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Current methods for estimating vegetation parameters are generally sub-optimal in the way they exploit in-
formation and do not generally consider uncertainties. We look forward to a future where operational data
assimilation schemes improve estimates by tracking land surface processes and exploiting multiple types
of observations. Data assimilation schemes seek to combine observations and models in a statistically optimal
way taking into account uncertainty in both, but have not yet been much exploited in this area.
The EO-LDAS scheme and prototype, developed under ESA funding, is designed to exploit the anticipated
wealth of data that will be available under GMES missions, such as the Sentinel family of satellites, to provide
improved mapping of land surface biophysical parameters. This paper describes the EO-LDAS implementa-
tion, and explores some of its core functionality. EO-LDAS is a weak constraint variational data assimilation
system. The prototype provides a mechanism for constraint based on a prior estimate of the state vector, a
linear dynamic model, and Earth Observation data (top-of-canopy reflectance here). The observation opera-
tor is a non-linear optical radiative transfer model for a vegetation canopy with a soil lower boundary, oper-
ating over the range 400 to 2500 nm. Adjoint codes for all model and operator components are provided in
the prototype by automatic differentiation of the computer codes.
In this paper, EO-LDAS is applied to the problem of daily estimation of six of the parameters controlling the
radiative transfer operator over the course of a year (>2000 state vector elements). Zero and first order pro-
cess model constraints are implemented and explored as the dynamic model. The assimilation estimates all
state vector elements simultaneously. This is performed in the context of a typical Sentinel-2 MSI operating
scenario, using synthetic MSI observations simulated with the observation operator, with uncertainties typ-
ical of those achieved by optical sensors supposed for the data.
The experiments consider a baseline state vector estimation case where dynamic constraints are applied, and
assess the impact of dynamic constraints on the a posteriori uncertainties. The results demonstrate that re-
ductions in uncertainty by a factor of up to two might be obtained by applying the sorts of dynamic con-
straints used here. The hyperparameter (dynamic model uncertainty) required to control the assimilation
are estimated by a cross-validation exercise. The result of the assimilation is seen to be robust to missing ob-
servations with quite large data gaps.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Background

significant focus of research efforts on monitoring terrestrial vegeta-
tion, but EO data are usually of a radiometric nature and do not give
direct estimates of the properties of the Earth land surface that we
wish to map. Some level of inference is therefore needed.

One of the primary goals of Earth Observation (EO) is to provide
objective and reliable information on the current and (particularly
within the satellite EO era) historical state and dynamics of the
Earth environment. A major component of this that has been a
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Early studies in terrestrial vegetation monitoring from EO (Asrar
et al,, 1985; Choudhury, 1987; Richardson & Wiegand, 1977; Tucker,
1979) found that simple transformations of multispectral measure-
ments at red and near infrared wavelengths gave a signal that was re-
sponsive to the relative amount of green biomass and that could be
used to track vegetation dynamics (Behrenfeld et al., 2001; Goward
et al,, 1985; Nemani et al., 2003). The attractions of such ‘Vegetation
Indices’ (VIs) are obvious: they are visually impressive as spatial
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and temporal datasets; they are simple to produce and provide a sin-
gle quantity to interpret; they compensate for some of the extraneous
factors that can otherwise complicate lower level EO signals; and they
can often provide effective information for time series analyses,
where the timing, rather than the magnitude of events is of impor-
tance (e.g. vegetation phenology). Further, such indices can be direct-
ly targeted at particular functional or physical vegetation properties,
such as the fraction of absorbed photosynthetically active radiation
(fAPAR) or Leaf Area Index (LAI), by design (Gobron et al., 2002;
2010) or empirically (Rochdi & Fernandes, 2010). In the former case
a calibration is achieved using a set of radiative transfer model runs
over a range of conditions (Gobron et al., 2000). In the latter, exten-
sive ground-based measurements must be made (J. M. Chen et al.,
2002) and the form of the relationship with a particular VI assumed.
Such efforts are fast to process and often effective, especially for
near-real-time survey. They have a range of known failings (Baret &
Guyot, 1991), but some of these, such as dependence on the angular
conditions of data acquisition can be reduced by treating the data to
normalise for such effects (e.g. Rochdi & Fernandes, 2010). Ultimately
though, however much care is taken to treat such effects, methods as-
suming such fixed mappings from VIs with ‘statistical’ models are
open to many criticisms, some of the more significant of which
could be considered: (i) they fail to make full use of the information
content of the observational data; (ii) they (often) fail to make use
of our understanding of the physics of the situation; (iii) they need
recalibration if conditions change (e.g. sensor band pass functions or
scale of observation); (iv) they tend not to treat uncertainty in the
mapped product in any rigorous way (mostly, they fail to consider
this at all).

An alternative stratagem has been to build mathematical models
of the physics of radiation interactions with vegetation canopies and
the intervening atmosphere, phrased as functions of 'control’ vari-
ables (polarisation, wavebands, viewing and illumination angles
etc.) and (bio)physical parameters or ‘state variables’ (LAI, leaf chlo-
rophyll concentration etc. for the canopy, and aerosol optical depth,
ozone concentration etc. for the atmosphere), and to use these to in-
terpret the satellite signal. We may call these radiative transfer (RT)
models. To tie in with discussions below and to provide consistency
with the data assimilation literature, such models are called here ‘ob-
servation operators’ (denotedH(x)) in that they map from the state
variable vector x to the EO signal (as a vector) R for a given set of con-
trol variables, so the modelled signal vector R=H(x). The ‘remote
sensing inverse problem’ then is to obtain an estimate of some func-
tion of x, F(x) from measurementsR. How this may be achieved is dis-
cussed in more detail below.

Much effort has been devoted to producing information from EO
data about specific biophysical quantities that are relevant to science
and society. A major focus of this has been to attempt to provide esti-
mates of (green) LAL Garrigues et al. (2008) consider four representa-
tive EO-derived global LAI products, with core spatial resolutions of 1
km or coarser, that use what might be considered state of the art
methods for multi-year dataset generation. The reader is referred to
that paper for detailed information on the products, a product inter-
comparison and validation against independent ground measure-
ments. The temporal resolution of the products varies from 8 days
to 1 month. Three of the products (ECOCLIMAP, GLOBCARBON (V1),
and CCRS) are derived from assumed VI relationships with LAL A
fourth (MODIS (C4)) uses such a relationship for a backup algorithm.
Three of the products (GLOBCARBON, CYCLOPES (V3.1) and MODIS)
make use of RT models in attempting to estimate the LAL In the
case of GLOBCARBON the RT model is used to calibrate the VI-LAI re-
lationship. For MODIS a look-up table derived from the RT model is
used to map red and near infrared (NIR) bidirectional reflectance
data to LAI and for CYCLOPES a neural network derived from an RT
model is used for the mapping from red, NIR and shortwave infrared
(SWIR) portions of the electromagnetic spectrum. A feature of these

uses of RT models is that they can map many channels of input data
to one (or many) outputs. The one-to-one mapping used in VI design
and/or calibration is then just the simplest case of this more general
RT approach.

A major new effort in satellite data provision is the GMES (Global
Monitoring for Environment and Security; www.gmes.info) pro-
gramme (Council of the European Union, 2010). It is an EU initiative
set up to provide timely information on key environmental variables
for policy makers and public authorities, and is intended to be a major
EU contribution to understanding and managing climate change. Six
thematic areas are being developed: marine, land, atmosphere, emer-
gency and security and climate change. The land monitoring service is
provided via the GEOLAND2 project (www.gmes-geoland.info),
which oversees the generation of products derived from satellite
data, providing information on a wide range of variables including
LAL GMES is a European contribution to GEOSS, the Global Earth Ob-
serving System of Systems (European Commission, n.d.). The Senti-
nels are a series of satellites being developed by the European Space
Agency that are specifically designed to address the space observation
requirements of GMES. There are five Sentinel missions, each of
which will consist of a pair of satellites (for details see Aschbacher
and Pérez (2010) and dedicated Sentinel mission papers, all this
RSE issue). This paper is primarily concerned with methods for the re-
trieval of biophysical parameters of terrestrial ecosystems, including
LAI from instruments at arbitrary spatial resolutions, sun-sensor ge-
ometries and optical wavelengths. Consequently the techniques de-
scribed here are directly relevant to Sentinels 2 and 3 missions.
Sentinel 2 has a medium resolution multispectral imager (MSI) in
the optical domain with 4 bands at a 10-m resolution, 6 bands at
20 m and 3 bands at 60 m. These 13 spectral channels (Table 1) are
distributed in the visible and near infrared and shortwave infrared
regions. The Ocean Land Color Instrument (OLCI) instrument on
board the Sentinel 3 platform is a coarser (circa 500 m) resolution
instrument, similar to MERIS that is designed for global monitoring
applications. In principle the system described in this paper could
also be extended to other wavelength domains and consequently be
used to integrate data from the entire suite of EO missions.

An additional context for this paper is the growing interest in the
application of wider constellations of satellites for environmental and
disaster monitoring. A manifestation of this is the NASA A-train
(NASA, n.d.), which is a formation of complementary satellites and
sensors taking observations at close to the same time. Other examples
include relatively low cost satellites and instruments with a suite of
similar instruments flying in formation to provide global daily view-
ing opportunities at moderate resolution (10-30 m), for example
the Disaster Monitoring Constellation (DMC) (DMCII, 2010). The con-
cept can potentially be applied to more heterogeneous systems, such
as the ‘virtual constellation’ for Land Surface Imaging (LSI) concept
promoted by the Committee on Earth Observation Satellites (CEOS)
to optimise benefits from land remote sensing systems (CEOS,

Table 1
Spatial resolution, central wavelength and bandwidths for Sentinel-2 MSI (ESA, 2010).

# Spatial resolution/m Wavelength/nm Bandwidth/nm
1 60 443 20
2 10 490 65
3 10 560 35
4 10 665 30
5 20 705 15
6 20 740 15
7 20 783 20
8 10 842 115
8a 20 865 20
9 60 945 20
10 60 1375 30
11 20 1610 90
12 20 2190 180
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2010). There are clear benefits for monitoring frequency if data from a
wider range of sensors are available, but the more heterogeneous the
set of sensors (in terms of spatial resolution and wavelength do-
mains), the more important it is to formalize appropriate methods
to optimally merge information from these sources.

1.2. Optimal estimation

The remote sensing inverse problem described above can be
phrased as an optimal estimation problem, requiring an estimate of
a distribution around the minimum of some function of an observa-
tion residual vector, such as an ~2-norm. Our assimilation system is
based on the joint inversion approach of (Tarantola, 2005) and is
most conveniently formulated in what is often called a Bayesian
context (Enting, 2002), which means that each piece of information
(including any prior information on the state variables) is repre-
sented by a probability density function (PDF). Combining this infor-
mation yields an a posteriori PDF for the parameters, which is the
result/solution of the assimilation problem. If all of these PDFs are
Gaussian and the models involved not too non-linear (potentially
after a transformation) then the posterior parameter PDF can also
be approximated by a Gaussian:

p(x) = exp(—Jx))

which is the maximum likelihood estimate of the state variables x,
thus the minimum of a cost function which takes the form:

J&) =X )

where Ji(x) is a cost function expressing a constraint i, a member of
some set of constraints.

Much of the earlier literature on estimating x for vegetation mon-
itoring from a physical basis concentrated on exploring options in nu-
merical minimisation approaches (see e.g. the review by (Kimes et al.,
2000)) based almost entirely on using a single cost function J,ps(x)
expressing a mismatch between EO data and the prediction of an ob-
servation operator H(x) (a radiative transfer model). The optimisa-
tion methods explored include, but are not limited to, downhill
simplex (Privette et al., 1994), gradient methods (Gill et al., 1981;
Liang & Strahler, 2002), neural networks, look-up tables and genetic
algorithms (GA) (Combal et al., 2003; Myneni et al., 1995; Weiss et
al., 2000). Although appropriate optimisation strategies and comput-
er implementations have been around for some time that make use of
the gradient of J,,s with respect tox, J'ops in locating the minimum,
they have not been widely used in terrestrial EO monitoring. This
has been primarily because of the perceived computational cost and
numerical issues if finite difference methods are used to estimate
J'obs, and more particularly because it is no trivial job to differentiate
radiative transfer models. The advent of automatic differentiation
(AD) methods and tools such as TAF (e.g. Giering & Kaminski, 1998;
Lavergne et al., 2007) or TAPENADE (e.g. Qin et al., 2007) means that
calculating J',ps for radiative transfer or other models is now quite
feasible at computational costs not greatly dissimilar to the calcula-
tion of J,ps. The approach has first been applied to rather simple RT
models such as RPV (Lavergne et al., 2007) and a two-stream
model (Clerici et al., 2010), but this is equally appropriate for more
complex models as we show here. The ability to make rapid, exact
calculation of the gradient vector not only widens the choice of algo-
rithms that might be used to minimise the cost function, but also
provides a route for potentially faster state vector estimation, and
perhaps most importantly allows larger dimensioned problems to
be tackled. Qin et al. (2008) were perhaps the first to apply AD to
more complex RT models (MCRM of Kuusk (1995)) using a combina-
tion of GA and a cost function-based method using J',s in the region

of a trust region derived from the GA. In this case 7 members of the
(dimension 14) state vector are estimated, but only at a single
point in time. Results are not shown for parameters other than LAI,
and no detailed consideration of uncertainty is included, but the abil-
ity to use AD in such scenarios is clearly demonstrated.

Data producers and users generally have little influence over con-
trol variables to the estimation problem, as satellite sensors and mis-
sions are usually designed to serve (or are used to serve) multiple
purposes, and involve compromises in sensor design and orbits. Any
one sensor (and the resultant set of control variables) then will
tend to be sub-optimal for a task as specific as vegetation monitoring.
Inevitably this results in individual EO data sources having informa-
tion content that is too low to provide accurate retrievals of the entire
state vector space. Some parameters may never be completely re-
trievable on the basis of observation alone, especially where there is
equifinality between two or more parameters over the domain of
the observed data, that is, when the same observed model state can
be reached by different combinations of state variables. See for exam-
ple Beven (2006) for an overview of this issue or Lewis and Disney
(2007) for an attempt at explaining mechanisms impacting this in
canopy radiative transfer. The core of the issue is that the observa-
tions only refer to a subspace of the unknown state variable space.
In this case, no information on some directions in state space can be
gained from the observations, and their values will have to be con-
strained using for example, prior information. Such problems are de-
scribed as being ill-posed. As an example, consider the often-desired
goal of tracking the temporal evolution of some parameter of interest
such as LA, to provide information on phenology. Inverting a model
on a daily basis where there may only be a small number of observa-
tions, or none at all, is typically not possible as the observations do
not have enough information to constrain all of the state vectors of
typical radiative transfer models. This has been solved implicitly in
the production of many current EO data products by assuming the
model parameters to be constant over some time interval, and
many of the ancillary parameters such as those governing leaf and
soil properties are simply assumed known (and fixed as is the case
when using VIs). Assumptions such as temporal invariance or knowl-
edge of ancillary variables are pragmatic responses to the remote
sensing problem being ill-posed, but it is better if possible to seek
less ad hoc methods for constraining our estimate, especially if we
wish to estimate uncertainty in the product.

A mechanism that provides scope for dealing with such problems
is the suite of tools that are collectively referred to as 'Data Assimila-
tion' (DA). There is no strict definition as to what constitutes DA but it
is taken here to mean the statistically optimal merging of data and
models. Optimality, in this sense, implies the need to take into ac-
count uncertainties in all parts of the system.

1.3. Data assimilation

Data assimilation can be seen as mechanism for combining models
and data. The defining feature of DA, at least by the definition provid-
ed in this paper, is that it enables the use of additional assumptions to
make parameter estimation viable in situations that exhibit ill-
posedness. In essence, we have a mechanism through Eq. (1) to com-
bine multiple constraints. An example of this that has long been used
either explicitly or implicitly in the inference of land surface parame-
ters from EO is constraint via a priori estimates of parameter values or
ranges (or more generally, distributions). What DA specifically brings
to bear on the problem is a dynamic model of parameter evolution in
space and/or time.

Early examples of data assimilation systems are those used to im-
prove short-range weather predictions from meteorological models
(Ghil & Malanotte-Rizzoli, 1991). In these systems the number of
state variables is typically huge, often greater than 105, because of
the large number of interconnected sub-domains used to represent
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the atmosphere in a 3D grid. The number of observations available is
typically several orders of magnitude less than this, and in conse-
quence the problem is ill-posed. However, including a constraint
that the final solution should not diverge too far from an a priori esti-
mate (typically supplied by a previous model run) tends to result in a
tractable solution. The schemes used for these problems are referred
to as 'variational', being based in the field of mathematics dealing
with the calculus of variations, and are closely related to the DA sys-
tem described in this paper. A 'strong constraint' variational DA system
assumes that the underlying process model prescribing the state vector
evolution is correct (i.e. there is a model trajectory that matches the
observations). In this case it is generally only the initial state of the sys-
tem that is estimated by the DA procedure, but this approach can also be
used to calibrate models (i.e., to optimise estimates of model process
parameters) (Knorr et al., 2010). If the state vector is allowed to deviate
from the model predictions then this is referred to as a 'weak constraint'
DA system (Zupanski, 1997). It is this latter type that is used here and is
discussed more completely in later sections.

We note that these systems have been exploited to estimate LAI
from MODIS data by making use of a coupled phenology temporal tra-
jectory model with a radiative transfer model (Xiao et al., 2009,
2011). MODIS LAl is assimilated into a crop model using a variational
technique in Fang et al. (2008a, 2008b). The variational approach is
shown to help in retrieving surface fluxes in Olioso et al. (2005) and
Qin et al. (2007), and has found wide application in the hydrological
literature (see for example McLaughlin, 2002)).

Another related set of techniques in the DA canon may be called
sequential methods. The most widely-known and widely used exam-
ple of these is the Kalman Filter and its variants. Sequential methods
generally only consider observations at a single time step and adjust
the model state vector at that time by an amount proportional to
the differences between the observations and the predictions of
those observations using that model state. Using a variant of the
Kalman Filter, known as the Ensemble Kalman Filter (Evensen, 2003),
Quaife et al. (2008) demonstrated the assimilation of satellite reflec-
tance data into a simple ecosystem model using an RT model as ob-
servation operator. Other efforts have used these techniques to
assimilate e.g. snow data (Slater & Clark, 2009) or MODIS-derived
LAl into a phenology model (Stockli et al., 2008). The related tech-
nique of particle filtering has been used to assimilate microwave
temperature in order to infer soil moisture dynamics in (Qin et al., 2009).

The Earth Observation Land Data Assimilation System (EO-LDAS)
study funded by ESA aims at supporting the generation of a generic
land data assimilation system by using the full information content
provided by observations from satellite constellations. Such a system,
in eventual operational form, is intended primarily to improve the
quality and consistency of land surface products generated from
multi-sensor EO data. The project is focussed on developing a generic
scheme and software prototyping for use with medium to moderate
spatial resolution (in the range 10 m-500 m) optical data. The princi-
pal design concept is to allow integration of data from different satel-
lites observing the surface of the earth at different sun-sensor
geometries, wavebands and spatial scales, such as that supplied by
Sentinels 2 and 3, in a physically consistent manner, and to provide
information on the state of the surfaces with well-quantified esti-
mates of uncertainty. It also demonstrates the idea that predictions
based on data from one sensor can be made from a DA system driven
by observations from another, a concept that could potentially be
used to aid vicarious sensor calibration.

2. The EO-LDAS prototype
2.1. The EO-LDAS scheme

The EO-LDAS prototype is an initial version of the scheme, designed
to carry out a core set of DA functions. In particular, in the scheme, it

performs an atmospheric correction of images to top-of-canopy reflec-
tance, retrieves canopy state variables using surface reflectance data
and a constraint model and simulates top-of-atmosphere radiance or
reflectance for a given surface and atmosphere. This preserves the es-
sential features of a more comprehensive system (incorporating a fuller
coupling between the surface and atmosphere), while allowing devel-
opment and further study of the most important elements—the obser-
vation operators and the assimilation techniques.

To simplify the prototype, we have assumed a large length scale
for variations in atmospheric scattering properties, and a very short
length scale for surface variability. With these assumptions, we can
correct an image (or sub-image) with a single set of atmospheric
state variables, use reflectance data in a multi-temporal assimilation
on a cell-by-cell-basis, and simulate a top-of-atmosphere radiance
field using the same atmosphere for each of a set of model grid
cells. This process can be iterated to achieve the surface-atmosphere
coupling. To relax either constraint would mean we have to deal
with the inversion of a coupled surface-atmosphere problem over a
large number of cells, which would require considerable computing
resources, both in terms of memory (for the covariance structures in-
volved) and the time needed to carry out the actual inversion, with-
out necessarily improving our ability to monitor the land surface. A
tutorial guide explaining the functionality and use of the prototype
system is available online.!

The DA system can be considered to have two main components:
(i) a set of constraints, expressed via Eq. (1); (ii) an assimilation algo-
rithm, i.e. a way to apply the constraints to achieve the optimal esti-
mate of the state vector. The set of constraints in EO-LDAS involves:
(i) an observational constraint J,us(x), requiring data (from EO or
ground measurements) and a model for translating from state space
to observation space (the observation operator); (ii) a dynamic
model constraint J,oq4e/(X), conditioning the temporal (and/or spatial)
evolution of the state vector; (iii) physical or empirical bounds and/or
distribution constraints J,,r(X) to the state vector elements. Thus, in
EO-LDAS, Eq. (1) becomes:

](X) :Jobs (X) +]prior(x) +]model (x)

Each of these constraints has associated with it an error model. In
the following sections, we describe the set of constraints and the DA
algorithm. We stress that in the text below, we use the symbol x to
refer to the set of state variables that we wish to estimate. In EO-
LDAS this essentially means a representation of the state at each sam-
ple points in time (and/or space) that we consider. So, for example if
we were trying to estimate Leaf Area Index and leaf Chlorophyll con-
tent at one location for every day of the year, we would have a state
vector with 365x 2 elements. In addition, EO-LDAS has the capacity
to augment this state vector with ‘static’ state representations
(some term affecting one or more of the constraints that we wish to
be considered constant in space/time).

2.2. Observational constraint

Given the EO context of this system, at least one of these con-
straints should be based on observations. The cost function is general-
ly weighted for observation and observation operator uncertainty and

correlation (assumed in EO-LDAS Gaussian and described by its co-
variance matrix, Cpps):

Jos(3) = 3 (R—HX)) b R—H(x)) @)

where T denotes the transpose operator. This is the penalisation
associated with differences between the predicted and observed

1 http://www.geog.ucl.ac.uk/~plewis/eoldas/.
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reflectance values. The covariance matrix C,,s describes the uncer-
tainty in the observations (and also formally, in the observation oper-
ator). As noted, the purpose of the observation operator H(x)is to
translate information from the state space to that of the observations,
and is in practice a radiative transfer model. For ease of implementa-
tion (mainly involving spectral sampling issues), when different sen-
sor types are used in EO-LDAS, a set of J,ps(x) terms is developed, with
one for each sensor type.

There have been many attempts to create observation operators
H(x), varying in complexity, accuracy and computational cost. Goel
(1988) provides a review of most of the concepts for radiative trans-
fer model developed for reflectance from vegetation canopies at opti-
cal wavelengths (see also Goel and Thompson (2000), with Tha Paw
and others (1992) covering related materials for thermal emitted ra-
diation and Fung and Chen (2010) for the microwave domain. Some
updates and model intercomparisons are provided by Sobrino et al.
(2005) (thermal) and Widlowski et al. (2007) (optical). The focus in
this paper and in the prototype EO-LDAS is on the use of optical sen-
sor data, but the approach outlined here is easily adapted for use in
other wavelength domains.

In a similar way, atmospheric properties, such as aerosol optical
depth and water vapour content, need to be accounted to obtain ac-
curate estimates of surface properties. This can be achieved by cou-
pling the surface model with an atmospheric model, and solving for
both the surface and atmosphere parameters simultaneously
(Verhoef & Bach, 2003). Some (probably most) approaches to surface
interpretation use surface reflectance that has already been ‘cor-
rected’ for atmospheric effects (Vermote et al, 2002), but a full
decoupling of the problem, at optical wavelengths at least, cannot
be achieved without knowledge of the surface Bidirectional Reflec-
tance Distribution Function (BRDF) (Lyapustin and Knyazikhin,
2001; Lyapustin et al., 2006) (or at least a normalised form of this)
(Vermote et al., 2002).

The observation operator we use in this paper is developed from
the original semi-discrete model of Gobron et al. (1997). It has a
state vector describing canopy architecture and three spectral
terms, although these are all defined as functions of other parameters
as described below (Table 2). The soil reflectance is assumed Lamber-
tian in the model, although it could be adapted to incorporate a soil
directional reflectance model. As stated here then, the (canopy-soil)
model estimates the directional reflectance factor at a set of viewing
and illumination angles for a given narrow waveband. Since the
model must be capable of predicting the reflectance at arbitrary
(solar reflective) wavelengths, spectral models are incorporated in
the code to predict the soil (Lambertian) reflectance and leaf (bi-
Lambertian) reflectance and transmittance. Since model derivatives

Table 2
Summary of observation operator state variables.
# Name Symbol Units Default Lower limit Upper
value limit
1 Leaf area index LAI none 0.01 0.01 5.4
2 Canopy height xh m 5 1.0 5
3 Leaf radius Xr m 0.01 0.001 0.1
4 Chlorophyll a, b Cap pgcm~2 40 0 200
5 Carotenoids Car pgcm=—2 0 0 200
6  Leaf water Cw cm~! 0.01 0.00001 0.04
7  Dry matter Cam Gem~? 0.01 0.00001 0.02
8 Leaf layers N None 1.0 1.0 2.5
9 SoilPC1 S None 0.2 0.05 0.4
10 Soil PC 2 Sq None 0 —0.1 0.1
11 Soil PC3 Sq None 0 —0.05 0.05
12 Soil PC 4 S1 None 0 —0.03 0.03
13 Leaf angle distribution g None uniform 1. Planophile n/a
(categorised) 2. Erectophile

3. Plagiophile

4, Extremophile

5. Uniform

are required, we use for simplicity here: (i) the linear soil reflectance
model of Price (1990); and (ii) an approximation to the PROSPECT
leaf reflectance/transmittance model of Féret et al. (2008), being a
minor modification of the model of Jacquemoud and Baret (1990).
The approximation was developed for possible processing speed
enhancements, but is identical in form to PROSPECT if the parameter
N (Table 2) is 1, and very close to the original model over the range of
N 0.8 to 2.5.

The soil spectral model of Price (1990) characterises a given soil at
field capacity as a linear combination of Empirical Orthogonal Func-
tions (EOFs) based on a database of moist (field capacity) soil spectra.
Four EOFs are found to account for 99.6% of the cumulative variance
of all the soils considered, so, as is usual, we use up to four terms in
this implementation. Parameter ranges in Table 2 come from (Price,
1990), Figs. 11-13.

The leaf angle distribution is categorised in the model of Gobron et
al. (1997) and so not set by this assimilation procedure (i.e. it must be
pre-defined or the different categories assessed separately: this could
ultimately be improved using a continuous description). The assimi-
lation scheme can provide estimates of the remaining (12) state
variables for each time period modelled. Following Weiss et al.
(2000) we apply approximate linearization functions to some of the
terms (Table 3). The reasons this is appropriate here are: (i) they
better condition the problem for optimisation; (ii) the assumptions
of Gaussian distributions of errors are more appropriate in this case.

Differentiated versions of the observational cost are required to
enable the use of efficient gradient descent minimisation routines,
so we can benefit from access to J',ps(x), the derivative of Jops(x)
with respect to x. This is:

Tops(®) = —H (x)" Cops (R—H(x)) (3)

where H'(x) is the derivative of H(x) with respect to x. An adjoint
code of the cost function for the semi-discrete model, i.e. code for di-
rect calculation of Jops(x) that avoids the need for explicit calculation
and storage of H’(x), was generated from the source code of the
model by the automatic differentiation tool TAF (Giering &
Kaminski, 1998). The adjoint code implements the chain rule of dif-
ferentiation in the so-called reverse mode. It provides the gradient in-
formation that is accurate up to machine precision at a computational
cost that is not greatly dependent of the length of the gradient vector
and well below that of the multiple runs of the semi-discrete model
that would be required for a finite difference estimate.

We obtain an estimate of the posterior uncertainty through con-
sideration of the curvature at the global minimum in state space.
This is provided by the inverse of the sum of the constraint Hessians,
the Hessian for this constraint being J”,ps(x):

" "

T ops(®) = H (%) CopsH (x)—H' (x)" Cops (R—H (x)) 4)

Although it should be possible to develop a Hessian code in much
the same way as done for the first derivative, that has not yet been
done within EO-LDAS, so a linear approximation to the Hessian is
achieved, using finite differences. As we will see below, the algorithm
used to perform the optimisation is iterative, but the potentially high

Table 3

Transformations applied to approximate linearise state variable response.
# Transformed symbol Transformation
1 TLAI exp(—LAI/2.0)
4 TCab exp(— Cap/100)
5 TCar exp(— C,/100)
6 TCw exp(—50 Cy)
7 TCam exp(—100 Cyp)
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cost of using finite differences for the Hessian is unimportant in this
sense, as it only has a role in estimating the posterior uncertainties.

2.3. Process model constraint

The EO-LDAS prototype is designed to allow the user to interface
their own constraints, so long as they provide code to calculate the
cost function and its first and second-order derivatives. This allows
a mechanism whereby (bio)physical process models can be used to
constrain the solution and or estimates of the variables controlling
those models can be developed. The focus of the prototype software
and that of this paper are on understanding how to use DA concepts
to improve estimates of biophysical variables from EO data, rather
than to test specific process models however. For this reason, we
have currently only implemented a linear process model in the sys-
tem:

M(x) =Ax+Db (5)

where A and b are a matrix and vector respectively. One advantage of
designing the prototype system in this manner is that it provides a
flexible framework for changing the underlying model. Unlike in a se-
quential system, this formulation directly allows for any model state
vector element to be linked to any other, since x here contains the
state representation at all sample times (spaces), so different time/
space scales can be readily incorporated. The cost function associated
with this process model then is:

—_

Jmodet(X) = 5 (x—M(X))' Crroqes(x—M(x)
1

= 5 (I=Ax=b) Crroqe((I—A)x—b) (6)
where [ is the identity operator. J;;0qe/(X) is the cost incurred by depar-
ture of the model state from that predicted by an underlying process
model. An interpretation of A is as the model derivative. The model
uncertainty matrix Cpoqe; therefore expresses the uncertainty in this
derivative, including any inherent uncertainty in the process model.
It such a case, it might often be pragmatic to specify only diagonal
terms in Cpoger as further details of model structure are often difficult
to obtain. In any case, we can see that EO-LDAS could be interfaced to
a process model such as the Carbon Flux model DALEC used by Quaife
et al. (2008) or any other for which the derivative might be obtained
(e.g. using AD) by augmenting the state vector x by any terms that we
might wish to drive the model.

Whilst the EO-LDAS scheme allows for linking to ‘biophysical’ or
other process models, that is not the main focus of the prototype. In-
deed, there are many cases, for instance when conducting a compar-
ison of information derived from EO data and some biophysical model
trajectory, when it may be undesirable to directly incorporate a de-
tailed process model. Further, and perhaps more importantly, a fun-
damental requirement of the EO-LDAS system is that the state
vector, x, contains at least the parameters of the observation operator
H(x) for every point in time (and/or space), and many of these may
not be provided by a biophysical process model designed, for exam-
ple, to estimate total Carbon fluxes. We should see the matrix A
(and if needed, the vector b) then as a much more general interface
to ‘process modelling’ within an optimal estimation environment.

We can for example consider the benefits of approaches such as
Twomey-Tikhonov regularisation or variations around this theme
(Rodgers, 2000). Examples of this that we explore further below are
first and second-order difference constraints. In essence these im-
prove the conditioning of the inverse problem by smoothing or regu-
larising the solution, which comes about because they constrain
derivatives (first or second order here) to be zero. In a weak con-
straint DA system such as that used here, the model is not strictly
enforced (this would be clearly undesirable in these derivative

constraints) but rather the degree of smoothness in the outcome is
traded off against the other factors in J(x) through the model uncer-
tainty matrix. In other words, the cost function will penalise temporal
trajectories of parameters that are not flat, but this is ‘balanced’ with a
goodness of fit to the observations and departure from the prior esti-
mate. In practice this constrains the solution toward a smooth evolu-
tion by minimising the high frequency components of the temporal
parameter trajectory. A similar approach has been taken by Quaife
and Lewis (2010) for linear observation operators. Viewing this
form of solution as a combination of state variable estimation and fil-
tering, we note that the filter characteristics are controlled by the na-
ture of matrices A and Gpoger, the former controlling the cut-off
frequency of the filter and the latter, if simply diagonal, controlling
the degree of dampening of the unwanted high frequencies. In this
context, we can consider b a bias term, which we set to zero. In this
case:

Jnoaa(®) = 5 (D) Cr (D)

where D= (I —A). The derivatives of this are: J'modei(X) = D'CrroeiDX
and J/hoder(X) = D CrokelD. To achieve Twomey-Tikhonov regularisa-
tion then, which we view as an empirical process model, D here be-
comes simply a (N™ order) differential operator (Quaife & Lewis,
2010).

In many situations, we must assume the uncertainty in this empir-
ical constraint unknown. The minimum error model then is a con-
stant value for which we can use a scalar term v:

72 T (T
Jmodel(®) =X (D'D)x )

We can interpret 7y as a ‘smoothness term (or y~ ! as a roughness
term) that controls the weighting of the derivative (model) con-
straint with respect to the other constraints. It is worthwhile at this
point trying to relate this back to the discussions on process models.
This is most readily achieved by considering a first order derivative
constraint. If applied at lag 1 day for a temporal constraint, we can in-
terpret this as an expectation that the state vector tomorrow will be
the same as today (i.e. the derivative is zero). If we want to relate
this to equivalent sequential methods, we can say that this is a
zero-order process model. The term y~! then can be interpreted as
uncertainty (phrased as standard deviation) in this model, or alterna-
tively as the growth in uncertainty over a one day period. Similar in-
terpretations apply for other derivative constraints: a second-order
derivative constraint is equivalent to a first order process model.
Eq. (7) then is a viable empirical process model constraint, but we
have yet to tackle the fact that the smoothness 7y is unknown. We
also note that if we use a scalar for vy, we are assuming the same
smoothness for all state variables at all times (places).

An option that arises with dynamic models (where we are making
connections between elements of the state vector at different times
(places) is what to do about boundary conditions. Even with a simple
differential model this needs consideration in forming the D matrix.
Among the various options, especially when dealing with annual or
multi-annual datasets, an attractive one is to assume periodic bound-
ary conditions, and that is done here. This means that in calculating D
at the end of the year (edge of the matrix) we perform the digital dif-
ferential with state elements from the beginning of the year.

It is generally found (e.g. Twomey (2002)) that quite a broad
range of model uncertainty (smoothness) estimates can provide an
acceptable solution, so we do not expect the results to be overly-
sensitive to the choice of this ‘hyperparameter’. We could make a
rough guess at the model uncertainty, but that is likely to be unsatis-
factory in the general case. If we underestimate it by too much, we
can over-dampen most of the state vector. Equally, if we greatly
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over-estimate the model uncertainty, the impact of the temporal con-
straints is minimal: in the extreme, an infinite model uncertainty
(zero smoothness) leads to a solution without model constraint.
Whilst there are several strategies that can be employed to estimate
the model uncertainties (hyperparameters), perhaps the most fruitful
in the context of EO-LDAS is running a cross-validation exercise. The
idea is that an independent dataset is used to test the robustness of
the solution for a particular value of the hyperparameters. An optimal
estimate of the hyperparameters (or distribution thereof) can be
obtained by minimising a cost function with the independent obser-
vations. This can be achieved with a subset of observations to test a
solution obtained from the rest of the dataset, a strategy that when
repeated over different subsets becomes known as generalised cross
validation (Eilers, 2003; Lubansky et al., 2006; Wahba, 1990). Alter-
natively, we might use data from an independent sensor, although ac-
curate absolute calibration between the sensors is needed for that.

2.4. Prior constraint

An additional constraint mechanism is implemented in EO-LDAS,
that we term a prior constraint. Its role, via the cost function Jpyio(x)
is to impose a penalty for deviation from some previously defined
state, Xprior:

.Iprior(x) = % (X_Xprior> TC;;‘i]or (x_xprior> (8)

where Cpior €Xpresses the uncertainty of the prior model state, a mea-
sure of our belief in the prior estimates, X,ri, The derivatives of this
cost function are Jyior(x) = Cprivr(X — Xprior); J" prior(X) = Corior- A cOm-
parison of Egs. (6) and (8) shows that this is really just another
form of model constraint, with M(x) = Xprior, Which can be achieved
with the existing model constraint by setting b=x,, In practice,
this allows us to enforce a prior belief in the distribution and range
of the state vector elements (e.g. a climatology or physical or other-
wise known ‘reasonable’ distributions), although only Gaussian dis-
tributions can be considered.

2.5. DA algorithm

The various constraints discussed above provide the cost function
in Eq. (1) through their summation. This also applies to the deriva-
tives J'(x) and J”(x). The cost function J(x) is minimised using a gradi-
ent descent method (i.e. using J’(x)). Bounds are applied as a final
constraint to the solution, to ensure that the state vector remains
within physical limits. These can be supplied by the user. In the EO-
LDAS prototype we use the limited memory Broyden-Fletcher-Gold-
farb-Shanno (L-BFGS-B) algorithm described in Byrd et al. (1995)
and Zhu et al. (1997). In principle however, a number of different gra-
dient descent algorithms could be used. The L-BFGS-B was selected
for its efficient memory handling for high dimensional problems
and the fact that it can optimise over a bounded domain, which is ap-
propriate for this problem.

The algorithm then is quite straightforward: (i) read in configura-
tion information and observations; (ii) provide an initial estimate of
all state vector elements that we wish to estimate; (iii) iterate within
the optimisation routine until convergence is reached (or using other
criteria) to estimate the state vector; (iv) calculate the Hessian and
then its inverse to provide the posterior covariance matrix, the esti-
mate of uncertainty.

It is instructive to consider the contribution of these three terms in
the estimates of Hessian matrix. The observational term can be ill-
conditioned if the observations exhibit little sensitivity to some or
all of the state variables, for example due to poor combinations of
spectral and/or angular sampling. The addition of the prior and dy-
namic model terms then results in improved conditioning of J”(x),

as these extra terms compensate for the lack of observation sensitiv-
ity to some of the state variables. They also provide the ability to in-
terpolate (i.e. rely more on the process model) between where we
have observations. Importantly, the uncertainties are tracked
throughout this process, so when e.g. interpolating over large gaps,
we get the expected increase in uncertainty.

The DA system developed here can be viewed an extension of the
methodologies that have been applied to inverting radiative transfer
models by minimising a cost function. The addition of a linear dynam-
ic model therefore only adds a handful of extra parameters to the
problem (namely, the nature of the dynamic model itself and the as-
sociated covariance matriX, Cyoge, Which may be simply diagonal).
This is in a marked contrast with similar methodologies that either
use a long time series of data for inverting one single parameter (in
the case of inverting LAI as in Fang et al. (20083, 2008b), Xiao et al.
(2009) and Xiao et al. (2011). The temporal smoothness constraint
is in itself an important feature, which is usually performed as a
post-processing step after the parameter retrieval (Lu et al., 2007).

3. Experimentation

We present a series of experiments to demonstrate the operation
of the EO-LDAS prototype and to explore the sorts of capabilities such
a system could provide with data from the Sentinel-2 MSI sensor (see
Table 1 for waveband information for Sentinel-2 MSI). The experi-
ments use synthetic data for observations i.e. are derived from run-
ning the observation operator for a given state vector for what we
suppose to be typical Sentinel-2 scenarios over one calendar year.
We simulate top hat bandpass functions (1-nm sampling) according
to the information in Table 1. The main aim of the experiments is to
determine the improvement, in terms of reduced uncertainty, in bio-
physical parameter estimation that might be obtained by applying
the EO-LDAS prototype for such scenarios. A subsidiary aim is to dem-
onstrate the capability of the DA system to make predictions of data
from a sensor not used in the DA process. Here, we do this by using
the state vector estimates derived from the DA with synthetic MSI
data, and make predictions of what a SPOT-5-like instrument would
view (described below). These data are used in a cross-validation ex-
ercise within the experiments.

3.1. Experimental setup

In these experiments, we control the time trajectory of a subset of
model parameters according to the functions given in Table 4, where t
is the relative day of year (DOY) i.e. DOY normalised by 365. All other
parameters take their default values given in Table 2. The functions
for LAI and chlorophyll broadly mimic typical trajectories of these
terms for crops: for LA a flat initial period, followed by a rise to max-
imum LAI and then a symmetric decrease; for Chlorophyll, a linear
rise and decrease. The more arbitrary functions used for the soil
brightness term s; we include to mimic rather broad variations over
the year that might be supposed to be responses to soil moisture. A
similar function is used here for leaf water, with a time lag of

Table 4
Upper and lower bounds for the state vector terms (in transformed space, where ap-
propriate) used in the simulations, along with the temporal trajectory assumed.

#  Symbol  Lower limit  Upper limit  Temporal function
1 TLAI 0.067 0.995 LAI=0.21+3.51 sin®( t)
TCap 0.135 1.0 Cab=10.5+208.7 t: t<=0.5

Cap=219.2—-208.7 t: t>=0.5

6 TCy 0.135 1.0 Cy =0.068 + 0.020(sin(mt +0.1)
*sin(6mt+0.1))

7  TCam 0.135 1.0 Cam=0.01

8 N 1 2.5 N=1

9 S; 0.001 04 s;=0.20 + 0.18(sin(mt)*sin(6mt))
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36.5 days. The quite large variation of these two latter terms is
intended primarily to allow the operation of the data assimilation
scheme to be explored over a wide range of conditions, rather than
to too closely mimic some particular situation. In that context, the
rather large time lag between soil brightness variation and leaf
water content is unrealistic, but a larger phase between these terms
should test the system to a greater extent than having all parameters
following similar trajectories. Although the full set of state vector el-
ements is 13 for each time sample, we attempt to retrieve only the
6 elements (numbers 1, 4, 6, 7, 8, 9 in Table 2) (per time sample)
that we vary in these experiments, i.e. we assume the remaining ele-
ments fixed and known. This is partly to reduce the computational
time required for the DA and more broadly because we believe it is
sufficient to demonstrate the principles underlying the DA method.
It is quite feasible to permit an estimation of 12 of the 13 elements
(not the categorical variable directly through this method) but this
is not the purpose of this exercise, and (arbitrary) variations in
these additional terms would need to be defined to achieve this.

To approximate the Sentinel-2 MSI acquisition geometry (ESA,
2010), we assume one sample every 5 days (73 samples over the
year), with a solar zenith angle corresponding to 10:30 local time at
50° N, random relative azimuth and random view zenith between
0° and 15°. Whilst these parameters do not provide a precise predic-
tion of the likely MSI sampling and geometries, they are close enough
to develop an understanding of the likely behaviour of the data. The
random azimuth, for example, is clearly in error, but since the view
zenith angle is so restricted, this will have very little impact; the
local time at 50° N will in reality be slightly later than the nominal
equatorial crossing time used here, but the details of the solar zenith
angle are less important here than inducing a typical variation over
the year (32° to 76° here). The simulation of one sample every
5 days mimics close to the maximum sampling achievable by MSI
on 2 Sentinel platforms.

Synthetic observations were also generated for a SPOT-5 HRG-like
instrument. This sensor has four wavebands (500-590, 610-680,
790-890 and 1530-1750 nm) (CEOS, 2010). We have assumed a re-
visit period of 13 days (to be out of sync with the synthetic MSI obser-
vations), although the differences are only up to two days from the
MSI observations. The view zenith angle was limited to +/—25°
from nadir, with a random azimuth and a local overpass time of
10.30. In total, 28 observations were available in this dataset.

Uncorrelated Gaussian noise is added to the observations as part
of the data synthesis. We assume the standard deviation of this to
vary linearly from 0.008 at the shortest wavelength to 0.020 at the
longest, for both the MSI and SPOT-5 HRG. These values are broadly
twice those claimed for atmospheric correction of data from the
NASA MODIS instrument (Roy et al., 2005). If an atmospheric ‘correc-
tion’ were performed on the data, we would generally expect the un-
certainty in surface reflectance to be correlated across wavelengths,
as e.g. an under-estimation of aerosol optical thickness would likely
give rise to an over-estimate in reflectance for the shorter wavelength
bands. Here, we have inflated the assumed (MODIS) uncertainties by
a factor of two to take some account of such likely correlation. This
highlights one of the benefits of ultimately using a more fully coupled
surface-atmosphere observation operator, in that such features
would fall naturally out of the model formulation and random noise
might be more reasonably assumed for top of atmosphere radiance
or reflectance. However, for the purposes of these experiments it is
sufficient to treat only the surface (canopy-soil) elements of the ob-
servation operator.

We term this simulation set ‘complete’ for the purposes of this
paper, in that it expresses a rather idealised situation where no clouds
are present. A second synthetic observation set that we term ‘cloudy’
(36 observations for MSI and 15 for SPOT-5 HRG) is derived from this,
for which we have removed 50% of the observations according to a
correlated random function to mimic persistence of cloud cover.

This induces (‘cloud’) data gaps of up to 60days (mean gap
10.3 days, standard deviation 12.6 days for MSI).

As noted above, the cost function minimisation is achieved in EO-
LDAS with the L-BFGS-B algorithm. A bounded minimisation is per-
formed within this code, with the limits specified on the (transformed)
state variables given in Table 2 (transformations in Table 3). Thus, all
state variable estimations below proceed with the prior knowledge of
an upper and lower bound. There are several convergence criteria that
can be used with the L-BFGS-B, including an absolute threshold on the
cost function and a relative (per iteration) threshold. In all experiments,
these are set to low values, which means that more iterations might be
employed than strictly necessary in any operational context, but mak-
ing sure that the global minimum (or very close to it) is reached in
each estimation. Because of the additional costs of processing full band-
pass functions, all ‘initial’ processing is performed using the median
(1 nm) wavelength of each waveband. A ‘polishing’ step is then per-
formed to achieve convergence from this starting value, using the full
bandpass sampling. The effect of applying the full bandpass functions
tends to be generally quite minor.

We have initially tested the system without observational noise
and confirm that the scheme retrieves the truth to within the bounds
implied by the convergence criteria and machine precision. Proces-
sing time for a single set of 73 time samples with MSI spectral sam-
pling, solving for 6 state vector elements for each day of the year
(2190 in total), is currently several hours on a 3 GHz Intel processor
on a single core, but this is partially due to very stringent convergence
criteria used whilst testing the code and partially because this proto-
type implementation requires some significant efforts in computer
code optimisation.

In all experiments, we set the prior estimate of the state vector to
the values shown in Table 2, with very large diagonal uncertainty
terms. This effectively removes the prior constraint from consider-
ation in these experiments, as we wish to conduct experiments
based only on model and observational constraints here.

In the following sections, we examine the result of applying the
weak constraint variational data assimilation approach described
above to the synthetic dataset. For all cases, we assume that the uncer-
tainty in the observations is known and that it is Gaussian and uncorre-
lated between wavebands and between dates. In the first case (3.2), we
solve for state vector estimates assuming no dynamic model constraint
other than the weak prior (standard deviation 8). This acts as a baseline
for further experiments. In the second case (3.3) we assume that model
uncertainty vy is unknown and attempt to solve for it and the state vec-
tor for each day in the year with a form of cross-validation exercise
using the SPOT-5 HRV synthetic observations. The ‘true’ values of vy for
individual state vector elements are shown in Table 5. The DA is per-
formed with the ‘complete’ (i.e. 5-day sampling MSI) dataset in that
case. Finally, we repeat that experiment for the ‘cloudy’ dataset (3.4).

Graphical results (Figs. 1-2) are presented as untransformed bio-
physical variables (i.e. LAI, Cap, Cw, Cam ,» N and s;), showing: the
‘true’ (‘original’) state vector (dashed line); circles and error bars
(shaded region) shows mean and 95% credible interval bounds (at
plus/minus 1.96 standard deviations). We will term 1.96 standard de-
viations ‘uncertainty’ for the remainder of the paper, unless the state-
ment is otherwise qualified. The uncertainty bounds are slightly

Table 5

Model uncertainty -y for each parameter, calculated from the synthetic model state vec-
tor. TCqm and N were kept constant, so there is no theoretical model uncertainty
associated.

# Symbol First difference uncertainty Second difference uncertainty
1 TLAI 188 8298
4 TCap 303 7315
6 TCw 132 2277
9 S; 212 3861
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Fig. 1. Base level state vector estimated from inverting single observations, (left column) and for model uncertainty unknown and estimated through cross validation—first differ-
ence constraint (central column) and second difference constraint (third column). Results for each of the six parameters are shown in rows. True values are shown as a dashed line.
The full lines are the posterior means, and the shaded area represents the associated +/—1.96 standard deviations interval. MSI observations are shown as open symbols. Crosses

along the bottom row indicate the location of the cross validation acquisition dates.

larger for the upper limits than for the lower limits (other than for N
and s;) due to the nature of the transformations used in the approx-
imate linearization (Table 3). Tabular results for the experiments
(Tables 6-9) are expressed in transformed parameter space, as that
is the space in which the state vector is inferred and in which the
Gaussian statistics derived are most natural.

3.2. Baseline estimates

We first produce a baseline estimate of the six state variables over
the 73 time periods in the year, assuming no constraint to the

solution other than the bounds noted above, the (noisy) observations,
knowledge of the uncertainty in the observations, and the weak prior
constraint.

The results for the baseline experiment are produced using the
EO-LDAS system with each observation set (i.e. all wavebands, but
only one angular sample) independently. The algorithm requires an
initial guess of the state vector and iterates to its final estimate. The
initial estimate of the state vector in each case and all subsequent
estimates is taken as the value used in the prior constraint.

In Fig. 1, the column titled ‘single obs inversion’ shows the results
of this state vector estimate for the six parameters that are varied,
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Table 6

Mean posterior uncertainty. Figures refer to the complete daily time series, while figures in brackets refer to the mean posterior uncertainty only considering the dates where

observations are available.

Non-cloudy Cloudy

Symbol Uncertainty Uncertainty 1st diff Uncertainty 2nd diff Uncertainty Uncertainty 1st diff Uncertainty 2nd diff
Single obs. Single obs.

TLAI 0.18 (0.05) 0.04 (0.04) 0.06 (0.06) 0.21 (0.05) 0.06 (0.05) 0.09 (0.07)

TCap 0.20 (0.10) 0.04 (0.04) 0.06 (0.06) 0.22 (0.09) 0.06 (0.05) 0.08 (0.06)

TCu 0.23 (0.18) 0.07 (0.07) 0.13 (0.13) 0.24 (0.19) 0.10 (0.10) 0.17 (0.16)

TCam 0.24 (0.22) 0.13 (0.13) 0.28 (0.28) 0.24 (0.23) 0.19 (0.19) 0.36 (0.35)

N 0.29 (0.55) 0.21 (0.21) 0.37 (0.37) 0.27 (0.55) 0.32 (0.32) 0.44 (0.40)

s 0.17 (0.04) 0.02 (0.02) 0.03 (0.03) 0.20 (0.04) 0.04 (0.03) 0.05 (0.03)

transformed back to their biophysical meanings (through the inverse
of the functions in Table 3). The sub-plots rows show results for the
observation operator parameters LAI, C,p, Ciy Cam, N and s respective-
ly. The uncertainty (average credible interval) associated with each
(transformed) parameter for the baseline experiment is given in
Table 6 (‘single obs.”). Relating these uncertainties to the parameter
ranges (Table 4), we note that they are around 5% for TLAI, 10% for
s; and TC,, respectively for dates where there are observations,
more than 20% for (transformed) leaf water and dry matter content
and around 33% for N. We can suppose these then to be typical uncer-
tainty values for MSI sampling (with the assumed noise characteris-
tics). The cross correlations associated with these, illustrated in
Table 7 are highly variable from one sample to the next. The median
values given show quite strong negative correlations between TLAI
and TC,p, and TC,, but positive correlations with s; and TCyy,,. The me-
dian s; shows negative correlations with all terms other than TLAIL
Despite the fact that the average transformed LAI uncertainty is only
around 5%, we can see if Fig. 1 that both the error and uncertainty
can be rather high. Around peak LAI, results from individual samples
vary by around LAI 2.5 and there is a general tendency to underesti-
mate. The general trends of C,, and C,, are discernable, but there is
large variation and large uncertainty. The terms that are supposed
to be constant here, Cq, and N depart significantly from their true
state and the negative correlation is evident in the state trajectories
around the central part of the year.

How then can we improve on this situation? The ways to reduce
uncertainty are to have data with lower noise characteristics, to aver-
age or smooth in some way, or to add other constraints to the solu-
tion. In any realistic scenario, we have only limited control of the
first of these. Averaging and smoothing then are the general pragmat-
ic responses to such issues. If however this is performed ad hoc as a
post-processing step to any individual term (e.g. only LAI) this
would not take account of the cross correlation in the uncertainties
which can only give sub-optimal results.

In spite of these quite high levels of uncertainty (and correlation of
uncertainty) for these estimates, there is clearly quite a strong corre-
lation between the values of the state vector and its neighbours in
time. The general underlying patterns are apparent in the ‘complete’
scenario, although much of the (potentially important) detail will
be lost in a more realistic ‘cloudy’ scenario. The enhancement of this
temporal correlation effect and the suppression of the noise are at

Table 7

Single observation posterior correlation matrix. Elements above the main diagonal
show the results for DoY 186, whereas the elements below the main diagonal represent
the median of all dates.

Symbol TLAI TCap TCw TCam N Sq

TLAI 1.00 0.16 —0.05 0.47 —0.25 0.58
TCap —0.44 1.00 0.15 —0.11 —0.47 0.34
TCw —0.42 0.35 1.00 0.04 0.01 —0.14
TCam 0.30 0.27 —0.27 1.00 0.42 —0.36
N 0.00 —0.21 0.07 —0.43 1.00 —0.85
S1 0.76 —0.53 —0.40 —0.25 —0.28 1.00

the heart of all regularisation approaches and the essence of weak
constraint data assimilation. If we have some model (‘expectation’)
of the temporal trajectory of the state vector, then we can use this
to filter the unwanted noise. As noted above, this may be a model
based on our understanding of radiation interception and biogeo-
chemical cycling (e.g. Quaife et al., 2008) driven by some set of external
(environmental) parameters, or it may simply be some parametric
curve that we believe can mimic e.g. the phenological development of
LAL In either case, what DA aims to achieve is an optimal merging of
such models (through the adjustment of the state vector or essentially
a calibration of the parameters controlling the development of state in
the model) and the observations. For land surface monitoring, there
are several options for such models for LAl development as mentioned,
and up to a point for some other state variables (e.g. soil moisture), but
there is very little to guide information extraction on many other state
variables that affect the observations (e.g. leaf chlorophyll concentra-
tion or dry matter). In such a case, we need to develop simple methods,
within a DA framework. Fortunately, there are many to choose from, al-
though as Twomey (2002) points out, the results are likely to be similar
for most of these methods: indeed, it would be worrying if they were
not.

3.3. DA: Complete scenario

Here, we apply first order and second-order derivative constraints
to the solution, but we expect the results to be broadly similar. In both
cases, we need only supply some estimate of the uncertainty associat-
ed with these constraints through the smoothness term vy to achieve a
regularised solution to the state vector estimate. These constraints are
applied by incorporating a model that, in the absence of any observa-
tions, would set the first (second) derivatives of the state variables to
zero. Assuming that we apply the same (strength of) constraint to the
whole time series, we need to supply an estimate of the mean
squared first (second) difference in the parameter values (true values
in Table 5). For the first (second) difference then, this can be thought
of as an estimate of the uncertainty in a zero-order (first order) pro-
cess model over one time step as noted above.

We use a form of cross validation to estimate <. This is achieved
with a synthetic dataset from an alternative SPOT-5 HRG-like sensor.
The core of the exercise then is a comparison between these synthetic
data (driven by the ‘true’ values of the state vector, plus random noise
as above) and a simulation of the same sensor wavebands and acqui-
sition geometry driven by the state vector estimated from the syn-
thetic data from Sentinel-2 MSI. We choose this cross validation
sensor as one different to MSI to stress that one role of a DA system
of this sort can be to provide simulated data of sensors other than
those used in the DA exercise. Here, we measure the average squared
difference between the synthetic HRG data and the DA simulated ob-
servations, weighted by the uncertainty in the synthetic data, and
term this RMSE in cross validation. The locations of the synthetic
HRG observations are indicated in the lower panel of Fig. 1 by +
symbols.
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Fig. 3 shows the error in cross validation as a function of 7y for the
model first- and second-order difference constraints for the complete
case (black circles and squares respectively). There are clear minima
for these functions, which provide estimates of the optimal model un-
certainty (averaged over all terms). Also shown in the figure is a set of
vertical lines that represent the theoretical value of the smoothness
term for each of the state vector elements that vary over time (from
Table 5). For the first order constraint, the minimum of the cross val-
idation function is y=150 which is very close to the theoretical
values. For the second-order constraint the cross validation RMSE
minimum at -y=530 is rather less than the theoretical values. For
both cases however, we observe a very broad minimum, so there is
quite a large range of values of y that allow almost equally good pre-
diction of the synthetic cross validation HRG observations.

Table 8 provides statistics on the uncertainty reduction, (the pos-
terior uncertainty estimate from the DA relative to that after solving
for each sample separately and assuming the prior uncertainty
where there are no observations). The average improvement in un-
certainty is 4.07 for the first order constraint and 2.73 for the sec-
ond-order difference constraint. This is very significant but it must
be remembered that 4/5 of the samples in the ‘single obs’ solution
have only the prior constraint and uncertainty. Examining only loca-
tions where observation lie (i.e. ignoring interpolation performance
relative to the a priori estimate), we see the uncertainty reduction
drop by nearly 50% in this case, down to 2.20 for the first order con-
straint and 1.30 for the second difference constraint. From those fig-
ures, we would suppose the first order constraint to be greatly
superior to the second-order constraint, but if we look at the plots
in Fig. 1, the second-order constraint results seem to have more rea-
sonable uncertainty bounds than the other results. This is at least par-
tially because the apparent uncertainty resulting from the DA is
strongly dependent on the value of -y used in the model constraint:
the higher the value of v, the smoother will be the solution and the
lower the estimate of uncertainty. The only check we have done on
the veracity of the solution comes from the cross validation, which
is an indirect check: in any non-synthetic experiment we rarely
know the ‘truth’ to any great degree of certainty. Since we have a syn-
thetic experiment here, we can however test how frequently the de-
rived solution matches the (synthetic) truth within the claimed
uncertainty bounds. One reasonable summary measure of this is the
percentage of true values of state vector elements that lie within
the 95% credible interval claimed by the DA results. These are
shown in Table 8. We can see that for the ‘single obs’ estimates (no
regularisation), only around 64% of the state vector lies within the
95% credible interval claimed by the solution. The figure is as low as
58% for TCym. We can suppose the average estimated uncertainty
then to be only around 67% of the true value, i.e. we should inflate
the estimated uncertainty by a factor of around 1.5. This would
apply equally to the results in Table 6. We see almost the same
value for the first order constraint, which suggests the reduction in
uncertainty by a factor of 2.2 is likely true. For the second-order

Table 8

difference constraint however, around 84% (Table 8) of the sample
lie within the uncertainty bounds, so here, a better estimate of the un-
certainty reduction might be around 1.70 rather than the 1.30
reported. This apparent under-reporting of the uncertainty is worthy
of comment and there could be several reasons for this. One explana-
tion could be that we are simply under-estimating the uncertainty
from the approximations made when calculating the Hessian for the
observation operator. A more likely reason is non-linear effects in
the treatment of uncertainties. In spite of our attempt to account for
gross non-linear impacts through parameter transformations, residu-
al non-linear effects may be causing this under-estimation of uncer-
tainty by a factor of around 1.5.

3.4. DA: Cloudy scenario

Fig. 2 shows the DA results for the cloudy scenario. This is a much
more realistic test for a DA system. The task now is not only to reduce
the uncertainty at the points where we have observations but also to
try to provide an effective interpolation over data gaps. The cross val-
idation plots for this case are shown in Fig. 3 (white circle and square)
and provide a much more narrow minimum. This implies that to
achieve acceptable results in cross validation, the range of y values
that can be tolerated is much more restricted. The minima of these
functions however are well within the bounds of the cross validation
results for the ‘complete’ scenario and the optimal y indicated very
similar to that obtained from the previous results. This indicates
that the method for estimating vy is quite robust, even when there
are large data gaps. Unsurprisingly, the absolute value of the cross
validation RMSE is higher for the cloudy case, indicating poorer per-
formance in prediction for this lower quality dataset.

Table 9 shows the reduction in uncertainty for this experiment.
One striking feature of these is that the percentage of cases within
the credible interval is now above 80% in both cases, meaning that
the reported uncertainties are close to the true values. Whilst the ap-
parent reduction in uncertainty is apparently quite small (indeed,
there is an increase in uncertainty for some state vector elements)
at 1.53 for the first order constraint and 1.14 for the second order,
when weighed against the improved statistical representation, these
rise to values directly comparable with the results from the previous
experiment. The credible intervals shown in Fig. 3 are now realistic
representations of the state vector elements and their uncertainties,
achieved with only 50% of the samples of the previous experiment
and with large data gaps, which is an important result.

Fig. 4 shows the posterior correlation matrices (the inverse Hes-
sian matrix) for the cloudy scenario. The general pattern of this ma-
trix for the ‘complete’ scenario is rather similar so not shown here.
Obviously, the correlation is unity along the leading diagonal. Another
important feature is that the broad patterns of positive and negative
correlations that we noted for the ‘single obs’ solutions remains
here. There is negative correlation between s; and all terms by TLAIL
There is negative correlation between TLAI and TC,, and TC,, but

Uncertainty reduction relative to the single observation inversion, as well as percentage of cases where the true parameter lies within the estimated 95% confidence interval. Results

for non-cloudy scenario, complete time series.

Complete time series

Observations only

# Symbol Unc. red Unc. red. % cases % cases (2nd diff) Unc. red Unc. red. % cases % cases % cases
1st 2nd (1st diff) 1st 2nd (1st diff) (2nd diff) (single)
diff diff diff diff

1 TLAI 4.89 2.96 75.3 90.4 144 0.85 72.6 91.8 63.0

4 TCap 5.24 3.58 61.1 65.2 2.57 1.74 60.3 65.8 65.8

6 TCy 3.47 1.77 51.2 69.9 2.72 1.38 50.7 71.2 60.3

7 TCam 1.82 0.85 87.7 100.0 1.64 0.76 87.7 100.0 57.5

8 N 1.40 0.79 59.2 100.0 2.67 1.50 58.9 100.0 60.3

9 sq 7.59 6.43 67.1 72.3 2.13 1.56 63.0 72.6 75.3

Mean 4.07 2.73 66.9 83.0 2.20 130 65.5 83.6 63.7
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Fig. 2. Base level state vector estimated from inverting single observations, (left column) and for model uncertainty unknown and estimated through cross validation—first differ-
ence constraint (central column) and second difference constraint (third column). Reduced number of acquisitions due to cloud cover scenario. Results for each of the six param-
eters are shown in rows. True values are shown as a dashed line. The full lines are the posterior means, and the shaded area represents the associated +/—1.96 standard deviations
interval. MSI observations are shown as open symbols. Crosses along the bottom row indicate the location of the cross validation acquisition dates.

positive correlation with TCy,,,. These patterns are consistent for both
constraints used. We notice then that the application of the dynamic
model (regularisation) in time does not remove the correlations aris-
ing from the inverse Hessian of the observation cost function, but
rather it ‘spreads’ uncertainty correlation out in the time domain.
This is particularly visible in the second-order constraint matrix in
Fig. 4 where we can clearly see this smoothing being greater where
there are data gaps (s; is a good example of that). Equally, where a
part of the state vector has been strongly influenced by the regulari-
sation (e.g. N for the first order constraint) we see very high correla-
tion at all time steps. Another interesting feature of this figure is the

fact that for some state vector elements (e.g. N for the second-order
constraint) we can clearly see the influence of the periodic boundary
condition).

4. Discussion
4.1. The value of an EO-LDAS
This paper outlines a scheme for a weak constraint data assimila-

tion system, developed in the ESA EO-LDAS project, designed for inte-
grating Earth Observation data from a variety of sources over
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Fig. 3. Error in cross validation scaled by observational uncertainty for varying model uncertainty <y for first and second-order constraints. Vertical lines around 200 represent the
theoretical value of vy for each of the 4 time-varying state variables using a first order constraint, and vertical lines around 5000 represent the theoretical values for -y for each of the

4 time-varying state variables using second-order constraint.

arbitrary time scales, and through that to multiple spatial resolutions.
It has the direct potential to be extended to spatial constraints, al-
though this is not explored here. The scheme is designed to allow in-
terface with process models, should they be available, though only an
empirical regularisation model is shown in this paper. The core of the
system is a set of constraints on: (i) prior estimates of the state vec-
tor; (ii) a linear model of the state vector; (iii) observation operator
(RT model) predictions of a set of EO data and a DA scheme around
these using an iterative bounded optimisation approach (L-BFGS-B).

In this paper, we have set up and run a synthetic data experiment
with EO data mimicking those that might be provided by the MSI sen-
sors on the forthcoming Sentinel-2 platforms. Experiments in DA are
conducted for an idealised ‘full coverage’ scenario (5-day sampling)
and for a ‘cloudy’ case (average around 10-day sampling but with
large data gaps of up to 60 days). The results are compared to baseline
experiments where we attempt to estimate the state variable trajec-
tories over the course of a year for a subset of the total state variables
(six elements per observation period). The prior term is used only
very weakly here, although bounds are set to the state vector ele-
ments. Further, we assume that we have direct access to the surface
reflectance (as opposed to top of atmosphere radiance), and that
the noise on the observations is uncorrelated and of known magni-
tude. Broadly however, we can claim that the baseline results should

Table 9

be indicative of those that might be obtained from Sentinel-2 data
using ‘traditional’ estimation methods. For what we suppose to be a
typical observation noise scenario, the uncertainty can be a quite
large proportion of the signal for important terms such as LAI, this
for a peak LAI of only around 3.7, although on average the uncertainty
in TLAI may only be around 5%. This then, relates to the information
content of a single MSI observation for this level of noise, assuming
some important terms such as leaf angle distribution are known pre-
cisely. These results are not surprising but are simply a manifestation
of the difficulty of the inference of biophysical parameters from radio-
metric observations: the problem may often be ill-posed (consider
the situation if only two wavebands at red and near infrared were
available), but even if it is not strictly so, there may not be sufficient
information to very well constrain the information we require. In
any case, there can be quite high correlation in uncertainty.

The ways to improve this situation are: (i) to obtain more obser-
vations (although more observations do not always translate in
more information: consider again sampling at only red and near in-
frared wavelengths in trying to constrain e.g. leaf water content);
(ii) to add some other forms of information; or (iii) average the
data. Much a priori information has been used in the past to help con-
strain these problems, but this has often been approached in a rather
ad hoc manner. Examples include: assuming some terms known,

Uncertainty reduction relative to the single observation, as well as percentage of cases where the true parameter lies within the estimated 95% confidence interval. Results for

cloudy scenario.

Complete time series

Observations only

# Symbol Unc. red Unc. red. % cases % cases (2nd diff) Unc. red Unc. red. % cases % cases % cases
1st 2nd (1st diff) 1st 2nd (1st diff) (2nd diff) (single)
diff diff diff diff

1 TLAI 333 2.39 82.7 74 0.965 0.68 88.9 91.7 63.9

4 TCap 3.68 2.93 80.0 89.6 1.82 1.58 61.1 83.3 58.3

6 TCy 2.33 14 64.1 85.2 1.90 1.18 833 88.9 61.1

7 TCam 1.25 0.669 100 100 1.18 0.656 100 100 58.3

8 N 0.835 0.597 91 100 1.73 1.38 88.9 100 58.3

9 sq 4.65 453 63.6 78.1 1.57 135 69.4 72.2 75.0

Mean 2.68 2.09 80.2 87.8 1.53 1.14 82.0 89.3 62.5
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Fig. 4. Posterior correlation matrices for the cloudy scenario. Labels indicate the location of the first day for component of the state vector.

without considering the impact of uncertainty in these, or imposing
degrees of smoothness; assuming that some terms are constant over
some arbitrary time period; or post hoc low pass filtering to the final
results. Given its success in other field of science and engineering,
many authors have proposed that DA should be seen as the route to
integration of the various forms of information one might wish to
use to constrain the estimation. Key to DA is the weighting between
the various sources of evidence, and key to this is assigning uncertain-
ty correctly to the sources. This is a feature of the approach that dra-
matically differentiates it from the way in which VIs are mostly used
in EO. As we note in the introduction, if we wish to estimate biophys-
ical parameters (such as LAI) there is generally some form of calibra-
tion (against ground observations or RT model runs) but it is
extremely rare that those model uncertainties are considered in map-
ping the product. Other processing steps such as angular normalisa-
tion may have taken place, but again, any concepts of uncertainty
arising from these are on the whole disregarded. All of these issues
could be addressed within a DA framework, even if the source of the
EO information were to be VIs.

If a biophysical process model is available to predict the develop-
ment of the state variables that control the remote sensing signal,
this can clearly add information to help constrain the problem. If in-
formation from the observations feed back to improve the estimates
of the parameters controlling the process model or alternatively im-
prove the state estimates, then a better integration of observations
and model is achieved, which will likely better constrain additional
terms estimated by the process model. This has been argued by
Quaife et al. (2008) and others who have worked on integrating EO
data and e.g. Carbon flux process models. However, models such as
these simply do not provide information on a large number of the
variables that affect EO signals, and this is likely to remain the case
for the foreseeable future. Exercises in EO-model integration then un-
derstandably tend to focus of the points of common linkage (which
often is no more than LAI, being supposed linearly related to leaf Car-
bon) and then applying the ‘traditional’ methods to the remaining pa-
rameters (assuming them known or at best constant over time). In
this paper, and in the EO-LDAS work in general, we have taken the
focus away from working with some specific process model, and
tried to consider the more general case and the sorts of constraints
that might be appropriate. If no physical model is available, empirical
concepts of smoothness in the state variables come to the fore. These

ideas become even more important if one considers constraint in the
spatial domain, where physical or even biological process models are
almost completely lacking to aid biophysical parameter estimation.

The EO-LDAS scheme that we have built is capable of using any
linearised process model and of more general interface to process
model codes provided the cost function and its derivatives can be cal-
culated. In the prototype and in this paper we have examined first-
and second-order derivative constraints as general, appropriate (em-
pirical) models for biophysical parameter estimation in DA. We have
simulated typical profiles of LAI and leaf chlorophyll concentration
and rather complex profiles of leaf water concentration and soil
brightness and shown that with Sentinel-2 MSI data every 5 days, a
reduction in uncertainty by a factor of around 2 might generally be
achieved. More interestingly perhaps, after compensation for errors
in uncertainty prediction, we saw that similar reductions might be
achieved even when there are large data gaps and 50% of the samples
lost due to cloud cover.

We have also demonstrated (Fig. 2) that it is feasible to estimate
the required hyperparameters from some form of cross-validation ex-
ercise to impose an appropriate degree of model uncertainty, and that
quite consistent results can be obtained even under cloudy condi-
tions. This is an important practical point for the eventual operationa-
lisation of these methods, but the area requires a little more
discussion of practical issues in its implementation.

Approximate linearization of the RT model variables here, follow-
ing Weiss et al. (2000), has allowed Gaussian distributions to be as-
sumed throughout. Although we have not directly investigated any
residual non-linear effects in this study, some evidence is provided
that on average we may be predicting only around 2/3 of the true
uncertainty.

4.2. Future directions

In this paper, we have only demonstrated DA for a homogeneous
observation system, i.e. one for which we have assumed the spectral
sampling (and in effect, spatial resolution) for all observations is the
same. Using the EO-LDAS prototype for spectrally heterogeneous sys-
tems is straightforward, but further work is needed to test the multi-
scale concepts that would more generally be required. Within the
existing prototype, the state vector can represent any mixture of tem-
poral or spatial samples. The concepts of temporal smoothness used
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here apply equally to the spatial domain (indeed, such ideas form the
basis of the field of geostatistics (e.g. Atkinson and Lewis, 2000)), so
the prototype can be used directly to link a state vector representa-
tion on a spatial grid, via appropriate specification of the matrix A. In-
deed, one could consider the experiments performed in this paper
simply as being on a spatial transect, rather than as we have assumed
a temporal sampling pattern. The only practical difference is that in
that case, the viewing and illumination angles would be near identical
for all samples.

The EO-LDAS prototype is designed to allow a (relatively) large
number of state variables to be estimated simultaneously in a varia-
tional system (>2000 demonstrated here). One potential advantage
of this is that information can be passed between any of the state vec-
tor elements. In practice, we have only used rather local information
transfer in the model constraints applied here (differences with
neighbours in time) and this approach could also be implemented
as a sequential smoother. In viewing the temporal experiment we
have performed as effectively equivalent to a spatial experiment,
the neighbourhood need not be very different (i.e., in the spatial
sense, we could follow the approach here and directly connect infor-
mation in one grid cell to its 8 neighbours). However, this variational
system maintains the capacity for more distant (time or space) con-
nections, for example in applying multiple scale constraint.

A point that we have not dwelt on in this paper is the time re-
quired for processing. This is currently around several hours for solv-
ing for>2000 state vector elements using 73 samples for what
equates to a single pixel (albeit for all samples over a year). The ex-
periments in this paper were conducted over around 120 UNIX
cores, so quite large-scale experiments are feasible using University
computing resources. Clearly the processing requirements would
need to be greatly reduced if such a system were to be proposed for
operational processing. The computer code is not on the whole writ-
ten to be fast, but rather to be adequate to learn about using this form
of DA. There are various ways in which this might be tackled: clearly
the very tight convergence criteria could be somewhat relaxed, and
more efficient codes could be written, but there will always be a rel-
atively large overhead on multiple calculations of a radiative transfer
model. Pragmatic ways to overcome this issue have mainly in the past
dealt with using LUTs or ANNs to sample or approximate the observa-
tion operator, but clearly in the DA framework we must consider rep-
resentational error in any such emulation. One avenue that holds
much promise is that of Gaussian Process (GP) emulators (Kennedy
& O'Hagan, 2000; 2001), a form of regression that has been success-
fully used to simulate computationally costly models runs through
simple functional approximations. The great benefit of this latter ap-
proach is that uncertainties in the emulated model are included and
that derivatives of the model can also be easily produced. If we con-
sider the observation operator as a sampled function with GP emula-
tion, it is interesting to note that the underlying concepts implying
smooth interpolation with treatment of representation uncertainty
are of course the same as we are performing in the temporal (or in-
deed spatial) process model in the DA.

5. Conclusions

The EO-LDAS prototype that is described in this paper has been
demonstrated to be capable of simultaneously estimating a state vec-
tor of over 2000 elements of surface biophysical characteristics in a
synthetic experiment using simulated Sentinel-2 MSI data. Although
the processing time required for this is currently substantial, this is
a significant step in the size of such problems that can be tackled si-
multaneously. The ability to do this derives from the use of AD-
generated adjoint code for the observation operator at the heart of
the DA system.

The DA scheme that has been developed is a weak constraint var-
iational system. The value of such a scheme has been demonstrated

using the synthetic MSI data to show a reduction in uncertainty of
up to around 2 when a linear dynamic model is used in the DA. The
linear dynamic model is proposed as a general implementation that
can potentially be interfaced to biophysical process models through
linearization. It is used in this paper with first and second-order de-
rivative constraints (zero- and first-order process models) which
are shown to be sufficient to track rather complex biophysical param-
eter trajectories via a radiative transfer model ‘observation operator’
interface to the synthetic EO data.

We have noted at various points in this text, that some aspects of
the EO-LDAS prototype are still under development of testing, but
what actually is provided by the prototype code is a functioning tool
for exploring many issues in DA and for estimating information on
surface biophysical parameters. The tool is designed as a weak con-
straint variational system, but we have argued that it can also be
used sequentially as it stands. We have demonstrated the use of the
tool and of DA concepts in reducing uncertainty in biophysical param-
eter estimation in a temporal sense, but also argued the equivalence
of this (in DA in general, but in the tool specifically) for the spatial do-
main as well. We have used only empirical ‘regularisation’ concepts in
demonstrating the DA, but noted that these are powerful general con-
cepts that are extremely useful, particularly if biophysical models do
not treat some of the parameters we are concerned with. In the
more general case though, any linearization of a more process-
driven model can be directly interfaced to the EO-LDAS prototype.

There is clearly quite a long way to go from initial experiments
with relatively slow computer codes to an operational system for
land data information extraction from EO, i.e. an operational EO-
LDAS, but the concepts explored here demonstrate the power and po-
tential flexibility of such an approach.
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