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A B S T R A C T

Advanced Land Observing Satellite (ALOS) Phased Arrayed L-band Synthetic Aperture Radar (PALSAR) HH and
HV polarization data were used previously to produce annual, global 25m forest maps between 2007 and 2010,
and the latest global forest maps of 2015 and 2016 were produced by using the ALOS-2 PALSAR-2 data.
However, annual 25m spatial resolution forest maps during 2011–2014 are missing because of the gap in op-
eration between ALOS and ALOS-2, preventing the construction of a continuous, fine resolution time-series
dataset on the world's forests. In contrast, the MODerate Resolution Imaging Spectroradiometer (MODIS) NDVI
images were available globally since 2000. This research developed a novel method to produce annual 25m
forest maps during 2007–2016 by fusing the fine spatial resolution, but asynchronous PALSAR/PALSAR-2 with
coarse spatial resolution, but synchronous MODIS NDVI data, thus, filling the four-year gap in the ALOS and
ALOS-2 time-series, as well as enhancing the existing mapping activity. The method was developed con-
centrating on two key objectives: 1) producing more accurate 25m forest maps by integrating PALSAR/PALSAR-
2 and MODIS NDVI data during 2007–2010 and 2015–2016; 2) reconstructing annual 25m forest maps from
time-series MODIS NDVI images during 2011–2014. Specifically, a decision tree classification was developed for
forest mapping based on both the PALSAR/PALSAR-2 and MODIS NDVI data, and a new spatial-temporal super-
resolution mapping was proposed to reconstruct the 25m forest maps from time-series MODIS NDVI images.
Three study sites including Paraguay, the USA and Russia were chosen, as they represent the world's three main
forest types: tropical forest, temperate broadleaf and mixed forest, and boreal conifer forest, respectively.
Compared with traditional methods, the proposed approach produced the most accurate continuous time-series
of fine spatial resolution forest maps both visually and quantitatively. For the forest maps during 2007–2010 and
2015–2016, the results had greater overall accuracy values (> 98%) than those of the original JAXA forest
product. For the reconstructed 25m forest maps during 2011–2014, the increases in classifications accuracy
relative to three benchmark methods were statistically significant, and the overall accuracy values of the three
study sites were almost universally> 92%. The proposed approach, therefore, has great potential to support the
production of annual 25m forest maps by fusing PALSAR/PALSAR-2 and MODIS NDVI during 2007–2016.

1. Introduction

Forests store a large amount of terrestrial carbon and provide the
natural habitats for almost two-thirds of the Earth's biodiversity
(Gillespie et al., 2008). Despite their importance, the world's forests are

decreasing at a rate of approximately 7 million ha annually (Canadell
and Raupach, 2008), including significant deforestation in the tropics,
because of activities such as fuel-wood collection, agricultural expan-
sion, industrialization and urbanization (Curtis et al., 2018; Foley et al.,
2005). Many ecosystem services and climate-related problems,
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including accelerated soil erosion, biodiversity losses and increasing
concentrations of atmospheric greenhouse gases, were enhanced by the
loss and degradation of forests (Foley et al., 2005; Pan et al., 2011).
Meanwhile, in some parts of the world, for example, due to the refor-
estation and afforestation supported by East Asian countries (Fang
et al., 2001) and improvement of forest conditions in European coun-
tries (Kauppi et al., 1992), forest areas in these regions are increasing
locally. These new forests have become a substantial sink of atmo-
spheric carbon and contribute to addressing the problems caused by the
loss and degradation of forests (Foley et al., 2005). With the threat to
the World's forest resources increasing, accurate and timely monitoring
of forest cover change, including both decreases and increases, is
needed urgently (Curtis et al., 2018; Sexton et al., 2016).

Given the extensive spatial coverage and frequent revisit cap-
abilities of Earth observation sensors, remote sensing has become an
effective tool for monitoring the Earth's forest resources. At a regional
scale, a variety of remote sensing datasets have been applied to produce
forest maps. For example, Achard and Estreguil (1995) applied the
Advanced Very High Resolution Radiometer (AVHRR) to map forest
cover across Southeast Asia. Morton et al. (2005) applied MODerate
resolution Imaging Spectroradiometer (MODIS) data to assess defor-
estation in the Brazilian Amazon. Hansen et al. (2008) integrated both
MODIS and Landsat data to monitor forest cover change in the Congo
Basin. Pekkarinen et al. (2009) applied Landsat Enhanced Thematic
Mapper plus (ETM+) data to produce Pan-European forest maps. Dong
et al. (2012) applied a range of datasets, including the Phased Array
type L-band Synthetic Aperture Radar (PALSAR), MEdium Resolution
Imaging Spectrometer (MERIS), and MODIS together with Forest Re-
sources Assessments (FRA), to produce forest maps of Mainland
Southeast Asia. However, given the rapidly expanding number of
available remote sensing satellite sensor datasets, it is of great interest
to consider how to provide time-series “wall-to-wall” forest maps,
which have a fine spatial resolution (FR) and are updated at a high
temporal frequency, to monitor the world's forest cover and its dy-
namics at the global scale (Motohka et al., 2014).

With the inherent benefits of spatial and temporal consistency, sa-
tellite-derived forest cover and change mapping at the global scale is
currently a research priority. Generally, forest cover can be obtained
from satellite-derived global land cover datasets, such as the 1 km
Global Land Cover (GLC2000) dataset (Bartholome and Belward, 2005)
for 2000, the 1 km Global Land Cover dataset provided by National
Mapping Organizations (GLCNMO) for 2003 (Tateishi et al., 2011), the
300m Global Land Cover Product (GlobCover) for 2005, 2006 and
2009 (Bicheron et al., 2011), the 500m annual MODIS Global Land
Cover type product (MCD12Q1) (Friedl et al., 2002) and the latest 30m
Finer Resolution Observation and Monitoring-Global Land Cover pro-
duct (FROM-GLC) (Gong et al., 2013). But these satellite-derived global
land cover products do not focus exclusively on forest cover and, thus,
cannot assure the accuracy of forest cover mapping (Kaptué Tchuenté
et al., 2011).

Fortunately, various satellite-derived products focusing on global
forest cover have been developed. The first is annually MODIS
Vegetation Continuous Field (VCF) product, which was derived from
the images of MODIS carried on the Terra and Aqua satellites since
2000 (DiMiceli et al., 2011; Hansen et al., 2003). The MODIS VCF is
currently the only product that can provide annual tree canopy cover
since 2000, but many tree cover change occurs in patches have smaller
spatial size than the MODIS VCF (Jin and Sader, 2005a). Subsequently,
a global continuous field tree cover product (30m) was produced by
using the Landsat series data for circa 2000, 2005 and 2010 (Sexton
et al., 2013). Compared with the MODIS VCF, Landsat tree cover pro-
duct has a finer spatial resolution, which supports more accurate forest
cover change assessment. However, due to the relatively infrequent
revisit coverage provided by the Landsat data in combination with
cloud cover contamination (Townshend et al., 2012), global mosaics
were produced only for the years 1975, 1990, 2000, 2005 and 2010

(Hansen et al., 2009). Therefore, it is impossible to produce global wall-
to-wall Landsat tree cover maps on an annual basis, and this limits the
application of the Landsat tree cover product for long-term observation
and monitoring of global forest cover change. More recently, a global
30m forest cover change product was published during 2000–2012
(Hansen et al., 2013). This latest product provided global forest loss per
year during 2000-to-2017 through the application of a statistical sam-
pling approach, but the forest gain was provided for 2012 only and
limited to a specific inter-annual period. It is noteworthy that in-
formation on forest gain is crucial for some studies, but forest cover
gain maps cannot be provided on an annual basis for this product
(Hansen et al., 2013).

The Japan Aerospace Exploration Agency (JAXA) launched the
Advanced Land Observing Satellite (ALOS) with the PALSAR in January
2006, and it provided annual global time-series cloud-free PALSAR data
covering all the world's forests during 2007-to-2010. Numerous studies
have demonstrated that the low-frequency L-band Synthetic Aperture
Radar (SAR) (24 cm) is more sensitive to forest characteristics than
other widely used SAR bands (Rosenqvist et al., 2000; Shimada and
Isoguchi, 2002). With the global ALOS PALSAR mosaics, a new global,
annual, wall-to-wall forest map product from 2007 to 2010 with a
spatial resolution of 25m, was obtained using a threshold method.
Forest in this product is defined as natural forest patches with the area
larger than 0.5 ha and tree canopy cover over 10% (Shimada et al.,
2014), mirroring the Food and Agriculture Organization (FAO) defini-
tion (FAO, 2010). The ALOS PALSAR forest map products provided the
first global annual 25m fine spatial resolution forest cover mapping,
and are useful for investigating forest cover change, the terrestrial
origin of carbon emissions, and promoting the activity of the Reducing
Emissions from Deforestation and forest Degradation Plus (REDD+)
program. However, the ALOS PALSAR data acquisition ended in April
2011 because of a power failure suffered by the satellite. Thus, forest
map products were produced only for the four years: 2007, 2008, 2009
and 2010. Fortunately, the ALOS-2 satellite was launched successfully
in May 2014. As an upgrade of ALOS PALSAR, the PALSAR-2 sensor
aboard ALOS-2 started to provide global PALSAR-2 data since 2015.
However, because of the gap between the demise of ALOS-1 and the
launch time of ALOS-2, the annual ALOS PALSAR datasets between
2011 and 2014 inclusive do not exist. Therefore, annual ALOS PALSAR
forest maps are missing during 2011-to-2014.

To provide a long-term, annual, 25m forest map product, there is a
desire to reconstruct the ALOS PALSAR forest maps during 2011–2014.
Since there is no ALOS PALSAR or ALOS-2 PALSAR-2 dataset during
this period, alternative remote sensing satellite sensor datasets need to
be utilized during 2011-to-2014. With a large number of freely avail-
able satellite sensor datasets available, it is possible to provide remote
sensing datasets at different spatial resolutions during 2011–2014.
However, to be suitable, the remote sensing dataset should satisfy a key
criterion; that is, the dataset should be collected at the global scale and
be capable of showing the annual change. The Landsat series datasets,
including Thematic Mapper (TM, Landsat 5), Enhanced Thematic
Mapper Plus (ETM+, Landsat 7) and Operational Land Imager (OLI,
Landsat 8), can be acquired free from the USGS since 2008 (Woodcock
et al., 2008), and are a reasonable choice. However, the relatively in-
frequent revisit interval makes it challenging to assemble annual
Landsat dataset mosaics at the global scale during 2011–2014. More-
over, there are almost no available Landsat TM or OLI images in 2012,
since Landsat 5 was out of operation in November 2011 and Landsat 8
was launched in February 2013. Other optical remote sensing satellite
sensor datasets, such as from sensors carried by the SPOT and Advanced
Spaceborne Thermal Emission and Reflection Radiometer (ASTER),
have similar problems as those of the Landsat satellites. Although the
Radarsat-2 system can provide cloud-free FR SAR mosaics at the global
scale with an interval of one year for forest mapping (Evans et al., 2010;
Maghsoudi et al., 2013), it is not free, which could make the cost of
utilization of Radarsat-2 datasets prohibitive.
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In contrast to the fine spatial resolution systems, the moderate
spatial resolution remote sensing satellite systems, such as MODIS and
MERIS, are more suitable, as they are freely available at the global scale
and have a daily revisit capability and wide swath width. Since the
ENVISAT satellite lost contact with Earth in April 2012, the MERIS
sensor it carried has not been providing data since then. Fortunately,
MODIS can produce a global, timely, wall-to-wall dataset at spatial
resolutions of 250m and 500m with less than one-year intervals from
2000 to the present day (Giri et al., 2005). Motivated by this situation,
this research aimed to use the MODIS images as the data source to
reconstruct the missing PALSAR forest maps during 2011–2014, so as to
provide an uninterrupted time-series of annual FR forest maps from
2007-to-2016. Specifically, the 250m time-series MODIS NDVI product
was chosen, because it contains much phenological information about
the spatio-temporal features of different forest types around the world.
Moreover, MODIS NDVI images have been previously used together
with PALSAR datasets to increase the forest cover mapping accuracy in
monsoonal Asia in 2010 (Qin et al., 2016) and South America during
2007–2010 (Qin et al., 2017).

MODIS NDVI images have a spatial resolution that is coarser than
the ALOS PALSAR forest map, and consequently, MODIS images are
often dominated by mixed pixels in spatially heterogeneous areas
(Keshava and Mustard, 2002). Spectral unmixing methods are com-
monly applied to MODIS NDVI data to estimate fractional forest cover
(Beck et al., 2006; Xiao and Moody, 2005). Compared with traditional
pixel-based classification schemes, fractional forest cover is able to
depict areas of heterogeneous land cover and estimates the percentage
of each land cover within each pixel (Keshava and Mustard, 2002).
Although spectral unmixing method extracts sub-pixel information
from the mixed pixels of MODIS NDVI, the outputs are limited to the
percentage values and have the same spatial resolution as the input.

Super-resolution mapping (SRM) is a method employed to predict
the spatial locations of sub-pixels for different land cover class fractions
obtained from spectral unmixing (Atkinson, 1997; Foody, 1998). In this
context, the fractional forest map can be used for the SRM model to
generate FR forest maps. Thus, SRM is potentially capable to re-
construct the 25m ALOS PALSAR forest maps from the MODIS NDVI
images during 2011–2014. In the present case, using only the input of
coarse spatial resolution (CR) proportional land cover images, many
SRM algorithms, such as pixel swapping (Atkinson, 2005; Su et al.,
2012), Hopfield neural network (Muad and Foody, 2012; Tatem et al.,
2002), Markov random field (Kasetkasem et al., 2005), direct mapping
(Ge et al., 2009), interpolation (Ling et al., 2013), spatial attraction
(Mertens et al., 2006) and spatial regularization (Mertens et al., 2006;
Zhong et al., 2015), are unlikely to provide satisfactory results
(Atkinson, 2013), because the scale ratio between the 250m MODIS
NDVI images and 25m ALOS PALSAR forest map is large.

Noteworthy is that the above SRM methods are based on mono-
temporal CR fractional maps. There is, however, another kind of SRM
that is based on multi-temporal CR proportion images, and can utilize
the prior information contained within previous land cover maps
(Foody and Doan, 2007). By integrating CR proportion images at the
time of prediction and FR land cover map at a previous time, a sub-pixel
land cover change mapping (SLCCM) method was proposed by Ling
et al. (2011). Subsequently, Wang et al. (2015) proposed a fast sub-
pixel change detection approach, Li et al. (2014b) proposed a Hopfield
neural network spatial-temporal SRM approach, Wu et al. (2017) pro-
posed a back-propagation neural network spatial-temporal SLCCM
method, and Xu et al. (2017) proposed a sparse representation sub-pixel
change detection method. In terms of land cover applications, Li et al.
(2017) proposed a novel fusion model to generate time-series of FR land
cover maps, Li et al. (2014a) used 500m MODIS reflectance images to
generate FR forest maps by developing a Markov Random Field based
spatial-temporal SRM approach, and Zhang et al. (2017a) produced FR
time-series forest maps from multiscale MODIS images by proposing a
learning-based spatial-temporal SRM method.

It is noteworthy that the existing 25m PALSAR/PALSAR-2 forest
maps during 2007–2010 and 2015–2016 contain much forest cover
spatial pattern information. Abovementioned spatial-temporal SRM
methods are, therefore, expected to reconstruct the missing PALSAR
forest maps during 2011–2014 from MODIS NDVI images by in-
tegrating the prior information in existing 25m PALSAR/PALSAR-2
forest maps. However, current, state-of-the-art, spatial-temporal SRM
models are developed based on one (previous) or two (previous and
later) FR land cover maps. In fact, all of the PALSAR/PALSAR-2 forest
maps during 2007–2010 and 2015–2016 contain useful prior informa-
tion, which may benefit the reconstructed forest maps during
2011–2014. Motivated by this, a novel spatial-temporal SRM model is
developed to reconstruct the ALOS PALSAR forest maps during
2011–2014 from MODIS NDVI images by taking advantage of all the
PALSAR/PALSAR-2 forest maps during 2007–2010 and 2015–2016.
Moreover, to further improve the accuracy of forest mapping from ex-
isting PALSAR/PALSAR-2 data, a decision tree algorithm was used to
produce new PALSAR/PALSAR-2 forest maps during 2007–2010 and
2015–2016. It could not only produce more accurate FR forest maps
during 2007–2010 and 2015–2016, but also improve the reconstructed
FR forest maps during 2011–2014, as the new FR forest maps during
2007–2010 and 2015–2016 are the input of the new spatial-temporal
SRM method.

The major objectives of this research were to: (a) generate more
accurate FR forest maps by fusing PALSAR/PALSAR-2 and MODIS NDVI
data during 2007–2010 and 2015–2016; (b) estimate 250m forest and
non-forest fraction (FNF) maps during 2011–2014 from annual time-
series MODIS NDVI images with kernel ridge regression (KRR); (c)
develop a new spatial-temporal SRM model that is based on all the
existing FR forest maps during 2007–2010 and 2015–2016, and apply it
to reconstruct FR forest maps for 2011–2014; (d) produce annual FR
forest cover change maps (forest cover increase and decrease) during
2007–2016 for the selected study sites.

2. Study area and data

2.1. Study area

To validate the performance of the proposed approach for the
world's various forests, three study sites located in Paraguay, USA and
Russia were selected, as they represent examples of the Earth's three
main forest types: tropical forest, temperate broadleaf and mixed forest
and boreal forest, respectively. The locations of the three study sites and
the corresponding ALOS PALSAR images (RGB: HH, HV and HH-HV) for
2010 are shown in Fig. 1.

Paraguay is situated on the northern part of the plain of La Plata,
and the Paraguay river divides it from north to south into two parts. The
eastern side of the Paraguay river comprises hills, marshes, and plains.
It accounts for about one-third of the territory and>90% of the
country's populations. The western side of the Paraguay river, referred
to Chaco area, is mostly covered by grasslands and tropical dry forests.
The study area in Paraguay was at the province of Boquerón, which is in
the northwest of the Chaco area. During the past few decades, serious
deforestation of tropical dry forest occurred in the Chaco woodlands of
Paraguay (Hansen et al., 2013).

The study site within the USA was located in the southeast of
Arkansas, an area covered by temperate broadleaf and mixed forests. It
is noted that there are almost no natural forests in the southeastern
USA, as the forests in this area are often associated with extensive
forestry land use (Hansen et al., 2013; Olson et al., 2001). Short-cycle
tree planting and harvesting which may result in forest increase or
decrease is customary for the forest covers in southeastern Arkansas.

As most regions of Siberia belong to the cold climate of sub-arctic
coniferous forests, vegetation in Siberia, Russia is covered mainly by
the tundra, forest swamps, Taiga coniferous forests, and forest grass-
lands. The study site in Russia was selected in the west of the Yakutsk
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city of Russia, which is in the center of Siberia and is covered by boreal
forests. Due to frequent forest fires, this region has experienced sig-
nificant forest loss of boreal forests, which contribute greatly to global
carbon emissions (Alexander et al., 2014).

2.2. Datasets and preprocessing

The input and validation of the proposed approach include three
datasets: PALSAR/PALSAR-2, MODIS NDVI and reference forest/non-
forest points. The MODIS NDVI dataset is based on the 16-day 250m
MODIS NDVI product of MOD13Q1, and it was collected from the NASA
Earthdata search website (https://search.earthdata.nasa.gov/search) as
the dataset: “MODIS/Terra Vegetation Indices 16-Day L3 Global 250 m
SIN Grid V006”. Details of the PALSAR/PALSAR-2 and MODIS NDVI
images are listed in Table 1. For each of the study sites, there are four
scenes of ALOS PALSAR images during 2007–2010, two scenes of ALOS-
2 PALSAR-2 images during 2015–2016, and 230 scenes of MOD13Q1
images during 2007–2016 (23 scenes per year). More information about
these datasets and the preprocessing are reported in the following
sections.

2.2.1. 25 m ALOS PALSAR and ALOS-2 PALSAR-2
JAXA launched the ALOS satellite on Jan. 24, 2006 and it operated until

April 2011, but then stopped working because of a power failure, while the
ALOS-2 was launched on May 24, 2014. At the beginning of 2014, JAXA
started to release the annual global 25m ALOS PALSAR mosaic for

2007–2010 and ALOS-2 PALSAR-2 mosaic since 2015, and it also provided
annual global 25m FNF maps during 2007–2010 and 2015–2017 by clas-
sifying the backscattering intensity values in PALSAR/PALSAR-2 mosaics
(http://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/fnf_index.htm, where the
mosaics were tiled into 1°×1° areas of 4500×4500 pixels). Fine Beam
Dual (FBD) modes of PALSAR and PALSAR-2 are based on the dual po-
larizations of horizontally transmitted and horizontally (HH) and horizon-
tally transmitted and vertically (HV). For both PALSAR and PALSAR-2, the
digital number values of original HH and HV polarizations were converted
into the normalized gamma-naught radar backscattering coefficients γo

(unit: decibel, dB). Let C be the absolute calibration factor of −83. The
conversion process is expressed as (Rosenqvist et al., 2007):

= × +dB C( ) 10 log DNo
10

2 (1)

It is well known that “salt and pepper” noise is generally contained
in the PALSAR/PALSAR-2 image. The adaptive Enhanced Lee filter,
which is used widely for SAR image despeckling (Yu and Acton, 2002),
was, therefore, applied to the HH and HV images, so as to reduce “salt
and pepper” noise, where the spatial size of the adaptive Enhanced Lee
filter was 5×5 pixels. In addition to the HH and HV, the difference and
ratio values between them are also used for forest mapping. Therefore,
there were four layers, including HH, HV, HH-HV and HH/HV, in the
merged SAR images. From the false color map of PALSAR (RGB: HH,
HV, and HH-HV) shown in Fig. 2, it is evident that forest cover in all of
the study sites is distinguished from other land covers, such as soil,
water and vegetation.

Fig. 1. Geolocations of the three study sites in this research. (a) Paraguay tropical forest; (b) USA temperate broadleaf and mixed forest; (c) Russia boreal forest.

Table 1
Details of the datasets including PALSAR/PALSAR-2 and MOD13Q1 used in this research.

Dataset Spatial resolution (m) Area (km2) Track number Years Number

ALOS PALSAR 25 112.5× 112.5 S21W061(Paraguay)
N34W092(USA)
N64E126(Russia)

2007–2010 12

ALOS-2 PALSAR-2 25 112.5× 112.5 S21W061(Paraguay)
N34W092(USA)
N64E126(Russia)

2015–2016 6

MOD13Q1 250 1200×1200 h12v11(Paraguay)
h10v05(USA)
h23v02(Russia)

2007–2016 690
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2.2.2. Time-series MODIS NDVI
The MODIS/Terra Vegetation Indices 16-Day L3 Global 250m

composite product (version V006) of MOD13Q1 was employed in this
research, where each value of MOD13Q1 indicates the best quality pixel
value within the observed 16-days period. The NDVI was selected from
the two available vegetation indices (EVI and NDVI) in the MOD13Q1
product. For each year, there are 23 scenes of MOD13Q1 NDVI images,
but it is difficult to ensure that all of the pixels within the NDVI time-
series are of good quality because of the clouds, atmospheric changes,
and satellite system errors. To reduce singular pixels in the MOD13Q1
NDVI images and reconstruct the long-term change trend of vegetation,
the Savitzky-Golay filter (Chen et al., 2004) was applied to the annual
time-series NDVI images. As shown in the third column of Fig. 2, the
mean NDVI curves, after application of the Savitzky-Golay filter, of
forest covers in the three study sites are continuous and smooth and,
thus, have great potential to characterize the spatio-temporal features
of the three different forest types. The annual maximum NDVI images
(termed as MODIS NDVImax) were calculated from the 23 scenes of 16-
days MOD13Q1 NDVI images of each year, and they can be integrated
with the PALSAR/PALSAR-2 images of the years of 2007–2010 and
2015–2016 to increase the classification accuracy of the forest maps
(Qin et al., 2017).

3. Methods

By fusing the time-series PALSAR/PALSAR-2 and MODIS NDVI data,
the proposed approach aims to produce annual 25m forest maps during

2007–2016. It is noteworthy that this research follows the same defi-
nition of forest cover as used in the JAXA PALSAR/PALSAR-2 FNF
maps, where tree covered land with an area larger than 0.5 ha, height
over 5m and canopy cover over 10%, is defined as “forest cover”
(Shimada et al., 2014), the same as the FAO definition (FAO, 2010). In
the following Sections 3.1 and 3.4, the collections of the regions of
interests (ROIs) for forest and reference ground forest samples were
both based on this definition of “forest cover”, so as to make the gen-
erated 25m forest maps during 2007–2016 consistent with the adopted
definition of “forest cover”.

As shown in Fig. 3, there are three main stages for the proposed
approach: 1) generation of more accurate 25m forest maps during
2007–2010 and 2015–2016 by integrating PALSAR/PALSAR-2 and
MODIS NDVImax images; 2) estimation of the 250m FNF fraction maps
during 2011–2014 from annual time-series MODIS NDVI by using the
nonlinear spectral unmixing method of KRR; 3) reconstruction of the
25m forest maps during 2011–2014 from the annual generated 250m
FNF fraction maps during 2011–2014 and 25m forest maps during
2007–2010 and 2015–2016 with a new spatial-temporal SRM method.

3.1. Forest mapping by integrating PALSAR/PALSAR-2 and MODIS NDVI

JAXA released annual global 25m forest maps during 2007–2010
and 2015–2017 by classifying the PALSAR/PALSAR-2 mosaic.
However, since PALSAR/PALSAR-2 cannot provide phenological in-
formation about the forests, many other land covers (such as bare rock
and bush) which have similar backscattering characteristics as those of

Fig. 2. PLASAR, MODIS NDVI images and time-series NDVI curves of forest cover at the year of 2010 for three study areas. (Note: the mean NDVI curves were
generated for one forest pixel in each of the study areas).
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forest may be misclassified as forest. To solve this issue, some studies
integrated PALSAR/PALSAR-2 and MODIS NDVImax to produce more
accurate forest maps (Dong et al., 2012; Qin et al., 2016; Qin et al.,
2017; Sheldon et al., 2012). Therefore, a decision tree algorithm based
on the PALSAR/PALSAR-2 and MODIS NDVI images was implemented
to map forests.

As forests in the three study sites have different structural proper-
ties, threshold values were calculated per study site for the decision tree
algorithm. Moreover, because satellite sensor differences existed be-
tween ALOS PALSAR and ALOS-2 PALSAR-2, threshold values were also
calculated individually for the PALSAR and PALSAR-2 merged images.
By contrast, as annual HH and HV backscatter values for PALSAR
during 2007–2010 were relatively stable through time (Qin et al.,
2017), threshold values used to distinguish forests for each of the study
sites were held constant and calculated by using the ROIs for forests,
which were collected from the Google Earth high resolution images. For
the collection of forest ROIs, it is based on the definition of “forest
cover” by FAO (FAO, 2010). The same operation was also applied to
PALSAR-2 HH and HV backscatters during 2015–2016. Table 2 reports
the threshold values of PALSAR and PALSAR-2 merged images with
regard to the three study sites, and then the 25m forest maps during
2007–2010 and 2015–2016 were produced based on the threshold
values.

3.2. Estimating forest fraction maps from time-series MODIS NDVI with
KRR

Since the world's forests vary greatly, even within a single region, it is
difficult to distinguish diverse forest types with only one satellite sensor
image. Time-series MODIS NDVI contains significant phenological

information about the growth of various vegetation types and has been used
widely to identify crops (Wardlow and Egbert, 2008), grasslands (Gu et al.,
2007) and forests (Jin and Sader, 2005b). Here, annual time-series MODIS
NDVI data (23 scenes per year) were applied to produce forest fraction
maps during 2010–2014 for the distinct forests established at the three
study sites.

Instead of directly generating forest fraction maps from the annual
MODIS NDVI images by temporal linear mixture analysis of the NDVI
profile (Xiao and Moody, 2005), a nonlinear method based on KRR was
used. Nonlinear methods based on machine learning approaches such as
support vector regression, backpropagation neural network and KRR
(Bioucas-Dias et al., 2012), have been used widely for the estimation of
fraction maps, as they can account for the nonlinear mixing of land
covers (Keshava and Mustard, 2002). Compared with the temporal
linear mixture analysis method, producing a forest fraction map with
KRR can take advantage of existing 25m forest maps, removing the
need to provide endmembers for the various land covers. Additionally,
KRR is composed of training and predicting models and has only a few
parameters (An et al., 2007), helping to achieve stable performance in
real-world applications (Kim and Kwon, 2010; Zhang et al., 2018).

Fig. 4 shows the process of estimating forest fraction maps from
time-series MODIS NDVI with KRR. First, existing 25m forest maps
during 2007–2010 and 2015–2016 were averaged spatially to produce
annual 250m forest fraction maps. The generated 250m forest fraction
maps and corresponding annual time-series MODIS NDVI images during
2007–2010 and 2015–2016 were then used as the training dataset for
the KRR training model. As the performance of the KRR model may be
seriously impacted if the size of elements in the training dataset is too
numerous (Kim and Kwon, 2010), the estimation of forest fraction maps
with KRR was completed pixel-by-pixel. As shown in Fig. 4, given a

Fig. 3. The proposed methodology.
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target pixel (red pixel) in the time-series MODIS NDVI images (at any
year during 2010–2014), a vector that is composed of 23 NDVI values
was used as the input to the KRR predicting model. With the same lo-
cation of the target pixel, six vectors can be extracted from the MODIS
NDVI images and six corresponding forest fraction values can be ex-
tracted from the forest fraction maps during 2007–2010 and
2015–2016, where the MODIS NDVI values are the input and the forest
fraction values are the output of the KRR training model. However,
these six vector pairs (one vector pair is composed of 23 NDVI values
and one corresponding forest fraction value) are inadequate for the KRR
training model. To appropriately increase the size of training dataset,
vectors based on the pixels (blue pixels in Fig. 4) that are around the
target pixel were also used in the training dataset. Assume the width of
the pixel window was 3, there will be 3×3×6=54 vector pairs in
each training dataset. Once the training model was completed, it was
combined with the KRR predicting model to estimate the forest fraction
value of the target pixel. The whole forest fraction maps during
2007–2010 and 2015–2016 were estimated pixel-by-pixel and year-by-
year. After the forest fraction map was estimated, the non-forest frac-
tion map was produced automatically since the sum of the forest and
non-forest fraction values per pixel is one.

The training data (see Fig. 4) used in this section are 250m forest
fraction maps which were produced by averaged spatially from the
existing 25m forest maps during 2007–2010 and 2015–2016 in Section
3.1. As mentioned above, the generation of 25m forest maps during
2007–2010 and 2015–2016 was based on the collection of ROIs of
forest defined as “tree covered land with an area larger than 0.5 ha, tree
height over 5 m and canopy cover over 10%”. Therefore, the definition
of “forest cover” in the training data is consistent with that of the ex-
isting 25m forest maps during 2007–2010 and 2015–2016.

3.3. Reconstructing FR forest maps with a new spatial-temporal SRM
method

Let A(tp) be the 25m forest map at the predicting time tp, with the
aim of the proposed spatial-temporal SRM method being to reconstruct
it. Assume that 250m FNF fraction maps F(tp) at the prediction time
have been produced with the above KRR algorithm, and A(ti) is the
existing 25m forest map at time ti. z is the spatial ratio (scale) between
the PALSAR/PALSAR-2 and MODIS images (where z is equal to 250m/
25m=10). Each of MODIS forest fraction maps includes M1×M2

coarse pixels, such that the FR forest map contains (M1× z)× (M2× z)
fine pixels. To provide a solution of A t( )p , a regularization-based fra-
mework (Kim and Kwon, 2010) was used, and it is formulated as fol-
lows

=A t D A t F t H R A t R A t A t( ) arg min{ ( ( ), ( ), ) ( ( )) ( ( )& ( ))}p
X

p p sm p st p i (2)

where D(A(tp),F(tp),H) is the data fidelity term, which is applied to
build the relationship between the reconstructed A(tp) to the input FNF
fraction maps F(tp), and H indicates an operation of down-sampling.
Rsm(A(tp)) is defined as the spatial smoothing regularization term used
to make the results spatially smooth (Ling et al., 2014), while Rst(A(tp)
&A(ti)) is the spatial-temporal regularization term used to incorporate
prior information from existing FR forest maps (Ling et al., 2011). η and
λ are two trade-off parameters, and they always used to balance the
contribution of different terms. The optimal fine pixel class label (forest
or non-forest) in the resultant FR forest map A(tp) is obtained by the
minimum sum values of Eq. (2). More details about the three terms are
provided in the following sections.

3.3.1. Data fidelity term
D(A(tp),F(tp),H) is used as the data fidelity term to measure the

Table 2
Threshold values of the PALSAR and PALSAR-2 merged images to map forest cover for the three study sites.

HV HH HH-HV HH/HV MODIS NDVI

Paraguay PALSAR −11.52~−15.59 −5.68~−10.50 2.51–7.52 0.45–0.80 0.55–1.0
PALSAR-2 −9.74~−15.75 −2.98~−11.05 2.51–9.62 0.34–0.81 0.55–1.0

Russia PALSAR −9.62~−16.17 −3.83~−10.92 3.35–8.4 0.34–0.71 0.76–1.0
PALSAR-2 −10.21~−19.13 −4.56~−10.85 3.13–9.37 0.38–0.76 0.76–1.0

USA PALSAR −8.15~−13.36 −2.79~−8.24 1.46–8.73 0.27–0.82 0.72–1.0
PALSAR-2 −7.90~−14.11 −2.86~−9.60 0.93–8.49 0.32–0.90 0.72–1.0

Fig. 4. The process of estimating forest fraction maps from time-series MODIS NDVI by using KRR.
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difference between the reconstructed forest map A(tp) and the observed
FNF fraction map F(tp). It is used to make the estimated A(tp) consistent
with the observed F(tp). The L2 norm estimator (Atkinson, 1997) is used
to formulate the data fidelity term

=D A t F t H F t HA t( ( ), ( ), ) ( ) ( )p p p p 2
2 (3)

where HA(tp) indicates the FNF fraction values of the reconstructed FR
forest map A(tp) and is spatially degraded from A(tp) with a down-
sampling operation H.

3.3.2. Spatial smoothness regularization term
Rsm(A(tp)) is used as the spatial smoothness regularization term to

incorporate sub-pixel scale spatial prior information into the re-
constructed forest map A(tp). For the mature forest, it always tends to be
spatially contiguous, at least at some scale, and Rsm(A(tp)) can be used
to ensure this is the case in the predicted map. In general, the spatial
smoothness regularization term is always based on the maximal spatial
dependence principle (Atkinson, 2005). With this principle, the fine
pixel class label in the reconstructed forest map A(tp) is determined by
the land cover classes of neighboring fine pixels, and it is expressed
mathematically as
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=m v v l k( ) 1 if fine pixel within is the land cover class
0 otherwisek

l

(5)

Subject to:

=
=

m v( ) 1
k

K

k
l

1 (6)

where K is defined as the number of land cover classes (in the present
case equal to 2: forest and non-forest). l is the coarse pixel and v denotes
a fine pixel within the reconstructed FR forest map. Eq. (6) is used to
make the fine pixel v equal to the class of forest or non-forest. Ov is the
symmetric neighborhood of fine pixel v with a window size of W
(contains W×W fine pixels). SDk

l(v, j) is used to measure the spatial
dependence for a fine pixel v which is labeled as land cover class k. In
general, SDk

l(v, j) is viewed as the distance-weighting function and is
expressed as:

=SD v j j d v j( , ) ( ) exp( ( , )/ )k
l

k (7)

Subject to:

=j j k( ) 1 if fine pixel is assigned as land cover class
0 otherwisek (8)

where d(v, j) indicates the geometric distance calculated between fine
pixels v and j, and φ is a nonlinear parameter used for the distance
decay model.

3.3.3. Spatial-temporal regularization term
Rst(A(tp) &A(ti)) is used as the spatial-temporal regularization term

to introduce prior information from the existing FR forest maps A(ti)
into the reconstructed FR forest map A(tp), and it was organized with
the spatial-temporal dependence model shown in Fig. 5. There are six
FR forest maps during 2007–2010 and 2015–2016, it is unlikely that
any single one of them contains the most comprehensive prior in-
formation about forest features. Thus, six FR forest maps are merged as
one intermediate FR forest map A t( )i , which is used as the existing FR
forest map in the new spatial-temporal regularization term
R A t A t( ( )& ( ))st

p i .
Because there are only CR FNF fraction maps at the predicting time

tp, the merging of intermediate FR forest map A t( )i was completed
based on the CR fraction maps patch by patch. Let F(ti) be the 250m
FNF fraction maps that are spatially averaged from all existing FR forest

maps A(ti) during 2007–2010 and 2015–2016, and FP(tp, l) and FP(ti, l)
be the CR image patches (including w×w coarse pixels) of coarse pixel
lwithin F(tp) and F(ti). Correspondingly, AP(tp, l) and AP(ti, l) are defined
as the FR image patches (including w× z×w× z fine pixels) in A(tp)
and A(ti), and they are fine image patches of CR image patches FP(tp, l)
and FP(ti, l), respectively. Let FPdif(titp, l) be the root-mean-square error
(RMSE) of fraction values between FP(tp, l) and FP(ti, l), expressed as:

=
×

FP t t l
sum FP t l FP t l

w w( , )
( ( , ) ( , ))

dif i p
p i

2

(9)

For each CR patch of FP(tp), there were six fraction RMSE values of
FPdif(titp, l) calculated with Eq. (9); the smallest fraction RMSE value was
chosen from them. Meanwhile, the corresponding FR image patch of FP
(ti, l) with the smallest FPdif(titp, l) is regarded as the FR image patch of
A t( )i . The merged FR forest map A t( )i was then generated from the six
existing FR forest maps when all of the CR patches are applied.
Therefore, the spatial-temporal temporal term Rst(A(tp) &A(ti)) can be
transformed as R A t A t( ( )& ( ))st

p i and formulated as:
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in which SDk
l(vi, j) is similar to SDk

l(v, j) in Eqs. (7) and (8), and is used
to measure the spatial dependence between fine pixel vi and neigh-
boring fine pixel j within the symmetric neighborhood Ovi (contains
W×W fine pixels). FP t l FP t l( ( , ), ( , ))p i is a land cover change in-
dicator used to measure the fraction change between CR image patches
FP(tp, l) and FP t l( , )i , where FP t l( , )i is the lth CR image patch within
the merged FR forest map A t( )i . FP t l FP t l( ( , ), ( , ))p i is expressed as

=FP t l FP t l e( ( , ), ( , ))p i
FP t t l6 ( , )dif i p (12)

where FP t t l( , )dif i p is the fraction RMSE value between CR image pat-
ches FP(tp, l) and FP t l( , )i , and it can be calculated with Eq. (9).

3.3.4. Model optimization
The final FR forest map A(tp) is produced by obtaining the minimum

value of the global energy function shown in Eq. (2). The Iterative
Conditional Model (ICM) was used to provide a solution for the model
optimization of the spatial-temporal SRM method (Besag, 1986), and it
was implemented by the following main steps (Zhang et al., 2017a):

1) Initialize the FR forest map A(tp) with the generated 250m FNF
fraction maps at the prediction time.

2) Change the class label of the FR forest map, and then calculate the
energy values of the data fidelity, spatial smoothness regularization
and spatial-temporal regularization terms in Eqs. (3), (4) and (10).
Compare the global energy values of the pre- and post-change of
class label, and if changing the class label in A(tp) achieves a smaller
global energy value in Eq. (2), the change is then accepted; other-
wise, the change is rejected.

3) Stop the iteration when there are< 0.1% of the fine pixels in A(tp)
are changed after two consecutive iterations or the maximal number
of iteration is reached; otherwise, return to step (2).

4) When the iteration in step (3) is stopped, the final FR forest map
A t( )p was then generated.

3.4. Accuracy assessment

Validation was inspired by visual assessment of the maps obtained
together with quantitative estimates of classification quality, especially
for the forest and non-forest classes. Ground data to support the
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validation activity were obtained from geo-referenced field photo-
graphs, such as from the Global Geo-Referenced Field Photo Library,
the Global Land Cover Validation Reference Dataset of USGS, and
Google Earth high resolution images (Chen et al., 2018; Dong et al.,
2014; Qin et al., 2017). Since there were limited geo-referenced field
photographs for the three study areas, most ground data were gener-
ated from analyses of historical Google Earth images. The collection of
reference ground data of forest was based on the forest definition by
FAO. In addition, the ground data of non-forest was chosen mostly from
the land cover classes of bareland, farmland, and grassland.

The quality and quantity of images in Google Earth varied in time
constraining the study but did allow the extraction of a large sample of
cases for each class. The approach is not ideal but does provide a basis
to acquire ground reference data over the time period studied to eval-
uate the accuracy with which the sample cases are classed as forest or
non-forest. In total 19,147 sample cases were used in the validation
activity, and Table 3 indicates the number of cases for each site in each
year. The accuracy with which the FNF maps generated labeled the
sample cases for the relevant country and year was assessed using
standard measures. Specifically, the focus was on overall classification
accuracy (OA) and the class-level accuracy expressed as producer's and
user's accuracy.

To provide benchmarks to aid the evaluation of the proposed ap-
proach, three popular classification methods, pixel-based hard classifi-
cation (HC) and two SRM methods of regularization based SRM with
maximal spatial dependence (RMD) (Ling et al., 2014) and spatial-
temporal SRM with Hopfield neural network (STHNN) (Li et al., 2014b)
were used and the accuracy of each approach evaluated.

4. Results

4.1. Reproduced FR forest maps during 2007–2010 and 2015–2016

As the PALSAR/PALSAR-2 data cannot provide phenological

information on various forest types, there is still potential to increase
the accuracies of the annual global forest classifications during
2007–2010 and 2015–2016 published by JAXA. Therefore, a decision
tree algorithm based on the integrated data of annual PALSAR/
PALSAR-2 and MODIS NDVImax was applied to reproduce the FR forest
maps of Paraguay during 2007–2010 and 2015–2016. Fig. 6 shows the
original PALSAR/PALSAR-2 images and forest maps produced by JAXA
and the decision tree algorithm. Compared with the forest maps re-
leased by JAXA, it is apparent that the decision tree algorithm produced
forest maps with more spatial detail. As shown by the red circle, square
and rectangle of Fig. 6, many forest covers were misclassified as non-
forest covers in the JAXA forest maps; however, most of them were
correctly classified as forest in the forest maps produced by the decision
tree algorithm. As shown in Table 4, the classifications of the decision
tree algorithm achieved larger OA values (> 98%), and a significant
increase was also observed for the producer's and user's accuracy va-
lues.

4.2. Reconstructed FR forest maps during 2011–2014

FR forest maps for 2011–2014 were obtained to validate the re-
constructing ability of the proposed approach for the ALOS data gap. In
this experiment, the PALSAR/PALSAR-2 forest maps, that were prior to
and after the data of prediction, were used to provide prior spatial-
temporal information for the reconstructed time-series FR forest maps.
With the input of the previous and later FR forest maps during
2007–2010 and 2015–2016 and generated MODIS FNF fraction maps
during 2011–2014, the FR time-series forest maps during 2011–2014
were produced for the three study areas (Figs. 7 and 8). The corre-
sponding accuracy assessments are listed in Tables. 5 and 6. For the
Paraguay study site, the first row of Fig. 7 reports the generated MODIS
forest fraction maps during 2011–2014, while the FR forest maps pro-
duced by HC, RMD and STHNN are also shown to provide a comparison
with the proposed approach. As STHNN is a spatial-temporal SRM
method, its implementation was based on the previous FR forest map of
2010. Zoomed areas of the resultant forest maps are also indicated in
Fig. 7, so as to provide a clearer visual comparison.

As shown in Fig. 7, it is possible to observe the deforestation process
between 2011 and 2014 from the MODIS fraction maps of forest,
especially in the zoomed area. However, many forest cover change
details cannot be represented. For HC, forest feature boundaries in the
resulting maps appear as jagged patches, and many of spatial details are
missing, as HC was performed at the coarse pixel scale of the MODIS
image. For RMD, jagged boundaries become spatially smooth and many
spatial details about the forest cover are represented. Although RMD
addresses the mixed pixel problem in the MODIS image and reduces the
errors of the input MODIS FNF fraction maps, it is beyond the ability of
RMD to produce forest maps with sufficient spatial detail; for example,
many small-sized linear features of forest cover were misclassified.
Compared with RMD, the boundaries of the results of the STHNN are

Fig. 5. An indicator of the spatial-temporal dependence model used for the spatial-temporal regularization term.

Table 3
The number of sample cases for each of the three study sites in each year.

Year Paraguay USA Russia

Forest Non-forest Forest Non-forest Forest Non-forest

2007 434 251 0 0 0 0
2008 362 286 0 0 0 0
2009 362 347 0 0 0 0
2010 369 432 0 0 0 0
2011 445 561 698 540 443 289
2012 453 614 610 546 482 378
2013 489 747 816 494 751 468
2014 503 765 629 524 655 443
2015 542 923 0 0 0 0
2016 549 947 0 0 0 0
Total 4508 5873 2753 2104 2331 1578
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more spatially smooth; moreover, some linear forest features which
were lost in the results of RMD were well represented by STHNN. This is
because STHNN not only benefits from a relatively slack constraint on
the fraction values of the results, but also from the abundant spatial
detail of forest cover in the previous FR forest map of 2010. However,
the boundaries of STHNN results were spatially over-smoothed, and
some linear forest features were mapped as local patches. In contrast,
for the results of the proposed approach, more spatial details are well-
represented, and the boundaries represented with appropriate
smoothness. This is because temporal and spatial information was in-
corporated from all existing FR forest maps during 2007–2010 and
2015–2016, and they provided a constraint on the reconstructed FR
forest maps. This demonstrates the superiority of the proposed method
against others in reconstructing FR forest maps.

Table 5 presents a summary of the accuracy assessments for the
Paraguay study site. Compared to other methods, RMD produced forest
classifications with the smallest OA values, and the producer's and
user's values of forest and non-forest are almost the smallest for dif-
ferent years. Although RMD seems able to produce visually more ac-
curate FR forest classifications than the HC, it is a challenge for RMD to
maintain sufficient spatial detail on forest cover while eliminating the
spectral unmixing error within the FNF fraction maps at the same time.
With the incorporation of spatial-temporal information from the FR

forest maps in 2010, the accuracy values associated with the use of the
STHNN are enhanced relative to those from RMD. However, from 2011
to 2013, enhancement achievement with STHNN became smaller, and
in 2014, STHNN classification had the lowest accuracy values. This
situation arose because the STHNN has difficulty in dealing well with
the land cover change, and the change of forest cover between the
previous time and predicting time becomes increasingly overweight
from 2011 to 2014. For the proposed approach, the classifications not
only have the largest OA values (most are larger than 92%), but also the
largest producer's and user's values.

Figs. 8 and 9 report the time-series forest fraction maps and re-
constructed FR forest maps during 2011–2014 for the study sites of the
USA and Russia. The corresponding accuracy assessment is provided in
Table 6. With the PALSAR/PALSAR-2 FR forest maps of 2010 and 2015
as shown in Fig. 6, the changes of forest cover can be visualized over
this 5-year period, but it is impossible to observe how the forest covers
changed on an annual scale between 2010 and 2015. By contrast, for
both of the study sites of USA and Russia, the gradual changes in forest
cover between 2010 and 2015 are shown clearly in the time-series re-
constructed forest maps during 2011–2014. As listed in Table 6, OA
values of the USA classifications are> 94%, while those of Russia
are> 91.50%. Compared with the temperate broadleaf and mixed
forests in the USA, the boreal forests of Russia are sometimes difficult to
distinguish correctly, as they have a more complex spatial pattern.

4.3. Annual forest cover changes during 2007–2016

With reconstructed FR forest maps during 2011–2014 and improved
PALSAR/PALSAR-2 FR forest maps during 2007–2010 and 2015–2016,
annual forest cover change maps during 2007–2016 for the three study
sites were generated (Fig. 10). Specifically, the forest cover change is
composed of the forest cover increase and decrease, and Fig. 10 re-
presents both of them. For Paraguay, the land cover changes were
mainly focused on forest cover decrease, and there was almost no in-
crease of forest cover from 2007 to 2016. As a tropical forest area,
deforestation was the led cause of forest cover decrease in Paraguay,
and most of the deforestation areas had simple geometric shapes, such
as rectangles and squares. For the USA, both decreasing and increasing
forest cover were observed, while with forest cover increases slightly
larger than the decreases, and the increases occurred in the same lo-
cality as the decreases. This is because the land use of the study area is

Fig. 6. Paraguay PALSAR/PALSAR-2 RGB images and forest maps produced by JAXA and the proposed approach.

Table 4
Accuracy values of the Paraguay forest classifications produced by JAXA and
the proposed decision tree algorithm.

Year Method OA Producer's accuracy User's accuracy

Forest Non-forest Forest Non-forest

2007 JAXA 84.67% 75.81% 100.00% 100.00% 70.51%
Proposed 98.98% 98.39% 100.00% 100.00% 97.29%

2008 JAXA 89.66% 81.49% 100.00% 100.00% 81.02%
Proposed 99.23% 99.72% 98.60% 98.90% 99.65%

2009 JAXA 92.67% 85.64% 100.00% 100.00% 86.97%
Proposed 99.58% 99.17% 100.00% 100.00% 99.14%

2010 JAXA 99.13% 98.64% 99.54% 99.45% 98.85%
Proposed 100.00% 100.00% 100.00% 100.00% 100.00%

2015 JAXA 94.13% 84.32% 99.89% 99.78% 91.56%
Proposed 98.23% 99.45% 97.51% 95.91% 99.67%

2016 JAXA 96.66% 91.26% 99.79% 99.60% 95.17%
Proposed 98.53% 99.09% 98.20% 96.97% 99.47%
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Fig. 7. MODIS forest fraction maps and reconstructed FR forest maps during 2011–2014 for the study site of Paraguay.

Fig. 8. MODIS forest fraction maps and reconstructed FR forest maps during 2011–2014 for the USA study site.
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associated with extensive forestry, and tree planting and harvesting
which may result in forest cover increases and decreases were prevalent
in a short-cycle, so as to maintain a balance between forest cover de-
creases and increases. For the study area in Russia, although there were
both local decreases and increases of forest cover, the decreases were
more frequent than increases. Moreover, large decreases in forest cover

were observed in 2013 and 2014. Areas of forest decrease often had
irregular shapes with a high degree of spatial connectivity between
them. This situation may be due to the frequent forest fires that oc-
curred in this region.

In general, forest cover decrease is caused mainly by rapid defor-
estation and disturbance, such as clear cutting, selective logging and
forest fire, and it can generally be detected with a high degree of ac-
curacy (Hansen et al., 2013). Compared with forest cover decreases,
increases in forest cover are more complex, and greater uncertainty
exists for their detection (Poorter et al., 2016). Planting and regrowth
are two principle sources of forest cover increases. Planting is asso-
ciated with extensive forestry; the increase in forest cover in the USA
study site is typical of forest planting. On the other hand, forest re-
growth where trees regrow naturally from some past deforestation and
disturbance includes two main cases: 1) regrowth from forest clear cut
(deforestation), where recovery is generally a slow process. This is one
of the reasons why forest cover decrease was small in Paraguay during
2007–2016; 2) regrowth from forest fire (disturbances). If the fire is
sufficiently limited, it can leave the trunks of trees relatively intact,
which opens the possibility for the burnt trees to regrow within a short
time (Chu and Guo, 2014). This is why many forest cover decreases
were observed in the Russia study site. This issue will be discussed
further in the following section.

5. Discussion

5.1. Multi-scale image fusion

This research aimed to produce annual 25m forest maps by fusing
PALSAR/PALSAR-2 and MODIS NDVI images over the period
2007–2016. As PALSAR/PALSAR-2 and MODIS NDVI images have
different spatial resolutions, the image fusion in this study was im-
plemented with a multi-scale approach. There are two types of multi-
scale operations: the first is the production of FR forest maps from
PALSAR/PALSAR-2 images by integrating MODIS NDVImax; the second
is the production of FR forest maps from MODIS NDVI images by in-
tegrating generated PALSAR/PALSAR-2 forest maps. The first multi-
scale image fusion approach focuses on the PALSAR/PALSAR-2 images,
where the MODIS NDVImax was used as additional information in the
decision tree algorithm to increase the classification accuracy. This type
of image fusion method has been applied widely to extract forest maps
from SAR images and optical satellite sensor images (Chen et al., 2018;
Dong et al., 2012; Qin et al., 2017). The second multi-scale image fusion

Table 5
Accuracy assessment of the FR forest classifications by different approaches for
the study site of Paraguay.

Year Method OA Producer's accuracy User's accuracy

Forest Non-forest Forest Non-forest

2011 HC 87.57% 97.08% 80.04% 79.41% 97.19%
RMD 82.80% 94.38% 73.62% 73.94% 94.29%
STHNN 86.28% 97.08% 77.72% 77.56% 97.09%
Proposed 92.45% 99.10% 87.17% 85.96% 99.19%

2012 HC 84.44% 96.03% 75.90% 74.61% 96.28%
RMD 79.29% 93.82% 68.57% 68.77% 93.76%
STHNN 81.44% 97.13% 69.87% 68.77% 97.06%
Proposed 92.22% 96.91% 88.76% 86.42% 97.50%

2013 HC 90.78% 94.89% 88.09% 83.91% 97.50%
RMD 85.60% 89.16% 83.27% 77.72% 92.15%
STHNN 86.00% 94.27% 83.27% 76.07% 95.56%
Proposed 94.01% 97.14% 91.97% 88.79% 98.00%

2014 HC 86.44% 97.08% 80.04% 79.41% 97.19%
RMD 80.84% 94.38% 73.62% 73.94% 94.29%
STHNN 79.73% 97.08% 77.72% 77.56% 97.09%
Proposed 93.30% 99.10% 87.17% 85.96% 99.19%

Table 6
Accuracy assessment of the FR forest maps reconstructed by the proposed ap-
proach for USA and Russia.

Year Method OA Producer's accuracy User's accuracy

Forest Non-forest Forest Non-forest

USA 2011 95.88% 96.42% 95.19% 96.28% 95.36%
2012 96.19% 96.56% 95.79% 96.24% 96.14%
2013 94.58% 94.98% 93.93% 96.27% 91.88%
2014 95.75% 95.55% 95.99% 96.62% 94.73%

Russia 2011 94.00% 97.97% 87.93% 92.54% 96.59%
2012 91.50% 96.68% 84.88% 89.10% 95.24%
2013 91.93% 96.66% 84.33% 90.83% 94.02%
2014 92.34% 95.27% 88.01% 92.17% 92.62%

Fig. 9. MODIS forest fraction maps and reconstructed FR forest maps during 2011–2014 for the Russia study site.
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method is a full spatial-temporal SRM method, so as to take advantage
of the fine scale information about the forest cover distributions in
existing FR forest maps (Li et al., 2014a; Zhang et al., 2017a; Zhang
et al., 2017b). Although the output of both these multi-scale image
fusion methods is the FR forest map, there is a downscaling process in
the second multi-scale image fusion method compared with the first
one. It is noteworthy that producing FR forest maps from CR MODIS
NDVI images is an ill-posed problem, and there is necessarily un-
certainty in the spatial-temporal SRM method (Atkinson, 2013; Ling
et al., 2011). From the results shown in sections 4.1 and 4.2, it can be
found that the FR forest maps produced by the first multi-scale image
fusion method were more accurate than those from the second one, as it
is a challenge to decrease the uncertainty in the downscaling process
(Ling et al., 2016). Fortunately, the proposed new spatial-temporal SRM
method as described in Section 3.3 can take advantage of all the ex-
isting FR forest maps during 2007–2010 and 2015–2016, which can
significantly decrease the uncertainty in downscaling compared with
traditional SRM methods. Despite the factor that the above two multi-
scale fusion methods focus on different objectives, it was necessary to
combine them to produce the FR forest maps during 2007–2016. This is
because the second multi-scale image fusion task is highly dependent on
the FR forest maps produced by the first multi-scale image fusion
method; therefore, increasing the accuracies of FR forest maps during
2007–2010 and 2015–2016 provided more accurate prior information
for the second multi-scale fusion method, and finally the constructed FR
forest maps during 2011–2014, when this is a gap in data from PALSAR
systems.

5.2. Advantages and computational efficiency of the proposed approach

Global PALSAR/PALSAR-2 forest maps produced by JAXA contain

abundant prior information about forest cover and forest cover change.
The proposed approach aimed to inherit the implicit advantages asso-
ciated with the time-series of 250m MODIS NDVI images and the ex-
isting PALSAR/PALSAR-2 forest maps, and thus, achieve high accuracy
in the reconstructed FR forest maps during 2011–2014 when PALSAR
data are unavailable. The superiority and advantages of the proposed
approach were demonstrated in the above experiments. In this research,
the experiments focused on three distinct types of forests, due to their
crucial importance in global biogeochemical cycles. However, the
method could be applied anywhere on the Earth's surface, because the
MODIS NDVI product and PALSAR/PALSAR-2 forest maps are now
available at the global scale. Generally, the advantages of the proposed
approach are the utilization of the abundant prior information within
all existing FR forest maps during 2007–2010 and 2015–2016, and
more specifically:

1) Integrating PALSAR/PALSAR-2 and MODIS NDVI data to produce
more accurate FR forest maps during 2007–2010 and 2015–2016,
thus contributing greatly to the reconstructed FR forest maps during
2011–2014.

2) Using existing FR forest maps and annual MODIS NDVI images to
estimate 250m FNF fraction maps during 2011–2014 automatically.
Moreover, it is noteworthy that annual time-series MODIS NDVI
images contain abundant phenological information about different
types of forests around the world and are, thus, suitable for esti-
mating FNF fraction maps for various forests.

3) Traditional spatial-temporal SRM models can only use one or two
existing FR land cover maps to build the spatial-temporal regular-
ization term and cannot deal with land cover change through time
(Li et al., 2017; Zhang et al., 2017b). In contrast, the proposed ap-
proach applies all FR forest maps during 2007–2010 and 2015–2016

Fig. 10. Annual forest cover change maps during 2007–2016 for the three study sites.
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to construct the spatial-temporal regularization term, so as to pro-
vide more useful prior information for the reconstructed FR forest
maps.

The MATLAB platform (MATLAB R2018a version) on an Intel(R)
Core (TM) i7-7700 K Processor at 4.20 GHz was used for the re-
construction and validation of the proposed approach. As described
above, there are three parts (section 3.1, 3.2 and 3.3) to the proposed
approach. To assess the computational efficiency, Table 7 lists the
computational cost of the three parts. The total computational time of
the proposed approach for one study site, Paraguay, in this research was
2936.27 s, the first two parts spent little time (< 5% of the total com-
putation time), but part 3 took up 2812.41 s, which is> 95% of the
total computational time. Compared with the first two parts, part 3 is
based on an optimization problem, and iteration is required in the
search for the optimal solution. An alternative solution to this is re-
placing the iteration-based optimization problem as a maximum pos-
terior probability (MAP) problem (Atkinson, 2005; Wang et al., 2014),
so as to decrease the computational time. On the other hand, given the
great superiority of parallelization (Christophe et al., 2011), it is of
major interest to build a platform based on parallelization to sig-
nificantly reduce the computational time of the proposed algorithm.

5.3. Effect of existing FR forest maps

For the proposed approach, prior temporal information from ex-
isting FR forest maps could be exploited for the newly generated FR
forest map. The proposed approach has the advantage to extract prior
information from all existing FR forest maps, which equate to the
PALSAR/PALSAR-2 forest maps during 2007–2010 and 2015–2016 in
this research. Table 8 was used to measure the effect of existing FR
forest maps, and it reports the accuracies of the FR forest maps gen-
erated by the proposed approach based on different numbers of existing
FR forest maps for the Paraguay study site. When only one existing FR
forest map (2007) was used for the proposed approach, the result
achieved the smallest OA values, because there was not much prior
temporal information in the FR forest map in 2007. However, with the
continuous increase in the number of FR forest maps, the accuracies of
the resultant forest maps increased. In particular, when the FR forest
map for 2015 was added, the OA value increased by 6.48% compared
with the result based on FR forest maps during 2007–2010. This is
because serious forest cover changes that happened during 2013–2015
and the later FR forest map in 2015 was able to provide more prior
information about the process of forest change. When the FR forest map
in 2016 was added, a further increase in accuracy was observed, with

the largest OA (94.01%) values, which demonstrates that existing FR
forest maps (both previous and later) could have a positive effect on the
result of the proposed approach. It is suggested that both previous and
later FR forest maps are added when applying the proposed approach to
reconstruct FR forest maps.

5.4. Forest cover change in the study site of Russia

In Fig. 9, it is observed that some pixels of forest cover disappeared
and re-appeared from 2012 to 2014 (clearly illustrated by the red el-
lipse of Fig. 11). Generally, it is physically impossible for forest cover to
remove and re-appear within a very short time (Chazdon, 2003; Nguyen
et al., 2018). If a tree is clearly cut in one year, it will be impossible for
it to regrow into a mature tree in the next year (which is the “case 1” in
Fig. 11), because recovery from forest clear cutting is a slow process
(Nguyen et al., 2018). In the real situation, besides forest clear cutting
(case 1 in Fig. 11), forest disturbances, such as forest fire (case 2 in
Fig. 11), can also result in a reduction of forest cover. However, unlike
forest clear cutting, some forest fire can leave the complete trunks of
trees, which make recovery to large trees in the next year possible (Chu
and Guo, 2014; Lhermitte et al., 2011). To find out the cause of forest
cover change (in the red oval) during 2012–2014 for the study site of
Russia, the corresponding annual Google Earth images were illustrated.
From the Google Earth images, it can be seen that a large area of forest
fire occurred across the study site in 2013, reducing the forest cover;
but in 2014, some of the lost forest cover exhibited a good recovery and
regrew as forest cover again. This suggests that the forest cover dis-
appearance and re-appearance in the study site of Russia belong to
“case 2”, and is reasonable. Meanwhile, as shown in Fig. 11, it can be
observed that most of the forest covers and time-series changes re-
constructed by the proposed method were consistent with the Google
Earth images, which demonstrate further the efficiency of the proposed
method.

5.5. Uncertainty in forest cover increase

Forest cover decreases caused by deforestation and disturbance al-
ways occur rapidly and could be identified with a high degree of ac-
curacy (Curtis et al., 2018; Hansen et al., 2013). However, forest cover
increase, in particular from deforestation, is a lengthy recovery process
and is generally detected with greater uncertainty (Bullock et al., 2018;
Nguyen et al., 2018). For the case of forest clear cutting, it is impossible
for a lost forest cover to recover (increase) within 1-to-2 years, and a
constraint is needed for the proposed algorithm to prevent rapid
“switching” from one class to another within a short time. However, for
the case shown in Section 5.4, the rapid “switching” is reasonable for
recovery from forest fire, and in this case, a constraint on rapid
“switching” would lead to additional errors. In real applications, it is
difficult to separate the two cases of forest cover increase (recovery)
shown in Fig. 11. Therefore, uncertainty exists for forest cover increases
in the time-series forest maps reconstructed by the proposed method.

For monitoring of forest cover recovery processes, simply defining
the pixel as forest or non-forest is not sufficient. For example, the tree
canopy cover for a pixel in 2012 was 60%, and then the pixel was
defined as forest cover. In 2013, the tree canopy cover for the pixel
increased to 80% and the pixel was also defined as forest cover. If we
just focused on the class labels of the pixel, there would be no changes
from 2012 to 2013 (“forest” to “forest”), but the canopy cover increased
from 60% to 80%. Therefore, instead of simply using the class labels of
forest and non-forest to monitor the forest cover recovery process, some
other continuous variables, such as tree canopy cover (Sexton et al.,
2013), forest proportion (Zhang et al., 2018), aboveground biomass
(Foody et al., 2001), and the Normalized Degradation Fraction Index
(NDFI) (Bullock et al., 2018), may be a better choice. Moreover, al-
though remote sensing has contributed a lot to the detection of suc-
cessive processes related to forest recovery, ground sample plots remain

Table 7
Computation cost of different parts in the proposed approach.

Part 1 (Section
3.1)

Part 2 (Section
3.2)

Part 3 (Section
3.3)

Total

Paraguay 52.93 s 70.93 s 2812.41 s 2936.27 s

Table 8
Accuracy assessment of the FR forest maps generated by the proposed
approach based on different numbers of existing FR forest maps for
Paraguay.

Existing FR forest maps used OA

2007 82.12%
2007/2008 83.01%
2007/2008/2009 84.55%
2007/2008/2009/2010 86.89%
2007/2008/2009/2010/2015 93.37%
2007/2008/2009/2010/2015/2016 94.01%
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indispensable due to the uncertainty related to forest recovery pro-
cesses (Chazdon, 2003; Chazdon et al., 2016; Poorter et al., 2016).

5.6. Error sources and future research

Reconstructing FR forest maps during 2011–2014 by fusing ALOS
PALSAR and MODIS NDVI data is an ill-posed problem. The proposed
approach aims to decrease the uncertainty in the fusion process by
taking advantages of prior information within the pre- and post-
PALSAR/PALSAR-2 FR forest maps. However, uncertainty caused by
different error sources is present, especially in the spatial-temporal SRM
model (Atkinson et al., 2008; Turner et al., 2003). When applying the
proposed approach, three main error sources may impose a consider-
able negative effect on the results. Firstly, since the proposed approach

is based on the annual time-series MODIS NDVI and PALSAR/PALSAR-2
forest maps, data quality may impact directly the accuracy of the re-
constructed forest maps. As MODIS is an optical satellite sensor, the
quality of the MODIS NDVI images is affected by cloud cover, especially
in tropical rain forest areas where cloud-free images are rare (Friedl
et al., 2002; Montesano et al., 2009; Platnick et al., 2003). The Savitzky-
Golay filter was, thus, applied to the time-series MODIS NDVI images to
decrease the influence of abnormal pixel values caused by cloud cover.
Moreover, the quality of the FR forest map extracted from the in-
tegrated PALSAR and MODIS NDVImax images varies from place-to-
place, because the PALSAR data cannot capture all of the complex
spatial features of the diverse forest covers on the Earth's surface
(Shimada et al., 2014; Walker et al., 2010). Therefore, it is challenging
to ensure that all of the reconstructed FR forest maps have the same

Fig. 11. Forest cover change during 2012–2014 for the study site of Russia.
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high accuracy values, and this was indicated in the above results of the
three study sites. The second error source is the estimation of the
MODIS FNF fraction maps from time-series MODIS NDVI images. KRR
was used as a nonlinear regression method to predict the FNF fraction
maps, because KRR is a robust method and there are a few parameters
to be set. However, besides KRR, alternative methods such as deep
learning approaches (Dong et al., 2016; Zhang et al., 2016) could be
used. The third source of uncertainty is the parameter values in the
proposed approach. For example, the two trade-off parameters η and λ
shown in Eq. (2) is important for the reconstruction of FR forest maps,
and automatic method is suggested to predict the optimal values of the
two parameters (Li et al., 2012).

6. Conclusions

The global, annual 25m PALSAR/PALSAR-2 forest maps produced
during 2007–2010 and 2015–2016 represent the first satellite-derived,
annual, global forest map product. However, PALSAR forest maps be-
tween 2011 and 2014 are missing. This research demonstrated a new
approach that has great potential for reconstructing the missing FR
PALSAR forest maps and producing more accurate FR PALSAR forest
classifications based on synchronous MODIS NDVI and asynchronous
PALSAR/PALSAR-2 images, opening up the potential for a wide range
of applications using these data. This is significant because the world's
forests represent a unique natural resource that is under threat (Hansen
et al., 2013). The world's forests represent a crucial life support system,
not least in relation to an increasing global population generally, and
the ecosystem services that forests provide are fundamental to the
survival of local human populations across most parts of the world
where forests exist (Foley et al., 2005). It is, thus, crucial that tools are
designed for the precise monitoring of forests globally (Curtis et al.,
2018). The failure of ALOS PALSAR communication was unfortunate,
but the method proposed here can fill the resulting four-year gap,
crucially allowing continuous time-series, fine spatial resolution, global
forest monitoring going back to 2007 and extending into the future via
PALSAR-2.

This paper developed a novel integrated method to produce annual
PALSAR forest maps during 2007–2016, inheriting the advantages from
both the CR, but synchronous MODIS NDVI images and the FR, but
asynchronous PALSAR/PALSAR-2 forest maps. In the first stage, more
accurate FR forest classifications during 2007–2010 and 2015–2016
were generated from the integrated PALSAR/PALSAR-2 and MODIS
NDVI images with a decision tree algorithm. In the second stage, annual
MODIS FNF fraction maps between 2011 and 2014 were estimated
using the nonlinear regression method of KRR. Finally, a new spatial-
temporal SRM model was developed to produce the missing annual FR
forest maps during 2011–2014. Compared to three benchmark
methods, the proposed approach produced FR forest classifications with
the greatest visual and quantitative quality and was able to capture
annual FR forest cover changes during the entire period 2007–2016 for
all three study sites, which represent the world's three main forest
types: tropical forest, temperate broadleaf and mixed forest and boreal
forest.

Some key possibilities can be pursued in future research to further
improve the accuracy of the method. Firstly, it would be possible to use
some open access and cloud-free FR satellite sensor images, including
the ASTER multispectral images (with a spatial resolution of 15m) and
Landsat series images during 2011–2014, as additional datasets to
produce the FR forest maps within some local regions. Secondly, for
places where open access and cloud-free fine spatial resolution satellite
sensor images are available, the corresponding FR forest maps can be
regarded as a new starting point to reconstruct the FR forest maps.
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