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Climate and physiological controls of vegetation gross primary production (GPP) vary in space and time. Inmany
ecosystems, GPP is primary limited by absorbed photosynthetically-active radiation; in others by canopy con-
ductance. These controls further vary in importance over daily to seasonal time scales. We propose a simple
but effective conceptual model that estimates GPP as the lesser of a conductance-limited (Fc) and radiation-
limited (Fr) assimilation rate. Fc is estimated from canopy conductance while Fr is estimated using a light use
efficiency model. Both can be related to vegetation properties observed by optical remote sensing. The model
has only two fitting parameters: maximum light use efficiency, and the minimum achieved ratio of internal to
external CO2 concentration. The two parameterswere estimated using data from 16 eddy covariance flux towers
for six major biomes including both energy- and water-limited ecosystems. Evaluation of model estimates with
flux tower-derived GPP compared favourably to that ofmore complexmodels, for fluxes averaged; per day (r2=
0.72, root mean square error, RMSE= 2.48 μmol C m2 s−1, relative percentage error, RPE =−11%), over 8-day
periods (r2=0.78RMSE=2.09 μmol Cm2 s−1,RPE=−10%), overmonths (r2=0.79, RMSE=1.93 μmol Cm2 s−1,
RPE=−9%) and over years (r2= 0.54, RMSE= 1.62 μmol Cm2 s−1, RPE=−9%). Using themodel we estimated
global GPP of 107 Pg C y−1 for 2000–2011. This value iswithin the range reported by other GPPmodels and the spa-
tial and inter-annual patterns compared favourably. The main advantages of the proposed model are its simplicity,
avoiding the use of uncertain biome- or land-cover class mapping, and inclusion of explicit coupling between GPP
and plant transpiration.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

The transport of CO2 from the atmosphere into plant leaves, where it
is used in photosynthesis, is inextricably linked to the simultaneous
transport of water vapour in the opposite direction (transpiration).
Plant physiological control of these opposing fluxes is exerted by stoma-
ta and the degree of control is quantified in terms of leaf stomatal con-
ductance. At the ecosystem level, canopy conductances for water
vapour (Gcw) and CO2 (Gcc) provide links between transpiration and
photosynthesis, respectively. Estimates of canopy conductance can be
obtained by up-scaling stomatal conductances for all leaves in the can-
opy (Kelliher, Leuning, Raupach, & Schulze, 1995), or be inferred from
ecosystem level measurements of exchanges of water vapour and CO2

(Baldocchi, 2008). Both approaches have been shown to be suitable
for application at canopy or local scales (b1–2 km) but to derive region-
al or global estimates of canopy conductance, satellite remote sensing
based methods are needed.
In a previous study, Yebra, Van Dijk, Leuning, Huete, and Guerschman
(2013) used eddy covariancemeasurements of water vapour fluxes at 16
sites distributed globally to establish relationships betweenGcw andMod-
erate Resolution Imaging Spectroradiometer (MODIS) reflectance obser-
vations. When the derived estimates of Gcw were combined with net
radiation, wind speed and humidity deficit data, the resulting estimates
of evapotranspiration (ET) were compared favourably with those
from alternative approaches. Moreover, the method allowed a single
parameterisation for all land cover types, which avoids artefacts
resulting from errors in vegetation classification. In principle, the
same satellite-derived Gcw values can be used within a process-based
model for Gross Primary Production (GPP) while providing a direct link
to the coupled energy and water balance of plant canopies.

In many ecosystems, GPP is limited by the amount of absorbed
photosynthetically-active radiation (APAR), rather than by canopy con-
ductance. The simplest approach to estimating GPP for these conditions
is tomultiply APARby a light-use efficiency term (LUE or ε, mol Cmol−1

APAR) representing the plant's capacity to convert light into fixed
carbon (Running, Nemani, Glassy, & Thornton, 1999; Sims et al., 2008;
Sjöström et al., 2011). This approach requires maximum LUE to be
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modified where or when environmental conditions limit the rate of
photosynthesis. In particular, a lack of soil water leads to stomatal
closure, which reduces both ET and GPP. Over longer periods, sustained
reduction in water availability will reduce vegetation cover, APAR and
hence GPP (Andela, Liu, van Dijk, de Jeu, & McVicar, 2013).

In this paper the study of Yebra et al. (2013) is extended to allow the
prediction of GPP globally. Our aimwas to test a simplemodel that links
GPP and ET through canopy conductance, while retaining the
smallest number of ‘free’ fitting parameters necessary to construct
a well-performing model that can be used at a global scale, without
the need for ancillary information on land cover class. To account for
the radiation limitation of GPP, we calibrate a simple LUE model that
uses MODIS remote sensing data to estimate APAR, LUE and GPP. The
lesser of the two estimates of GPP based on LUE or Gcw were assigned to
each MODIS pixel encompassing a flux tower and globally. The results
were then compared to the official MODIS GPP product (Zhao, Heinsch,
Nemani, & Running, 2005) and to estimates from a regression tree ap-
proach (Jung, Reichstein, & Bondeau, 2009).

2. Theory

We use a ‘big-leaf’ description of the plant canopy and estimate the
mean GPP (symbolised by F μmol C m−2 s−1) as the lesser of con-
ductance-limited and radiation-limited assimilation rates, denoted by
Fc and Fr, respectively:

F ¼ min Fc; Frð Þ: ð1Þ

If it is assumed that transport of CO2 from the bulk air to the intercel-
lular leaf space is limited by molecular diffusion through the stomata,
then Fc can be calculated from Gcw as:

Fc ¼ cgGcw 1−R0ð ÞCa ð2Þ

where Gcw (in m s−1) is canopy conductance to water vapour and R0 =
Ci/Ca the achieved minimum ratio of internal (Ci) to external (Ca) CO2

concentration (mol mol−1), and the conversion coefficient cg
(26 mol C m−3) relates Gcw (m s−1) to the conductance for CO2 in
molar units (Gcc, μmol C m−2 s−1) (it can be calculated as
41.6 mol C m−3 following the ideal gas law for standard air pressure
and 25 °C temperature, divided by 1.6 to account for the lesser diffusivity
of CO2 compared to H2O). If it can be assumed that R0 is constant for a
given vegetation community or at least relatively narrowly constrained,
then Eq. (2) can be used to estimate the maximum rate of CO2 uptake
for a given value of Gcw. Support for assuming a narrow range for R0 is
given by Figure 3c in Schulze, Kelliher, Korner, Lloyd, and Leuning
(1994). They extracteddata from the literature formaximumsurface con-
ductance (GSw) and maximum assimilation rates (Fc) for various vegeta-
tion types across the globe. A plot of Fc versus GSw (their Fig. 3C) yields a
slope of 1.048 with an r2 of 0.66. Using this value into Eq. (2) and Ca =
360 ppm results in (1 − R0) = 0.11. The corresponding value of R0 =
0.89 is for optimal conditions and is expected to be lower when various
environmental factors limit photosynthesis (Tuzet, Perrier, & Leuning,
2003). Here we adopt a global value of R0 = 0.76 which was obtained
by fitting Eq. (2) to flux station data from 16 sites distributed globally
across six biomes (see Section 4 below).

Radiation-limited GPP (Fr) was estimated using Eq. (3), where fPAR is
the fraction of absorbed PAR, Q is incident PAR (mol photons m−2 s−1)
and ε is a light use efficiency (mol C mol−1 photons).

Fr ¼ ε f PARQ ð3Þ

Most enzyme-mediated reactions have an optimum temperature
range, and several other algorithms adjust GPP estimates for T (e.g.
Yuan et al. (2007)). Consequently, temperature was tested for inclusion
as part of algorithm development, but rejected because model
performance was only very marginally improved (see Supplementa-
ry material).

3. Data

3.1. MODIS-derived reflectances and canopy conductance to water vapour

The 16-day Terra-Aqua MODIS nadir reflectance product (MCD43A4,
500m; Strahler,Muller, &Modis Sciences TeamMembers, 1999) provides
surface reflectance corrected for the bidirectional reflectance distribution
function (BRDF) and atmospheric effects, creating an apparent reflectance
that is not affected by the location of the sensor relative to the pixel at the
timeof acquisition (Schaaf et al., 2002). Subsets ofMCD43A4data for each
500m pixel containing a flux stationwere retrieved for the period 2000–
2012 from the MODIS Web service (http://daac.ornl.gov/MODIS/MODIS-
menu/modis_webservice.html) in order to calibrate and validate our
approach. For global GPP estimates we used the 0.05° (ca. 5600 m) reso-
lutionMCD43C4global reflectanceproduct (collection5) for the samepe-
riod. The imagery was downloaded from the Land Processes Distributed
Active Archive Center (LP DAAC, https://lpdaac.usgs.gov/data_access/
data_pool) and the quality control and state flags were used to remove
pixels with partial or complete cloud cover or low pixel quality in the
study areas. Global estimates of canopy conductance based on remote
sensing (GcRS) were calculated as described by Yebra et al. (2013) for
8-day periods and at 0.05° spatial resolution. The calculations utilized
three vegetation indices derived from the MCD43C4 reflectance product:
the Enhanced Vegetation Index (EVI) (Huete et al., 2002), the Nor-
malized Difference Vegetation Index (NDVI) (Rouse, Haas, Schell,
Deering, & Harlan, 1974) and a crop coefficient (Kc) estimated fol-
lowing Guerschman et al. (2009). The data are available via http://
www.wenfo.org/wald/.

3.2. Flux tower observations

The GPP estimates and meteorological data used in developing the
model were derived from the ‘free fair-use’ Fluxnet LaThuile dataset
(Agarwal et al., 2010). Following Yebra et al. (2013) we analysed 16
sites that have at least five years of data from 2000 onwards, to coincide
with the period of MODIS data availability. The flux stations were
surrounded by homogeneous land cover within 1 km from the mea-
surement tower (Table 1) to ensure that the results are not compro-
mised if some of the MODIS pixels are not fully centred on the tower
(Goerner, Reichstein, & Rambal, 2009). Homogeneitywas assessed visu-
ally, as judged by colour and texture, using high spatial resolution aerial
and satellite images from various sources (Google Earth™ http://earth.
google.com). The selected sites are located across several continents
and included six major biomes, following the International Geosphere–
Biosphere Programme classification scheme (Hansen, 2000): woody
savannas (WSA), grasslands (GRA), croplands (CRO), evergreen needle-
leaf (ENF), evergreen broadleaf (EBF) and deciduous broadleaf forest
(DBF). In ecohydrological terms, both energy-limited (i.e., potential evap-
oration (PET)b precipitation (P)) andwater-limited (PET N P) ecosystems
are represented. Table 1 presents the values of a wetness index (WI),
computed as the ratio between the long-term (1950–2000) annual
average P and annual average PET. Sites with WI N 1 are described
as energy-limited while areas with WI b 1 are termed water-limited.
Here we define as

PET ¼ αPT sRn= sþ γð Þ ð4Þ

where s (Pa K−1) is the slope of the saturation water vapour pressure
versus temperature curve, γ is the psychrometric constant (Pa K−1), Rn
is absorbed net radiation (W m−2) and αPT = 1.26 (Priestley & Taylor,
1972).

Half-hourly GPP and meteorological data were quality-checked
using the flags included in the Fluxnet La Thuile dataset. Half-hourly
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Table 1
Summary of the Fluxnet sites used in this study.WI,wetness index, computed as the ratio between the long-term (1950–2000) annual average precipitation and annual average potential
evaporation. Climate refers to theKöppen andGeiger climate classification;Main Climates: (A) tropical rain climate, (C)warm temperate climate and (D) sub-arctic climate; Precipitation:
(w) desert, (s) steppe, (f) fully humid and (s) summer dry; Temperature: (a) hot summer, (b)warm summer and (c) cool summer. IGBP stands for the International Geosphere–Biosphere
Programme classification scheme. CRO: Crops; DBF: deciduous broadleaf forest; ENF and EBF: evergreen needle-leaf and broadleaf forest respectively;WSA:woody savannas; GRA: grasslands.
MF: Mixed Forest; SAV: Savannas. MODIS-UMD presents the land cover type according to the Boston University's UMD classification scheme employed by MOD17.

Site code Latitude
(°)

Longitude
(°)

Köppen Precipitation
(mm y−1) * =
irrigated

Average
temperature
(°C)

WI IGBP MODIS-UMD Vegetation description Reference

AU–How −12.49 131.15 Aw 1450 27 0.88 WSA SAV Seasonal tropical
savannah

Beringer et al. (2003)

AU–Tum −35.66 148.15 Cfb 1159 10.7 1.13 EBF WSA Wet temperate sclerophyll
forest

Leuning, Cleugh, Zegelin, and
Hughes (2005)
Suni et al. (2003)
Rey et al. (2002)

FI–Hyy 61.85 24.29 Dfc 620 2.2 1.07 ENF ENF Scots pine forest
IT–Ro1 42.41 11.93 Csa 764 15.4 0.69 DBF CRO Young oak coppice
IT–Ro2 42.39 11.92 Csa 760 15.4 0.69 DBF WSA Mature oak coppice Tedeschi et al. (2006)
NL–Loo 52.17 5.74 Cfb 786 9.4 1.17 ENF MF Spruce plantation Dolman, Moors, and Elbers (2002)
US–Bo1 40 −88.29 Dfa 991 11 0.91 CRO CRO Maize–soybean (rotation) Meyers and Hollinger (2004)
US–Ha1 42.54 −72.17 Dfb 1071 6.6 1.14 DBF DBF Mixed deciduous forest Urbanski et al. (2007)
US–Ho1 45.2 −68.74 Dfb 1070 5.3 1.21 ENF MF Mixed forest Hollinger et al. (2004)
US–MMS 39.32 −86.41 Cfa 1031 10.9 0.97 DBF DBF Mixed deciduous forest Schmid, Grimmond, Cropley,

Offerle,
and Su (2000)

US–Ne1 41.16 −96.48 Dfa 790* 10 0.72 CRO CRO Irrigated maize Verma et al. (2005)
US–Ne2 41.16 −96.47 Dfa 789* 10 0.72 CRO CRO Irrigated maize–soybean

rotation
Verma et al. (2005)

US–Ne3 41.18 −96.44 Dfa 784 10.1 0.72 CRO CRO Maize–soybean (rotation) Verma et al. (2005)
US–Ton 38.43 −120.97 Csa 581 15.7 0.48 WSA WSA Oak savannah woodland Ma, Baldocchi, Xu, and Hehn (2007)
US–Var 38.41 −120.95 Csa 544 15.9 0.44 GRA WSA Annual C3 grassland Ma et al. (2007)
US–WCr 45.81 −90.08 Dfb 787 4 0.99 DBF Mixed Mixed forest Cook et al. (2004)
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values were averaged over daylight hours, defined as intervals with
incoming shortwave radiation N 5Wm−2. The total daytime shortwave
radiation (Rg, W m−2) measured at the flux towers was used to cal-
culate PAR assuming that the latter is 45% of the former (Howell,
Meek, & Hatfield, 1983). This was converted to μmol photonm−2 s−1

1 by considering that 1 J of PAR corresponds to ~4.4 μmol photons.

3.3. Global meteorological data

Global estimates of daily GPP at 1° resolution were calculated using
meteorological data produced using the methods as described in
Sheffield, Goteti, and Wood (2006). These data are derived through a
combination of reanalysis and field data and are available fromPrinceton
University (http://hydrology.princeton.edu). The data used include
24 h mean downwelling shortwave radiation flux (Rg, W m−2), spe-
cific humidity (q, m3 m−3), air pressure (p, Pa) and minimum (Tmin,
K) and maximum (Tmax, K) temperature for each day. To obtain day-
time average Rg, the gridded data were divided by fraction daytime
calculated using trigonometric equations. Daytime air temperature
(Ta) was estimated using:

Ta ¼ Tmin þ 0:75 Tmax−Tminð Þ: ð5Þ

Daytime vapour pressure deficit (D, Pa) was calculated as

D ¼ esat−e ð6Þ

where esat (Pa) is saturation vapour pressure and e (Pa) the actual
vapour pressure, estimated respectively as:

esat ¼ 610:8� exp
17:27� Ta

Ta þ 237:3

� �
ð7Þ

e ¼ qp
0:622

ð8Þ

where 0.622 is the ratio of themolarmasses ofwater vapour and dry air.
4. Methods

For the first part of the analysis, the dailymeteorological and flux data
were used to derive Gcw by inverting the Penman–Monteith combination
equation to yield:

Gcw ¼ λEGa

s
γ
Rn−

s
γ
þ 1

� �
λE þ ρcp

γ

� �
DGa

ð9Þ

where λ is the latent heat of evaporation (MJ kg−1), E is the evaporation
rate (kgm−2 s−1), Ga is aerodynamic conductance (m s−1), s the slope of
the saturation vapour pressure versus temperature curve (Pa K−1),
γ the psychrometric constant (Pa K−1), Rn net available energy
(W m−2), ρ air density (kg m−3) and cp the specific heat constant
pressure of air (J kg−1 K−1).

We recognise that Gcw in Eq. (9) should strictly be surface con-
ductance (GSw) which accounts for both canopy transpiration (T) and
evaporation from the soil (Es). In this study we selected data correspond-
ing to a dry canopy and soil surface (by only including observations after
two days without precipitation)with NDVI N 0.4, conditions underwhich
Es ≪ T and hence Gcw ≈ Gsw (see Eq. (6) in Leuning, Zhang, Rajaud,
Cleugh, and Tu (2008)).

Aerodynamic conductance Ga (m s−1) was calculated using

Ga ¼
1

k2U
ln

z−d
z0

� �
ln

z−d
z0H

� �
ð10Þ

here k is the von Karman constant (0.40), Uwind speed (m s−1) at the
measurement height (z) (m), d the zero-plane displacement (m) and z0
and z0H the roughness lengths formomentumand heat (m), respective-
ly. The quantities d, z0 and z0H were estimated as 0.66h, 0.123h and
0.0123h, respectively, where h is canopy height (m).

The atmospheric concentration of CO2 (Ca, mol mol−1) was estimat-
ed for each day of the year (in fractional year, y) using a quadratic equa-
tion fitted to the CO2 concentrations measured at Mauna Loa:

Ca ¼ 1:206 � 10−8y2−4:641 � 10−5yþ 0:045: ð11Þ

http://hydrology.princeton.edu
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The fraction absorbed PAR radiation (fPAR) was calculated from the
scaled Normalised Difference Vegetation Index (NDVI⁎) derived from
the MCD43A4 reflectance data, using the ramp function proposed by
Donohue, Roderick, and McVicar (2008):

f PAR ¼ f PAR;maxNDVI
� ð12Þ

where fPAR,max = 0.95 and

NDVI� ¼ max min
NDVI−0:1
0:9−0:1

;1
� �

;0
� �

:

The assumptions underlying this function are that (a) surfaces with
a NDVI ≤ 0.1 have no vegetation cover, (b) surfaces with NDVI ≥ 0.90
have full canopy cover, and (c) canopy cover increases linearly with
NDVI for intermediate values.

The remaining unknown variables in Eqs. (2) and (3) are R0 and ε.
The first of these was assumed to vary between sites but be invariant
in time.

We used remotely sensed EVI to estimate ε (cf. Drolet et al., 2008;
Goerner et al., 2009; Wu et al., 2009). EVI was developed to optimize
the vegetation signal with improved sensitivity in high biomass regions
and improved vegetation monitoring through de-coupling of the cano-
py background signal and a reduction in atmosphere influences (Huete
et al., 2002). It was calculated from MCD43A4 reflectances, and similar
to NDVI, EVIwas scaled (denoted EVI*) between values assumed to rep-
resent bare surfaces (EVI = 0.05) and vegetation with maximum feasi-
ble light use efficiency (EVI = 0.9) (A. Huete, University of Technology,
Sydney, personal communication), before multiplying it with an esti-
mated value of εmax:

ε ¼ εmaxEVI
� ð13Þ

where

EVI� ¼ max min
EVI−0:05
0:90−0:05

;1
� �

;0
� �

:

Duringmodel development,we also tested alternative remote sensing
predictors of ε, including NDVI, GVMI, unscaled EVI, fPAR and GcRS

(cf. Yebra et al., 2013). Each was tested in isolation and in multiplicative
Table 2
Quantitative measures of performance of the model for GPP at daily time scale. Predictions use
used are those derived from the cross-site optimization (R0 = 0.76; εmax = 0.045mol mol−1) a
used in the optimizationwere 0.2–0.95 and0.001–0.1 forR0 and εmax, respectively. RPE, relative pre
p_Fr (%) indicate the percentage of days that F is driven by radiation (Fr b Fc) for each site.

Site Days Cross-site optimization Per-site o

RPE r2 RMSE (μmol C m2 s−1) R0

AU–How 1307 7.43 0.74 1.31 0.81
AU–Tum 1524 −32.49 0.52 2.65 0.72
FI–Hyy 1232 −22.56 0.87 1.44 0.69
IT–Ro1 1980 −2.36 0.80 1.37 0.68
IT–Ro2 760 −10.36 0.79 2.19 0.71
NL–Loo 1488 −46.07 0.76 3.02 0.66
US–Bo1 1402 −1.63 0.82 2.63 0.79
US–Ha1 891 0.64 0.74 2.32 0.72
US–Ho1 1055 −25.55 0.79 2.11 0.67
US–MMS 945 45.83 0.80 3.75 0.79
US–Ne1 788 −24.65 0.85 4.05 0.77
US–Ne2 691 −12.05 0.85 3.34 0.77
US–Ne3 732 −22.48 0.75 3.9 0.75
US–Ton 1805 −27.28 0.75 1.21 0.20
US–Var 1195 8.60 0.89 1.29 0.82
US–WCr 1090 20.28 0.81 3.15 0.71
All 18,885 −10.99 0.72 2.48 –

Min 691 −46.07 0.52 1.21 0.20
Max 1980 45.83 0.89 4.05 0.82
Mean 1180 −9.04 0.78 2.48 0.70
combinations of two indices. The formulation in Eq. (13) performed
best for 12 out of 16 sites, as well as overall.

Initially, we used Gcw values directly derived from the flux tower
data by inversion of the Penman–Monteith equation (Yebra et al.,
2013) and optimized a single set of values of R0 and εmax across the 16
sites (cross-site optimization). Optimal values were found by minimiz-
ing the least squared difference between observed and modelled GPP,
using the Levenberg–Marquardt nonlinear optimization algorithm
adapted to Interactive Data Language (IDL, ITT Visual Information
Solution, Inc.) by Markwardt (2008). The code (function MPFITFUN) is
available from http://purl.com/net/mpfit. Subsequently, a similar opti-
mization was performed, but this time for each site individually (per-
site optimization), to assess the uncertainty in themodel parameteriza-
tion and the influence this had onmodel performance. In both cases this
was assessed by comparing the difference betweenmeanmodelled and
flux tower GPP in relative terms (relative predictive error, RPE =
(FTower − FMod)/FTower) and the Root Mean Square Error (RMSE).

Furthermore, the influence of temporal scale onmodel performance
was assessed by calculating the same metrics at different time resolu-
tion (i.e., daily, weekly, monthly and annually).

4.1. Global GPP estimates

To test model performance at global scale, we first replaced the site-
based Gcw estimates by values derived from the remote sensing product
(GcRS) of Yebra et al. (2013). Those estimates did not consider the possi-
ble effect of D on canopy conductance, although empirical evidence
shows that stomatal conductance decreases with increasing D.

To determine if this effect needed to be accounted for, we tested
whether the function proposed by Lohammar, Larsson, Linder, and
Falk (1980) and Leuning (1995) could explain residual variance in the
ratio of field-based over satellite-based conductance:

Gcc

GcRS
¼ C0

1þ D=D50
ð14Þ

where C0 is a coefficient to correct for the possibility that GcRSmay be an
underestimate of its maximum value in saturated air (Gcmax), and D50 is
the value of D at which canopy conductance is half of Gcmax.
canopy conductance derived from the flux tower and local meteorology. The parameters
nd per site (see R0 and εmax values for each site in this table). Allowable parameter ranges
dictive error; r2, coefficient of determination; RMSE, rootmean square error (μmol Cm2 s−1).

ptimization p_Fr (%)

εmax (mol mol−1) RPE r2 RMSE (μmol C m2 s−1)

0.043 −2.43 0.76 1.17 78
0.064 −5.94 0.53 1.85 97
0.052 −8.68 0.87 1.20 85
0.034 −5.16 0.84 1.24 53
0.053 6.00 0.79 2.05 55
0.076 −11.93 0.77 1.76 90
0.040 −13.43 0.82 2.52 88
0.041 −4.26 0.75 2.29 73
0.054 −6.14 0.79 1.68 58
0.025 −5.3 0.83 1.62 61
0.060 −5.36 0.85 3.27 95
0.051 −2.45 0.85 3.05 95
0.066 4.39 0.75 3.34 90
0.045 −11.79 0.75 1.03 52
0.040 −8.02 0.89 1.06 73
0.035 −0.80 0.81 2.51 84
– −5.43 0.82 1.95 81
0.025 −13.43 0.53 1.03 52
0.076 6.00 0.89 3.34 97
0.049 −5.08 0.79 1.98 77

http://purl.com/net/mpfit
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The proposed GPP model was subsequently applied at daily
time steps and global scale for the period 2000–2011 with spatial-
ly uniform estimates for the two parameters using the 0.05° reso-
lution MODIS canopy conductance product, and reflectance-
derived NVDI and EVI values, combined with daytime PAR radia-
tion, temperature and D calculated from the ‘Princeton’ meteoro-
logical dataset. These were done to examine which of the global
datasets introduce the greatest uncertainty in monthly-mean
GPP estimates.

For comparison, we downloaded two other global GPP datasets; the
MODIS GPP product (MOD17A2, Zhao et al., 2005) and the Max–Planck
Institute dataset (MPI, Jung et al., 2009) when data for both products
were available for a common period (2000–2011). TheMOD17A2 prod-
uct is estimated with a conceptual process model that uses MODIS
FPAR/LAI product (MOD15A2v5) andNCEP/NCAR reanalysis IImeteoro-
logical data, with parameterisation based on a lookup table that was ap-
plied spatially using the MODIS land cover product (MOD12Q1v4) and
modified based on performance against eddy-covariance GPP observa-
tions (Zhao et al., 2005). The MPI estimates were derived using a
Fig. 1. Modelled GPP (F, μmol C m2 s−1) plotted against flux tower GPP at different time scales
parameters used are those derived from the cross-site optimization (R0 = 0.76 and εmax = 0.0
shown are statistics for model performance: n, number of cases; RMSE, root mean square erro
regression tree model trained on eddy-covariance GPP estimates
for 178 FLUXNET sites, with NDVI from the Advance Very High Res-
olution Radiometer (AVHRR) Global Inventory Modelling and
Mapping Studies (GIMMS) product (until 2005) and SeaWIFS
(2006–2011) sensors and ERA-interim reanalysis meteorological
data as inputs (Jung et al., 2009). Therefore, although the ap-
proaches used to construct the three datasets differ, each uses a
combination of optical vegetation density remote sensing and cli-
mate reanalysis and, to different degrees, are constrained by eddy-
covariance observations.

5. Results

5.1. Parameter optimization

Table 2 lists values for R0 and εmax, optimized for each site. R0 ranged
between 0.66 and 0.82 for all sites except US–Ton with R0 = 0.20, the
lower limit of the parameter search space. Optimal values for εmax

ranged between 0.025 and 0.076 mol C mol−1 photons. The average
. Predictions use canopy conductance derived from the tower and local meteorology. The
45). The short dash lines are 1:1 lines and the solid lines are linear regression lines. Also
r (μmol C m2 s−1); RPE, relative predictive error and r2, coefficient of determination.
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value of R0 was 0.7 (0.74 excluding the anomalous R0 value obtained for
US–Ton) and the mean εmax was 0.049, values close to R0 = 0.76 and
εmax = 0.045, which are the overall optimized values for all sites
combined.

5.2. Model evaluation against flux tower data

Model predictions of daily GPP using the uniform parameters (R0 =
0.76, εmax=0.045molmol−1), canopy conductance from the tower and
local meteorology was strongly correlated with flux tower GPP (r2 =
0.72, RMSE = 2.48 μmol C m2 s−1 (Fig. 1a)). There was a negative bias
in modelled GPP as shown by a RPE of −10.9%.

The model performed slightly better in reproducing 8-day and
monthly average GPP values (Fig. 1b and c, respectively). This was
evident from a higher r2 (0.78 and 0.79), a lower RMSE (2.09 and
1.93 μmol C m2 s−1) and less negative bias (RPE of −9.8% and −8.6%)
for 8-day and monthly values, respectively. Aggregation to annual
Fig. 2. Variation in predicted (red open circles) and flux tower (black filled circles) 8-daymean val
derived from the tower and local meteorology. The parameters used are those derived from the c
averages reduced the errors with respect to daily values (RMSE =
1.62 μmol C m2 s−1, RPE = −8.8%), (Fig. 1d), but r2 decreased to 0.54.

Looking at the result of the cross-site optimization of R0 and εmax for
individual sites, theRMSE ranged from1.21 to 4.05 μmol Cm2 s−1 and r2

from 0.52 to 0.89 (Table 2). The per-site optimization described daily
variations in GPP about equally well as the cross-site optimization
(RMSE ranged from 1.03 to 3.34 μmol C m2 s−1 and r2 from 0.53 to
0.89) (Table 2). However, the use of the values of R0 and εmax derived
from the per-site optimization considerably decreased the RMSE and
RPE at AU–Tum, NL–Loo and US–MMS, although the c values remained
similar. Pooling data from the per-site optimization for all sites resulted
in r2 = 0.82, RMSE = 1.95 μmol C m2 s−1 and RPE = −5.43%.

Fig. 2 shows that the algorithm correctly predicted the timing of the
annual cycle in GPP at each of the mid-latitude sites, largely because of
the seasonal variation in incoming shortwave radiation, a key input
to the model. In contrast, the seasonal amplitude of 8-day GPP is
underestimated by 20–40% at five of the 16 sites (AU–Tum, NL–Loo,
ues of GPP (F, μmol Cm2 s−1) at model calibration sites. Predictions use canopy conductance
ross-site optimization (R0 = 0.76 and εmax = 0.045 mol mol−1).



Fig. 3.Variation of 8-daymean values of GPP (F, μmol Cm2 s−1) observed at US–Var andmodel estimateswhenGPPwas conductance-limited (Fc) or radiation-limited (Fr). Predictions use
canopy conductance derived from the tower and localmeteorology. The parameters used are those derived from the cross-site optimization (R0=0.76 and εmax=0.045). GPPwas strong-
ly limited by conductance during the hot dry summers but limited by radiation during the rest of the year.
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US–Ne1, 2, 3) and is overestimated by a similar percentage at two others
(US–MMS, US–WCr).

Themodel indicates that GPP is driven by radiation (Fr b Fc) for N50%
of the time at each site (52% b p_Fr N 97%, Table 2). However, con-
ductance plays an almost equally important role at IT–Ro1, IT–Ro2,
US–Ton and US–Ho1 (p_Fr ≈ 50%) while solar radiation is the primary
limiting factor at AU–Tum, NL–Loo, FI–Hyy, US–Bo1 and the Nebraska
crop sites (p_Fr ≥ 85%).

Radiation and canopy conductance constrained GPP at different
times during the growing season. For example, GPP at US–Var was
strongly limited by conductance during the hot dry summers but was
limited by radiation during the rest of the year (Fig. 3).

5.3. Response of satellite-derived canopy conductance to vapour pressure
deficit

The ratios of canopy conductance derived from flux tower measure-
ments to that based on satellite observations (Gcw/GcRS) decreased by
about 50% asD increased from0.5 kPa to 2.5 kPa (Fig. 4). This result is con-
sistent with the hyperbolic function used by Leuning (1995) for the re-
sponse of stomatal conductance to D and confirms that the influence of
Fig. 4. Box plots showing the distribution of daily values of the ratio of flux tower derived
canopy conductance (Gcw, derived from the PM approach) and modelled with remote
sensing data (GcRS) for different D intervals. Whiskers show the outer 5% percentiles.
D on canopy conductance can be accounted for by the same function.
The values ofC0 andD50 in Eq. (14)were optimized across sites, producing
values of C0 = 1.94 and D50 = 0.70 kPa and these values were used to
compute GcRS.

5.4. Performance of global GPP estimates

Table 3 shows that replacing Gcw with GcRS reduced r2 by 7%, and
increased the RMSE by 33%, while decreasing the magnitude of RPE.
Replacing local with global meteorological data did not degrade the
model performance appreciably. The greatest degradation inmodel per-
formance was found when 0.05° reflectance data were used, although
we consider model performance to be acceptable (r2 = 0.61, RMSE =
2.65 μmol C m−2 s−1, RPE = −15%).

Despite its simplicity, the global version of ourmodel (data available
via http://www.wenfo.org/wald/) performed similar to MPI and
MOD17 (Table 3). At monthly time scale, it produced the lowest RPE
and performed better than MOD17 overall, although MPI achieved
somewhat better r2 and RMSE.

Application of the GPP algorithm with constant values for R0
and εmax gave an annual average global GPP of 107 Pg C y−1 for
2000–2011. Global estimates for the same period derived from
MOD17 and MPI were 112 (+4%) and 122 (+14%) Pg C y−1,
respectively.

The global distribution of GPP shown in Fig. 5 is very similar to that
in theMODI17 andMPI datasets (comparedwith Figure 1B in Beer et al.,
2010). This agreement in distribution pattern is also seen in compari-
sons by latitude and by biome (Fig. 6). The latitudinal pattern in GPP
Table 3
Quantitative measures of model performance at monthly time scale when local data are
replaced by estimates from global datasets. The parameters used are those derived from
the cross-site optimization (R0 = 0.76; εmax = 0.045 mol mol−1 for the photosynthesis
model andD50=700 and C1=1.94 for the canopy conductancemodel). The performance
of the MPI and MODIS algorithms for the same observations is included for comparison.
RPE, relative predictive error; r2, coefficient of determination; RMSE, root mean square
error.

Model RPE (%) r2 RMSE
(μmol C m2 s−1)

This study (site data) −8.55 0.79 1.93
This study (with global GcRS) −3.99 0.72 2.26
This study (with global meteorology) −7.01 0.79 1.90
This study (with global GcRs and meteorology) −3.57 0.70 2.30
This study (with global GcRs, meteo and
reflectances)

−15.46 0.61 2.65

MPI −17.95 0.73 2.36
MOD17 −27.57 0.50 3.15

http://www.wenfo.org/wald/


Fig. 5. Annual average gross primary production GPP (g C m−2 y−1) estimates for the period 2000–2013.
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is very similar for all three datasets but the magnitude of our estimates
and of those from MOD17 are lower than those from MPI around 30°N
and 15°S (Fig. 6a). Expressed per biome, our estimates were be-
tween those from the MOD17 and MPI for 4 out of 9 biomes (Fig. 6b).
However, our GPP estimates are lower for water-limited and sparsely
Fig. 6. Annual average terrestrial GPP for 2000–2011 calculated (a) for different latitudes
(in g Cm−2 y−1; zeroGPPwas assigned towater bodies) (b) per generalised biome category
(Pg C y−1), using the MODIS land cover product (low latitudes are defined as within±60°).
vegetated ecosystems (low-latitude shrubland, savannas and ‘other’)
and needleleaf forests.

Anomalies in annual global GPP relative to mean values for 2000–
2011 are compared in Fig. 7 for the three datasets. Our algorithmyielded
an inter-annual standard deviation (±0.65 Pg C y−1) that is 30% lower
than that fromMOD17 (0.90 Pg C y−1), but both were considerably less
than that from the MPI dataset (±1.67 Pg C y−1). There was some
agreement in temporal anomaly patterns between our estimates and
those from MOD17 (r2 = 0.34, RMSE 0.71 Pg C y−1), but not with
those fromMPI (r2= 0.17, RMSE 1.46 Pg C y−1). Analysis per biome re-
vealed that savannas and grasslands were the main source of inter-
annual GPP variation in each of the datasets, and were responsible for
most of the agreement with MOD17 (r2 = 0.81) but also for much of
the remaining disagreement (RMSE = 0.35 Pg C y−1). The sources of
temporal disagreement between our estimates and those from MPI
data were distributed across biomes.

6. Discussion

6.1. Site-to-site variation in model parameters

The average value for the twomodel-parameters R0 and εmax derived
by model optimisation for each site was close to the overall optimized
values for the 16 sites combined. However the analysis also showed
site variability in the parameter values. NL–Loo obtained and optimized
value of εmax = 0.076 and R0 = 0.66 while for US–MMS values of R0 =
0.79 and εmax = 0.025 were found. Therefore, the use of a single opti-
mized intermediate value of εmax and R0 explains the overestimation
of GPP for US–MMS and underestimation for NL–Loo.

Following Leuning (1995), our model predicts that there is a mini-
mum achievable Ci/Ca ratio, R0, that determines maximum possible
GPP for a given stomatal conductance. To test this, apparent Ci/Ca ratios
can also be calculated directly from the observations, by rearranging
Eq. (2) and inserting the measured GPP and Gcw that are derived from
the flux tower measurements:

R0 ¼ 1− Fw
cgGcwCa

: ð15Þ



Fig. 7. Predicted annual global terrestrial GPP anomalies for 2000–2011 compared with
values from the MODIS and MPI GPP datasets. Anomaly is defined as the difference
between annual GPP and the GPP mean for 2000–11 (107 Pg C y−1).
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The main uncertainty in this approach is to determine on what days
GPPwas in fact limited by conductance, that is, when F= Fw, as required
by Eq. (15). It can be assumed that VPD on such days was typically high.

The relationships found in Fig. 8 confirm the conceptual model, and
agree with the general relationship between D and apparent Ci/Ca pre-
dicted by Leuning (1995). Values of Ci/Ca reach aminimum (R0) around
D N 1.5 kPa, although not all sites experience high D values, making it
difficult to determine R0 for some of the sites. The relationship Ca varies
between sites and suggests a dependence on vegetation type: needle-
leaf forests and drought-adapted blue oaks (US–Ton) appear to have
the lowest R0 values, broadleaf forests have intermediate values, and
crops and the (savannah) grasses (AU–How and US–Var) the highest
values.

6.2. Model evaluation

There is good agreement between modelled and measured GPP at
the 16 globally distributed flux stations at daily to yearly time scales.
The highest errors were found for the Nebraska crop sites (US–Ne1,
US–Ne2 and US–Ne3) and US–MMS although the r2 values for these
sites were still high (0.75–0.85). At US–Ne1 (maize), the peak in
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Fig. 8.Relationship between vapour pressure deficit (VPD, Pa) and the ratio of internal and
external CO2 concentrations (Ci/Ca) calculated from flux tower observations at 16 sites.
Each point represents at least 10 days of data. Sites are coloured by IGBP vegetation type
(blue = ENF, brown = DBF/EBF green = CRO/GRA, black = WSA; see caption Table 1
for meaning of codes).
GPP was always underestimated whereas for US–Ne2 and US–Ne3
(maize–soybean rotation sites) the peak was underestimated only for
years with a maize crop (2001 and 2003) and not in seasons with a
soybean crop. Maize assimilates CO2 via a C4 fixation pathway. It is
well-established that C4 species photosynthesise more effectively than
C3 species and reach a maximum rate at lower radiation level. Conse-
quently different εmax values might be required for ecosystems dominat-
ed by C3 or C4 species. Still, Berry, Collatz, and DeFries (2003) developed
an approach for capturing the spatial and temporal heterogeneity of both
photosynthetic types by combining remote sensing products, physiologi-
cal modelling, a spatial distribution of global crop fractions, and national
harvest area data for major crop types. The derived information on the
proportion of C3 and C4 plants per pixel used in such an approach could
then be used in our algorithm (Donohue et al., 2014; Ryu et al., 2011).
The main disadvantage is that this increases the complexity of the
model and potentially degrades model performance due to considerable
uncertainty in C3/C4 mapping.

Overall, ourmodel captures themain factors that constrain photosyn-
thesis. Radiation-limited photosynthesis dominated overall, but conduc-
tance played an almost equally limiting role at sites in Mediterranean
climates with a lower wetness index (WI b 0.69). However, the influence
of conductance limitation was also strong at US–Ho1 although this is
a humid site (WI = 1.21). GPP was mainly driven by solar radiation at
other temperate, continental and crop sites where water availability
was usually adequate (WI N 0.9), confirming earlier studies (van Dijk,
Dolman, & Schulze, 2005; van Gorsel et al., 2013).

Our model compares favourably against the accuracy of MPI and
MOD17 as well as other published models. For example, the model of
Yuan et al. (2010) explained about 75% and 61% of the variation of
8-day GPP estimates at calibration and validation sites, respectively,
whereas our model explained 78% of 8-day tower GPP at calibration
sites. Compared with the r2 values reported by Yuan et al. (2010)
(their Table 2) our model performed better at 6 sites (US–Bo, US–N1,
2, 3, US–WCr and US–Var, by 1–15%) and worse at two (US–Ton and
US–Ho, by 5% and 9%, respectively). To compare our results with those
of Ryu et al. (2011), we calculate the r2 and RMSE modelled versus
measured GPP for 7 sites common to both studies, for the year used in
their analysis. Our model performed similarly at FI–Hyy, US–MMS and
US–WCr, less well at US–Ne1 (r2 = 0.90 and 0.75, RMSE = 2 and
4 g C m−2 d−1 for Ryu et al. (2011) and this study, respectively) and
better at AU–Tum (same r2 but RMSE was 1.8 g C m−2 d−1 lower),
AU–How (r2 = 0.30 and 0.82, RMSE = 2.2 and 0.9 g C m−2 d−1

for Ryu et al. (2011) and this study, respectively), and AU–Ton
(r2 = 0.30 and 0.71, RMSE = 1 and 1.5 g C m−2 d−1 for Ryu et al.
(2011) and this study, respectively).

6.3. Global estimates of GPP

Our analysis showed that using single, optimized parameter values
(R0 = 0.76; εmax = 0.045 mol mol−1) in our algorithm did not degrade
model performance much compared to site-specific calibrations. This is
perhaps surprising considering the site-to-site variability in locally
optimized values, and may indicate that the model is more sensitive
to model inputs than to the parameters. Additionally, using MODIS-
derived canopy conductance (Yebra et al., 2013) did not strongly de-
grade model performance compared to using conductance derived
from flux measurements. We extended the algorithm of Yebra et al.
(2013) to account for the response of canopy conductance to D. The
benefit of our conductance-based approach is that it produces mutually
consistent estimates of GPP and transpiration, and therefore can be used
to estimate canopy-level water use efficiency.

Further degradation was expected when global meteorological
forcing data were used rather than site observations but the differences
in model performance were small (Table 3). Overall the differences
between gridded temperature and radiation estimates produced by
Sheffield et al. (2006) and observations from the tower were modest
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(results not shown). However, it is noted that most of the 16 sites are in
regions with a relatively good measurement network. Errors are likely
to be larger in some other parts of the world where measurement net-
works are less developed.

A second important advantage of the approach developed here
is that identical coefficients can be applied globally to all land cover
types. Although this increased RMSE slightly at some sites, when com-
pared to using site specific parameters, it avoids errors induced by cat-
egorical land cover mapping. Table 1 shows that classification of half
of the 16 sites differed between the Boston University's UMD classifica-
tion scheme employed by MOD17, and the IGBP classification scheme.
This misclassification affects the MODIS GPP estimates through the set
of parameters that are applied to each pixel. Furthermore, our approach
does not depend on indirect satellite-derived vegetation products such
as LAI, which have been reported to increase errors in GPP estimation.
For example, Ryu et al. (2011) found substantial overestimations of
GPP at the AU–Tum site due to inaccuracies in MODIS LAI. They also
found that underestimations of LAI during spring or autumn caused
the underestimation of their model derived GPP in most needle-leaf
forests.

Our global-average GPP estimates for 2000–2011 were 4% lower
than those from MOD17 and 14% lower than those from MPI. Beer
et al. (2010) estimated the range of plausible GPP estimates following
the MPI machine learning method at 105–125 Pg C y−1; our estimate
of 107 Pg C y−1 lieswithin that range. Furthermore, Ryu et al. (2011) es-
timated averageGPP at 118±26 Pg C yr−1 for 2001–2003 and Yuan et al.
(2010) reported a value of 111 ± 21 Pg C yr−1 for 2000–2003; close to
our values (also 107 Pg C y−1 for both periods).

When assessed by biome category, our GPP estimates were similar
to MOD17 and MPI estimates for temperature and tropical humid
biomes, but lower for needle-leaf forests and the most severely water-
limited ecosystems.

The inter-annual pattern of global GPP predicted by our model is
comparable to those in the MOD17 data, but both are considerably
different from those in the MPI data. Zhao and Running (2010) showed
that the MOD17 pattern agrees well with inter-annual variations in
atmospheric CO2 concentrations. In particular, the negative anomalies
in both MOD17 and our own estimates (Fig. 7) could possibly explain,
at least in part, accelerated CO2 increases in the atmosphere in 2002
and 2005. On this basis, we conclude that the inter-annual GPP pattern
derived from MPI, which has a strong positive anomaly in 2005, is less
plausible. We speculate that data inconsistencies in the changeover
from AVHRR GIMMS (up to 2005) to SeaWiFS (2006 onwards) may be
a factor; annual anomalies appear to agree better during the latter peri-
od (Fig. 7).
7. Conclusions

The simple algorithmwepropose for the estimation of GPP performs
well at daily, monthly and annual time-scales and similarly well or bet-
ter than other approaches published in the literature. The model was
applied globally to compute global estimates of GPP using global mete-
orological data and MODIS nadir reflectances. The global spatial and
temporal patterns in our GPP estimates compared favourably with
other datasets. We consider this an encouraging result, given (a) the
simplicity of our two-parameter model, (b) the lack of biome- or
land-cover specific parameters, and (c) the simple but explicit coupling
between ET and GPP. The site-based analysis and global comparison
suggest that perhaps the greatest simplification made was the as-
sumption that a minimum Ci/Ca ratio (i.e., R0) of 0.75–0.85 is achievable
in all ecosystems.We found some evidence that lower ratios are achieved
by needle-leaf and drought-tolerant species, and higher ratios by crops
and grasses (Table 2). Future research may help to find ways to better
predict R0 while still avoiding the use of uncertain categorical land cover
maps.
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