this
study.

This study examined the two common sigmoid transfer functions,
the logistic sigmoid and tangent hyperbolic functions, and found the
ANN performed better with the latter. The tangent hyperbolic
function returns an output between —1 and 1:

®(vi) = tanh(vy) (4)

Neurons are connected to each other through their connection
links. Thus, the output of a neuron is transmitted through a
connection link, multiplied by the weight of the connection link and
passed to the summing junction of the next neuron.

The structure of neurons in an ANN is determined by the network's
architecture. Typically, neurons are arranged in layers. The input layer
does not consist of neurons, but rather of nodes which pass each input
element to the first layer of neurons. In remote sensing, an input layer
is the available information about a pixel such as surface reflectance or
land cover. Each of the neurons in the first hidden layer receives
weighted signal from the input layer and computes an output which is
then passed to all of the neurons in the next hidden layer. The neurons
in the final hidden layer pass their output to each of the neurons in the
output layer. The output of each output layer neuron is returned as the
output of the ANN.

In the current application, a multilayer feedforward ANN with one
hidden layer is used. The ANN is feedforward, as opposed to recurrent,
which means that the network does not include any feedback loops,
i.e. inputs to a neuron are not influenced by the output of that neuron.
In this multilayer feedforward ANN the input layer of source neurons
(surface reflectance, NDSI, NDVI and land cover of a pixel) project to a
hidden layer of neurons which projects directly to the output layer,
the snow fraction for the pixel.

ANNSs learn an environmental model to achieve a specified goal. In
this study the model of the environment is the relationship between
surface reflectance, vegetation and snow indices, land cover, and
snow fraction. The specific goal is deriving snow fraction from remote
sensing products. The network acquired the knowledge from
observations of the environmental variables through a training
process during which labeled inputs were paired with desired
responses. During the backpropagation learning phase network
weights were randomly initialized and the error was calculated as
the difference between the generated and the target outputs. The
error was then backpropagated through the network and the weights
were adjusted to minimize the error. The process was repeated
iteratively until the error reached a predefined minimal value or until
the generalization performance of the network deteriorated based on
a set of examples excluded from the training. Network generalization

refers to how well an ANN performs on input not used in training the
network. The set of examples used for assessing the generalization
performance during training is called validation set.

3.2. Training dataset

As the performance of ANNs trained in a supervised manner is
closely related to the quality of the training dataset (Priddy & Keller,
2005), the dataset must be representative of the areas of interest. In
the current study, the training examples were selected to not be
biased towards a particular land cover but instead to adequately
represent the land covers typical of mid- and high-latitude snow
covered environments. The training set was also developed to not be
biased towards a particular snow cover fraction. For example, if the
training samples were mostly of high snow fraction then the ANN
would adjust its weights for calculating high snow fraction well, but
may be less accurate over pixels with small snow fraction.

To achieve these objectives a total of nine Landsat snow maps
(Fig. 1; Table 2) were sampled to create the training and validation
datasets. The samples comprised between 1 and 7% of all available
pixels within each Landsat scene. Following usage in the ANN
literature both the training and validation datasets were used during
network training. The samples from the training dataset were used in
adjusting the weights of the ANN. The validation dataset was used
during training to measure the generalization performance of the
network as represented by the mean square error (MSE) between the
network-derived and the Landsat-derived FSC. Training ended when
MSE of the validation dataset began to increase indicating that further
training would decrease the generalization abilities of the network
(Haykin, 1999).

To minimize training bias towards any land cover or snow cover
fraction, sample points were selected through stratified random
sampling. Stratification was performed per snow cover fraction which
was categorized in 0.1 FSC intervals and by land cover category.
Within ArcGIS the land cover of each Landsat ETM+ training scene
was examined. All pixels from prevalent land cover categories were
extracted and assigned to the appropriate FSC category. From these
stratified pixels, a random selection was performed. Prevalent land
cover categories as well as number of random pixels extracted were
determined subjectively in an attempt to create equal representation
of land cover and snow fraction categories in the sample dataset with
similar number of samples from each training scene. The final dataset
included 27,674 observations. These observations while grouped
according to land cover and snow fraction categories were randomly
split in three subsets. Half of these observations comprised the
training dataset and a quarter comprised the validation dataset. The
remainder was withheld as an independent test dataset. The complete
dataset was fairly representative of the different land cover and snow
fraction categories. As can be seen in Fig. 3 evergreen forests, mixed
forests and mixed agriculture and forest were best represented, while
barren and sparsely vegetated areas were less well represented.

3.3. Training

The multilayer feedforward ANN was trained with backpropaga-
tion to compute the fraction of snow in individual MODIS pixels. Ten
inputs were provided to the network (Table 1) including the seven
MODIS surface reflectance bands, NDSI, NDVI and land cover in the
IGBP classification scheme. Calculated NDSI and NDVI were added to
emphasize snow-covered and vegetated areas, respectively. NDVI is a
normalized difference ratio of bands in the red and near-infrared
portions of the electromagnetic spectrum and is one of the vegetation
indices used to indicate presence of healthy green vegetation (Jensen,
2005). Land cover in the IGBP classification scheme was also selected
as an input because spectral characteristics of snow are known to vary
across land covers (Hall et al., 1995; Moody et al., 2007) and the
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Fig. 3. Sample points used in final ANN.

reflectance of snow-free surfaces depends on the surface type. The
complete 17-class IGBP classification system was used as input to the
ANN so that network weights reflect differences in land covers.

An alternative land cover input scheme was also tested where each
IGBP class was represented in the network as a separate binary input
and presence or absence of the class was coded as 1 or 0, respectively.
For this approach a total of 25 inputs were passed to the network. The
results of both land cover coding methods were similar with the
binary land cover coding found to be slightly less accurate. The
categorical land cover input was selected for the final network.

In creating the final network the following network properties
were determined through a trial-and-error procedure: (1) the
number of hidden-layer neurons, (2) the input-to-hidden transfer
function and (3) the input-output normalization method. The neural
network was trained using several different configurations and the
performance of a trained networks were analyzed in terms of RMSE
and R? as well as by visually comparing resulting ANN FSC maps to the
Landsat-derived reference FSC maps. To ensure differences in the
snow fraction accuracies were not due to differences in initial weights,
initial weights were held constant while determining network
properties. The properties of the final network are summarized in
Table 4 where MSE refers to the performance measure used by the
neural network training algorithm during the validation stage of the
training process.

Table 4
Summary of properties of the developed ANN.

ANN Property  Description

Training Levenberg-Marquardt backpropagation (supervised)
method

Learning Gradient descent with momentum weight and bias
method

Performance Mean square error (MSE)
measure

Network Ten input neurons, one hidden layer with twenty hidden-layer
architecture  neurons, and one output neuron

Transfer Tangent hyperbolic between input and hidden layers; linear
functions between hidden and output layers

Input/output Each input band is scaled between —1 and 1

normalization

The selected final network used a single hidden layer and the
number of hidden-layer neurons was twenty — twice the number of
inputs. Experimenting with 10 and 30 hidden-layer neurons and with
a greater number of hidden layers did not provide an improvement of
the snow fraction accuracies. Therefore this study used the simpler
network which has been found in other studies to be able to learn any
relationship between input and output (Priddy & Keller, 2005). For
the alternative IGBP input scheme, 50 hidden layers were used which
was similarly two times the number of inputs, but were found to
produce slightly less accurate snow fractions. The final neural network
generated fewer than 5% physically unreliable snow fractions (i.e.,
above 1 or below 0). These fractions were adjusted to the appropriate
minimums and maximums.

3.4. Testing

The performance of the ANN snow fraction method was tested in
two stages. First, pixels which were withheld from training but
extracted from the training scenes were compared to Landsat
estimates. This first test dataset included all non-masked pixels
from the reference Landsat scenes excluding the pixels extracted
through the stratified random sampling. Second, pixels from reference
scenes not used for training were compared to Landsat estimates. The
second dataset included all non-masked pixels from the independent
test scenes. The second option represents a fairly rigorous
comparison.

The accuracies of the snow fraction estimates of the ANN with
respect to the reference Landsat estimates were compared to the
accuracies of both the binary and FSC datasets in the standard MODIS
MOD10 snow cover product (Riggs et al., 2006). Testing was also
performed on each land cover category separately.

Network performance was measured by calculating the root mean
square error (RMSE) between estimates and reference snow fractions:

RMSE = \/nlj*zi": L(x' —x)? (5)

where n is the number of samples, X’ is the estimated FSC and X is the
reference FSC. The correlation of determination (R?) which is the
square of the Pearson correlation coefficient was also used as
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Table 5
RMSE and R? of ANN and MOD10 FSC and reference FSC of train and test scenes.
Number ANN? ANNP MOD10 FSC MOD10 binary
of test R? RMSE (%) R RMSE (%) R? RMSE (%) R RMSE (%)
samples
Train scenes 781809 0.90 0.12 0.89 0.13 0.87 0.14 0.53 0.33
Test scenes 371834 0.87 0.14 0.85 0.20 0.88 0.14 0.75 0.26
Test scene A 96282 0.91 0.14 0.88 0.22 0.90 0.13 0.86 0.17
Test scene B 42527 0.75 0.21 0.82 0.21 0.82 0.19 0.73 0.28
Test scene C 116151 0.81 0.14 0.70 0.20 0.84 0.14 0.65 0.24
Test scene D 116874 0.90 0.13 0.87 0.17 0.90 0.12 0.66 0.32

2 ANN where land cover was input as 1 categorical variable (1LC).
> ANN where land cover was input as 16 binary variables (16LC).

performance indicator. R? shows how much of the variance of the
reference snow fraction is explained by the estimated snow fraction.

The total extent of snow cover according to the reference and
estimated snow fractions was also calculated. This provided an
indicator of what the actual differences in snow covered area would
be if the lower resolution MODIS-estimated snow fractions were used
instead of the Landsat-derived ones. To facilitate the comparison,
percentage of snow covered to the total area and then difference
between the percentages of the estimates and reference snow maps
were calculated.

The trained ANN is computationally efficient. For example, on a
3 GHz Intel Core2 Duo CPU the trained ANN required only 7 second of
CPU time to run the MATALB script for an image of 116,151 pixels. Of
this time, only 0.6 second of CPU time was necessary for normalizing
the input, running the ANN, and reverse-normalizing the snow
fraction output. The remainder was spent on reading the input,
loading the ANN and writing the snow fractions to a file.

4. Results

The developed neural network was able to successfully map snow
fraction using MODIS surface reflectance, NDSI, NDVI and land cover
as inputs. The mapping accuracy of the test pixels from the training
scenes was good with an average R? of 0.9 and RMSE of 0.12 (Table 5).
The ANN performed slightly less well on four independent test scenes
with an average R? of 0.87 and RMSE of 0.14. Similar accuracies were
found for the MOD10 snow fraction product with an average R? of
0.87 and 0.88 over the training and test scene, respectively and with
RMSE of 0.14 for both datasets. The binary snow cover MOD10
product compared less well to the Landsat fractional snow cover maps
with R? of 0.33 and 0.26 and RMSE of 0.53 and 0.75 for training and
test scenes, respectively. ANN estimates of total snow covered area
were only 2% and 3% less than the reference snow cover extent for the
training and test scenes, respectively (Table 6). The MOD10 fractional
snow product differed from the reference areas by 4% more and 2%
less than the reference for the training and test scenes, respectively.
There were much larger differences in total snow covered area for the
binary MOD10 product.

Maps of ANN-estimated snow fractions illustrated that the neural
network was able to recreate the snow cover spatial distribution. For

test scene A illustrated in Fig. 4, ANN snow fractions have a high R? of
0.91 compared to the reference; however, they do not fully capture
the snow cover variability in the reference snow map. The ANN also
tended to underestimate snow cover at high snow fractions. The
MOD10 snow fraction map of this test scene better preserved the
snow cover variability but the actual snow cover was still under-
estimated. Conversely, for test scene C, also shown in Fig. 4, both the
ANN and MOD10 performed slightly worse with respect to percentage
variance explained (R? of 0.81 and 0.82, respectively) but captured
the spatial variability in snow fraction over the scene. However, the
ANN snow map was more similar to the reference snow map than that
of MOD10. Both ANN and MOD10 overestimated the snow cover in
test scene C at 4% and 6%, respectively (Fig. 6; Table 6).

4.1. Mapping accuracy by land cover

An objective of the study was to examine if estimating snow fraction
in forested areas could be improved through a nonlinear mapping
technique such as ANN. To analyze this outcome, mapping accuracy by
land cover was analyzed for both the training and independent test
scenes. Accuracy assessment was undertaken for both the ANN snow
fraction maps produced in this study and the standard MOD10 snow
fraction product to facilitate inter-comparisons.

4.1.1. Training scenes dataset

No distinct difference in the snow fraction accuracy between
forested and non-forested areas was found for the ANN fractional
snow cover maps. For the training scenes, non-forested classes have
slightly greater accuracy (R? ranging between 0.92 and 0.94 and RMSE
ranging between 0.11 and 0.13) than evergreen and mixed forest
classes. Deciduous forests had mapping accuracy on par with non-
forested areas as demonstrated by R? of 0.94 and a low RMSE of 0.09.
In contrast, snow fraction was much more poorly mapped in
evergreen forests (R? of 0.82 and RMSE of 0.15). Mixed agriculture
and forest which had the largest number of comparison samples also
had the lowest accuracies with an R? of 0.74 and RMSE of 0.11. MOD10
mapping accuracies, while slightly lower than ANN (Table 7),
exhibited similar patterns across the different land covers. For
example, R? for deciduous forests was 0.90 and RMSE was 0.11
while R? for evergreen forests was 0.77 and RMSE was 0.19.

Table 6
Snow cover extent in square kilometers and as percentage of total area of the three test scenes individually and combined.
Total area Reference ANN? ANNP MOD10 FSC MOD10 binary
Train scenes 172059/100 107855/63 104692/61 102767/60 114763/67 137875/80
Test scenes 92959/100 54058/58 50762/55 43682/47 51978/56 63906/69
Test scene A 24071/100 17372/72 15313/64 13228/55 16053/67 19614/81
Test scene B 10632/100 5091/48 4032/38 3698/35 3906/37 5957/56
Test scene C 29038/100 21588/74 22555/78 18734/65 23159/80 24745/85
Test scene D 29219/100 10006/34 8862/30 8023/27 8860/30 13591/47

2 ANN where land cover was input as 1 categorical variable (1LC).
> ANN where land cover was input as 16 binary variables (16LC).
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Fig. 4. Snow maps over (a) test scene A and (b) test scene C. Snow maps show pixels covered with large snow fraction as light blue and snow-free pixels as dark blue.

There do not appear to be significant differences between land
covers in terms of the absolute areal extent of mapped snow cover (in
km?) as illustrated in Fig. 5 and Table 8. ANNs performed the best over
savanna with less than a 1% difference in area from the reference.
Outside of savanna, total snow covered area was best mapped by the
ANN for the three forested land covers. Total snow cover extent was
overestimated by only 1% over deciduous forests and by 5% over
evergreen forests which suggests that ANNs are performing well in
forests. Compared to the ANN, MOD10 provided more accurate total
snow cover extents for the non-forest classes but was less accurate

over forests than the ANN overestimating the snow cover by 3% for
deciduous and by 9% for evergreen forests (Table 8).

4.1.2. Test scenes dataset

The four test scenes provided a more rigorous validation of the ANN
FSC maps as these scenes were not used in its training. Not surprisingly,
accuracy as measured by R? and RMSE were somewhat lower for the test
than training scenes with the surprising exception of mixed agriculture
(Fig. 6; Table 7). MOD10 displayed higher accuracy for all land covers.

Table 7
RMSE and R? of ANN and MOD10 FSC and reference FSC for different land covers.
Number ANN? ANNP MOD10 FSC MOD10 binary
of test R? RMSE (%) R? RMSE (%) R? RMSE (%) R2 RMSE (%)
samples
Train scenes
Evergreen forests 117940 0.82 0.15 0.79 0.16 0.77 0.19 0.29 0.52
Deciduous forests 20042 0.94 0.09 0.92 0.10 0.90 0.11 0.61 0.36
Mixed forests 69475 0.87 0.12 0.80 0.15 0.82 0.14 0.46 0.47
Mixed agriculture & forest 257610 0.74 0.11 0.73 0.12 0.68 0.12 037 0.21
Barren/Sparsely vegetated 2123 0.92 0.13 0.91 0.14 0.90 0.15 0.86 0.18
Savannas (Tundra) 44161 0.92 0.12 0.91 0.12 0.87 0.15 0.52 0.39
Grasslands/shrublands 158310 0.94 0.11 0.93 0.12 0.90 0.13 0.78 0.23
Test scenes
Evergreen Forests 90127 0.81 0.16 0.86 0.15 0.83 0.15 0.65 0.35
Deciduous Forests 22016 0.95 0.13 0.97 0.12 0.95 0.12 0.97 0.09
Mixed forests 132240 0.88 0.14 0.90 0.23 0.88 0.14 0.75 0.25
Mixed agriculture & forest 117870 0.86 0.13 0.79 0.20 0.90 0.13 0.81 0.20
Savannas (Tundra) 5357 0.86 0.16 0.86 0.16 0.91 0.14 0.78 0.23
Grasslands/shrublands 3908 0.87 0.15 0.90 0.16 0.92 0.13 0.66 0.29

2 ANN where land cover was input as 1 categorical variable (1LC).
> ANN where land cover was input as 16 binary variables (16LC).
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Fig. 5. Snow covered area for test pixels over the training scenes was calculated;
(a) total snow cover extent and (b) difference in percentages of snow cover extent for
the different land covers.

Both ANN and MOD10 accuracies of estimated snow cover extent
(Fig. 6; Table 6) are better for the non-forested category and the
mixed agriculture and forest category than over the forest land cover
category. ANN estimated the snow cover extents more accurately than
MOD10 over deciduous forests and mixed agriculture and forests,
while MOD10 provided better estimates over the other land covers.
The differences between ANN and MOD10 over evergreen and mixed
forests were very small — 1% and 2%, respectively.

To further investigate differences in mapping accuracy over land
covers, scatter plots of estimated versus reference snow fractions
were created (Fig. 7). Both ANN and MOD10 show large scatter
indicating a large range of errors in the snow fraction estimates at the
individual pixel level. ANN scatter plots also indicated a tendency to
underestimate snow-covered area at higher snow fractions. The
MOD10 scatter plots show a large number of snow fractions
erroneously estimated as 100% or 0%. Similar to the other accuracy
indicators, the scatter plots do not show marked differences across
land cover categories.

3363
4.2. Comparison to linear spectral unmixing

The overall mapping accuracy of the ANN snow fraction maps
compares well with accuracies of published linear spectral unmixing
snow fraction approaches. SnowFrac which was developed and tested
over Norway and Switzerland has a reported R? of 0.95 and 0.85
(Vikhamar & Solberg, 2002) which is a similar R? to the ANN FSC. The
most recent study of linear mixture analysis for FSC mapping (Painter
etal., 2009), reported an average RMS error of 5% for validation scenes
located in the Colorado Rocky Mountains, the Sierra Nevada of
California, the headwaters of the Rio Grande, and the Himalayas. Due
to topography, barren areas, brush, meadows and alpine savannas
were present at high altitudes while coniferous and deciduous forests
were present at the lower elevations of the validation areas.

However, these studies did not report error analysis by land cover.
In addition, ANN has two advantages over these approaches. The first
is that there is no need to assume linear mixing of the surfaces present
in a pixel. Such an assumption may by problematic over forested areas
due to presence of tree canopy yet as demonstrated in the results the
ANN approach performed similarly in forested and non-forested
areas. The second advantage of an ANN over linear unmixing is that it
is computationally very efficient because once the network is trained
it only needs to reference the saved connection weights and snow
fraction is calculated through multiplication and summation. Unlike
linear unmixing there is no need to refer to spectral libraries or solve
for the snow fraction of every pixel. It is possible to expand the
training of the ANN for better global applicability by adding additional
training scenes from other snow covered regions (e.g., scenes from
Asia, Europe and South America) or a broader range of snow cover
conditions. The improved ANN will still have the same number of
connection weights and the same computational cost as the ANN
presented in this study. The linear unmixing approach presented by
Painter et al. (2009) reported a 90 minute CPU time required to
produce the snow map for a test scene in its research mode. The
computational requirements of the method in its operation mode
were reported to be similar to the ANN computational requirements.

5. Discussion

No distinct differences in snow mapping accuracies were found
across land covers or between the ANN developed in this study and
the current standard MOD10 snow cover fraction product. The lack of
major differences in ANN accuracy between training and test dataset
indicated the good generalization ability of ANN over areas that it was

Table 8
Snow cover extent in square kilometers and as percentage of total area of land covers from train and test scenes.
Total area Reference ANN? ANNP MOD10 FSC MOD10 binary

Train scenes
Evergreen forests 29485/100 13308/45 14773/50 13489/46 15993/54 24784/84
Deciduous forests 5011/100 1384/28 1468/29 1488/30 1525/30 2235/45
Mixed forests 17369/100 5048/29 5369/31 4892/28 5706/33 10290/59
Mixed agriculture & forest 64403/100 54321/84 50580/79 50248/78 57124/89 61484/95
Barren/sparsely vegetated 531/100 364/68 338/64 333/63 372/70 377/71
Savannas (Tundra) 11040/100 4736/43 4770/43 4838/44 5069/46 6826/62
Grasslands/shrublands 39577/100 25089/63 23888/60 23901/60 25235/64 27648/70
Test scenes
Evergreen forests 22532/100 8030/36 6919/31 7105/32 7012/31 11769/52
Deciduous forests 5504/100 3891/71 3478/63 3430/62 3455/63 4149/75
Mixed forests 33060/100 19997/60 17928/54 14136/43 18238/55 23971/73
Mixed agriculture & forest 29467/100 20752/70 21131/72 17748/60 21895/74 22638/77
Savannas (Tundra) 1339/100 689/51 632/47 646/48 661/49 722/54
Grasslands/shrublands 977/100 632/65 608/62 558/57 649/66 595/61

2 ANN where land cover was input as 1 categorical variable (1LC).
> ANN where land cover was input as 16 binary variables (16LC).
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Fig. 6. Snow covered area for the three test scenes and combined, and for the different land covers was calculated; (a) total snow cover extent and (b) difference in percentages of

snow covered extent.

not trained on. The MOD10 product also showed consistent
performance across land covers. The ANN also compared well to the
standard MODIS snow fraction method with a slight advantage in
forested areas when tested on the training scenes dataset.

The slight differences in accuracy of ANN across land covers may
be attributed to how well each class was represented in the training
dataset. However, no relationship between the representativeness of
a class in the training dataset and mapping accuracy was found. For
example, the barren and sparsely vegetated class was the least
represented land cover in the training dataset, and it indeed was one
of the land covers with large difference between estimated and
reference snow cover extent (Fig. 5). However, the total area of barren
and sparsely vegetated areas of the training scenes test dataset was
small (531 km? compared to 5011 km? for deciduous and 29,485 km?
for evergreen forests). Large differences in the percentage of snow
cover extent resulted from only small difference in the actual snow
covered area. Furthermore, this land cover exhibited high accuracy as
measured by R? and RMSE.

ANN performed very well over deciduous forests. This was another
land cover that was underrepresented in the training dataset, but ANN
performance was not affected. Snow fraction mapping in forests is
complicated due to the presence of tree canopy which interferes with
the remote sensing signal and is an obstacle to detecting the snow
beneath. The better performance of ANN over deciduous forests may
be explained by the deciduous trees losing their leaves during the
winter.

Mixed agriculture and forests were the most difficult land cover to
estimate snow fraction in the training scenes but not the test scenes.
This may be related to the large variability of surfaces grouped into
this land cover category. For example a wide range of crop type and
state, and variable amounts of canopy cover could exist in this
category. It was also by far the best represented land cover class in the
training dataset.

The developed ANN was trained over test scenes from North
America that are representative of the major land covers present in
the snow covered portions of the Northern Hemisphere. Mountainous
areas were not considered. To potentially achieve better global

applicability the ANN could be trained with additional scenes
representative of land covers typical of the snow covered areas of
Asia, Europe and South America. Training with additional scenes is
straightforward and can be quickly implemented using the same
approaches developed in this study. Achieving reliable results in high
relief areas may be more difficult as shadowing effects would have to
be considered. A potential approach could be training the ANN over a
range of solar zenith angles and shadow conditions and also
expanding the inputs of the network to include slope, aspect and
solar zenith angle. Additionally, reference snow maps should be
examined to ensure that snow covered areas in shadow are not
misclassified as snow-free. As long as the ANN is trained over the
areas of interest, it is ready to be used operationally because of its low
computational cost.

This study also demonstrated the difference between using the
binary MOD10 snow cover maps and the snow fraction MOD10 and
ANN maps. In particular, snow cover was considerably overestimated
when using the binary snow maps (Figs. 5 and 6; Tables 6 and 8)
making fractional snow cover maps a better option for some studies.

This study demonstrated the applicability of neural networks to
snow fraction mapping. The developed ANN can be used instead of the
standard MODIS snow fraction product because the two methods
performed similarly across the test areas. The extensive comparison of
the two methods also provided a validation of the standard MODIS
snow fraction maps. The standard method exhibited good accuracy
with high R? and low RMSE.

6. Conclusions

This was the first study that the authors are aware of where an
artificial neural network was trained to estimate snow cover fraction.
The ANN trained with backpropagation successfully learned the
relationship between MODIS snow fraction and surface reflectance in
seven wavelength bands, NDSI, NDVI and land cover. The network
was applied to both training and independent test scenes and results
were compared to reference Landsat snow maps and to the MODIS
FSC product. The best performance was achieved over the training
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Fig. 7. Scatter plots of test scenes snow fractions for different land cover categories.
Scatter plots show ANN and MODIS FSC estimates with respect to the reference FSC. The
scatter plots show every 10th pixel in the test scenes dataset.

areas and the performance only slightly decreased when the network
had to generalize to independent test areas. There was little difference
in ANN performance across the training and test scenes and across
different land cover types and it was comparable to the standard
MODIS snow fraction product.

An advantage of neural networks over statistical methods such as
linear unmixing or regression is that the network makes no
assumptions about relationships between the signals of surfaces
within pixels or between inputs and outputs. Therefore it was
expected that ANN will offer an improvement of snow fraction

mapping over forested areas. However, no evidence for that was
found when comparing ANN and the standard MODIS snow fraction
product. Another advantage of ANN is that once the network is trained
it is computationally efficient and it quickly calculates snow fractions.
Furthermore, the developed network is easily customizable for
specific areas by retraining with additional examples. This study
demonstrated that ANNs appear a viable alternative to the existing
snow fraction methods.
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