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In this study we evaluated the potential of the Medium Resolution Imaging Spectrometer (MERIS) Terrestrial
Chlorophyll Index (MTCI) for monitoring gross primary productivity (GPP) across fifteen eddy covariance
towers encompassing awide variation in North American vegetation composition. The across-site relationship
between MTCI and tower GPP was stronger than that between either the MODIS GPP or EVI and tower GPP,
suggesting that data from the MERIS sensor can be used as a valid alternative to MODIS for estimating carbon
fluxes. Correlations between tower GPP and both vegetation indices (EVI and MTCI) were similar only for
deciduous vegetation, indicating that physiologically driven spectral indices, such as the MTCI, may also
complement existing structurally-based indices in satellite-based carbon flux modeling efforts.
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© 2010 Elsevier Inc. All rights reserved.
1. Introduction

Quantitative estimates of carbon dioxide exchange at regional to
global scales are critical for understanding the links between carbon
and climate. Tower-based eddy covariance (EC) techniques have been
used across a wide range of ecosystems to provide information on
seasonal and inter-annual carbon fluxes. However, flux tower sites
only account for carbon fluxes within the designated tower footprint
and the number and geographical distribution of towers across the
globe is limited. Other attempts at estimating terrestrial carbon fluxes
have concentrated on the development of process-based ecosystem
exchange models (e.g. the Boreal Ecosystem Productivity Simulator
(BEPS; Liu et al., 1997) and the Terrestrial EcosystemModel (TEM; e.g.
Raich et al., 1991)). While such models show great promise, their
applicability at regional and global scales is challenging due to their
complexity and requirements for data that are often scarce or
unavailable at appropriate spatial and temporal scales. Carbon flux
models that are driven by remotely sensed observations can be used to
estimate gross primary productivity (GPP) frequently and over large
areas; for example the NASA Carnegie-Ames-Stanford (NASA-CASA)
model (Potter et al., 1993), the Terrestrial Uptake and Release of
Carbon (TURC) model (Ruimy et al., 1996) and the Moderate
Resolution Imaging Spectrometer Global Primary Productivity
(MODIS-MOD17 GPP) model (Running et al., 2004). The vast majority
of satellite-based models are ‘Production Efficiency Models’ (PEMs)
based on the light use (LUE) efficiency concept for the conversion of
absorbed photosynthetically active radiation (APAR) into biomass
(Monteith, 1972). In most PEMs the maximum LUE is empirically
derived based on vegetation type and then reduced according to
meteorological indicators of environmental stress. Thus, while some
PEM parameters can be estimated from satellite data, for example the
fraction of absorbed photosynthetically active radiation (fPAR;Myneni
et al., 2002; Prince & Goward, 1995), the estimation of others, such as
LUE, depend upon the availability of metrological data and vegetation
maps. There can also be substantial errors in the estimation of GPP
from satellite-based PEMs because of the coarseness of the metrolog-
ical inputs commonly used to scale the LUE parameter and the quality
and resolution of the land cover classification on which biome specific
maximum LUE values are based (Heinsch et al., 2006; Zhao et al.,
2006).

Given the difficulties associated with the parameterisation of both
detailed process-based ecosystem exchange models and satellite-
driven PEMs, there is a renewed interest in developing productivity
models that are entirely reliant upon satellite data, but which are not
based upon the traditional LUE concept. Suchmodels utilise vegetation
indices to capture the seasonal dynamics of GPP (e.g. Rahman et al.,
2005; Sims et al., 2008). The vastmajority of thesemodels are based on
indices derived from NASA's Moderate Resolution Imaging Spectrom-
eter (MODIS; e.g. normalised difference vegetation index; NDVI and
enhanced vegetation index; EVI), but with the continuity of MODIS
still uncertain, there is clearly a motivation to extend knowledge
acquired from modeling efforts with the MODIS datasets to other
sensor's data, such as the European Space Agency's (ESA) Medium
Resolution Imaging Spectrometer (MERIS) onboard Envisat. Although
MERISwas originally developed for ocean applications, itsfine spectral
resolution covering the visible and near infrared regions, radiometric
accuracy (Curran & Steele, 2005), moderate spatial resolution (300 m
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and 1 km), three-day repeat cycle, and assured continuity with the
forthcoming launch of the Ocean and Land Colour Instrument (OLCI)
onboard Sentinel 3, makes MERIS a potentially useful alternative for
monitoring terrestrial vegetation.

In this study we explore the extent to which an operational Level 2
MERIS land product, the MERIS Terrestrial Chlorophyll Index (MTCI;
Dash & Curran, 2004), may be used as an alternative to MODIS-based
vegetation indices for estimating GPP across a range of vegetation
types and climatic conditions. TheMTCI appears to be a good candidate
because the index contains information relating to canopy chlorophyll
content. Chlorophyll is related to the presence of photosynthetic
biomass, which is essential for primary productivity and thus
conceptually related to GPP (Sellers et al., 1992). Several authors
have previously reported significant correlations between crop GPP
and chlorophyll-related indices (e.g. Gitelson et al., 2006; Wu et al.,
2009), although these studies have primarily focused on the use of
proximal (in situ) spectral sensors to develop such relationships.
Furthermore, the potential of chlorophyll-related indices for GPP
estimation has yet to be fully explored across a range of biomes. For
evaluation purposes, we compared the MTCI results with those
obtained from the more commonly used MODIS-derived EVI and
GPP products.

2. Sites, data and methods

We used carbon flux data from fifteen Ameriflux tower sites,
representing considerable variation in region, climate and species
composition (Table 1). Donaldson and Mize are both young Slash Pine
forests in northern central Florida with long warm summers and mild
winters. Blodgett is a young Ponderosa pine forest in the Sierra Nevada
region of the western United States, which experiences moderate
winters and relatively dry summers. The Niwot Ridge site is situated in
the Rocky Mountains and is an example of a sub-alpine temperate
coniferous forest withmore extremewinters than the other evergreen
forest sites. Harvard forest in Massachusetts and Bartlett forest in
Maine are characteristic of the eastern deciduous forest of the United
States with cold winter climates. In contrast both the Missouri Ozark
and Willow Creek sites have warm summers. Mature Sugar Maple,
Aspen and Yellow Birch are dominant at Willow Creek whereas Oak
Hickory is dominant at the Missouri site. The Lost Creek site in
Northern Wisconsin is representative of a mixed forest/deciduous
shrubland whereas the Walnut River, Vaira Ranch and Fort Peck sites
are representative of grasslands found across a wide geographic and
climatic gradient in the United States. Finally, Bondville and the two
Mead sites are taken as representative of Corn and Soybean croplands.
Table 1
Vegetation type, location and other characteristics of the fifteen eddy covariance flux towe

Site name Vegetation type Latitude/longitude(°)

Forest
Blodgett Evergreen needleleaf forest 38.8953, −120.6328
Niwot Ridge Evergreen needleleaf forest 40.0329, −105.5464
Donaldson Evergreen needleleaf forest 29.7548, −82.1633
Mize Evergreen needleleaf forest 29.7648, −82.2448
Harvard Forest Deciduous broadleaf forest 42.5378, −72.1715
Bartlett Deciduous broadleaf forest 44.0646, −71.2881
Missouri Ozark Deciduous broadleaf forest 38.7441, −92.2000
Willow Creek Deciduous broadleaf forest 45.9059, −90.0799
Lost Creek Mixed forest/shrubland 46.0827, −89.9792

Non-forest
Walnut River Grassland 37.5208, −96.8550
Vaira Ranch Grassland 38.4067, −120.9507
Fort Peck Grassland 48.3079, −105.1005
Bondville Cropland 40.0061, −88.2919
Mead Rainfed Cropland 41.1797, −96.4396
Mead Rotation Cropland 41.1649, −96.4701
2.1. MERIS and MODIS spectral data

The 1 km spatial resolution MERIS MTCI data were obtained from
the UK Natural Environment Research Council Earth Observation Data
Centre (NERC NEODC; http://www.neodc.rl.ac.uk) as 8-day compo-
sites. MTCI data were composited from standard Level 2 (geophysical)
products using an arithmetic mean (Curran et al., 2007). We selected
data where the MTCI value was equal or greater than one to remove
erroneous values not related to vegetation cover. Flux tower footprints
are generally less than 1 km2 (Schmid, 2002), however when using
moderate resolution remotely sensed data it can be difficult to
precisely locate which pixel the footprint falls within. Consequently,
we extracted both the central pixel and the mean of the central
3×3 km area thought to be centred on the flux tower to determine
which provided the best correlation with GPP.

Both the 16-day composite MODIS EVI (MOD13) and 8-day
compositeMODIS GPP (MOD17) (collection 5 datasets) were acquired
from the Oak Ridge National Laboratory's Distributed Active Archive
Centre (DAAC) (http://www.modis.ornl.gov/modis/index.cfm). We
used the MODIS quality control flags to select data with low cloud
cover and listed as “Good Quality”. The MODIS GPP product is a PEM
model where GPP is modelled for each biome as a function of
quantum yield and LUE, constrained by coarse resolution temperature
data and indirect measures of vegetation moisture status (Heinsch
et al., 2003). To make valid comparisons between the MTCI, EVI and
MODIS GPP results, we averaged two consecutive periods of the MTCI
and MODIS GPP 8-day composites, to conform to the 16-day period of
the EVI data.
2.2. Tower-based carbon flux data

Eddy covariance techniques were used tomeasure carbon fluxes at
each site (see Table 1 for methods references). On all occasions we
obtained level 4 measurements of tower GPP from the Ameriflux
website (http://public.ornl.gov/ameriflux/dataproducts.shtml) to cal-
culate 16-day averages. All data were gap filled using the Marginal
Distribution Sampling Method (see Reichstein et al., 2005 for further
details). We only used data collected during the growing season. This
period was determined by smoothing the MTCI data using an inverse
discrete Fourier transformation and finding the point of inflexion from
the smoothed data. Estimation of the growing season duration was
confirmed by visually interpreting each time series curve. Further-
more, to facilitate comparisons between tower-measured GPP and the
MTCI, EVI and MODIS GPP datasets, we used only those dates where
r sites used in this study.

Stand age (years) Years Methods references

7–8 2003–2005 Goldstein et al. 2000
100 2003–2005 Monson et al. 2002
11–13 2003–2004 Gholz and Clark 2002
11 2003–2004

2003–2005 Urbanski et al. 2007
99 2004–2006 Jenkins et al. 2007
N150 2004–2006
60–80 2003–2005 Bolstad et al. 2004

2003–2005 Davis et al. 2003

2003–2004 Song et al. 2005
2003–2006 Baldocchi et al. 2004
2005–2006
2003–2006 Meyers and Hollinger 2004
2003–2006 Suyker et al. 2004
2003–2005 Suyker et al. 2004

http://www.neodc.rl.ac.uk
http://www.modis.ornl.gov/modis/index.cfm
http://public.ornl.gov/ameriflux/dataproducts.shtml
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data were available for all four variables (i.e. a total of 554 complete
datasets).

2.3. Statistical analysis

Time series and scatter plots were used to visually examine
relationships between the remotely sensed datasets and measures of
tower GPP within individual sites, within a single land cover type and
across different land covers. Pearson's product moment correlation
coefficient and Spearman's rank correlation coefficient were used to
examine the nature (positive or negative) and significance of these
relationships. Both Pearson's and Spearman's correlation coefficients
and significance values were similar for the relationships examined;
Pearson's correlation coefficients are provided in the text and figures.
Correlations with p values of b0.05 were considered significant.

3. Results

There was good agreement between annual tower GPP dynamics
and the MTCI for most of the sites during the active photosynthetic
Fig. 1. Time series of the MERIS Terrestrial Chlorophyll Index (MTCI), MODIS GPP product
cover type. Data are means (±standard error) for each composite period with a complete
period. Fig. 1 shows an example of a seasonal profile from four of the
sites analysed, one from each land cover type. Seasonal increases and
decreases in towerGPPwere closely tracked by theMTCI for deciduous
forests. At Willow Creek the seasonal GPP pattern corresponded well
with variation in both the MTCI and EVI, although a time lag was
apparent in the EVI data as tower GPP began to decrease in late July
(Fig. 1). Similar patterns were observed for the other deciduous sites
(data not shown). Change in tower GPP over the growing season was
significantly less in evergreen forests and grasslands, compared to
deciduous sites. Despite this, therewere clear seasonal trends in tower
GPP at evergreen sites, which were not tracked particularly well by
either vegetation index. AtNiwot Ridge, small increases in both indices
were observed during the growing season although the large increase
in tower GPP during May was not captured by either index (Fig. 1).
Neither of the indices was able to effectively capture the seasonal
pattern in tower GPP at most of the remaining evergreen forest sites
(data not shown). In comparison to the evergreen forests, the
correspondence between both vegetation indices and tower GPP was
closer for all grassland sites. All grasslands showed increases in both
vegetation indices that corresponded to increases in tower GPP
and MODIS-Enhanced Vegetation Index (EVI) for selected sites representing each land
dataset, for the active period of photosynthesis, across all years used in this study.



Fig. 2. Gross primary productionmeasured at the flux towers (tower GPP) as a function of theMERIS Terrestrial Chlorophyll Index (MTCI), MODIS GPP product andMODIS-Enhanced
Vegetation Index (EVI) for each of the sites dominated by deciduous forests, evergreen forests, grasslands and croplands. Data are means (±standard error) for each composite
period with a complete dataset, for the active period of photosynthesis, across all years used in this study.
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(Fig. 2). However, for all satellite-based products the correspondence
with tower GPP was closer at the Walnut River site than at the other
grasslands (Figs. 1 and 2). Both vegetation indices were also able to
track summer increases in GPP at the cropland sites, although the
highest index values recorded throughout the season did not always
correspond to the highest measures of tower GPP. For example at the
Bondville site tower GPP peaked during mid-late June, whereas the
maximum MTCI value was recorded approximately 1 month later
(based on the 16-day composites used in this study). The EVI also
exhibited a similar pattern to MTCI, although the lag between
maximum GPP and maximum growing season EVI was greater
(Fig. 1). In addition, both indices increased steadily during the early
part of the growing season (March–May)when towerGPPwas lowbut
stable. Similar patternswere observed at the other croplands (data not
shown). The MODIS GPP product captured the seasonal patterns at
most sites, with the exception of Blodgett, although tower GPP was
often significantly underestimated (Figs. 1 and 2).

The scatter plots and the Pearson's correlation coefficient (r)
revealed that the MTCI was positively correlated with tower GPP for
all sites, indicating a generally good correspondence between
increases in MTCI and increases in tower GPP (Fig. 2 and Table 2).
Use of theMTCI from the 1 km pixel centred on the flux tower location
as opposed to the 3×3 km mean had little effect on the correlation
between MTCI and tower GPP for all sites except Mize, where the



Table 2
Pearson's product moment correlation coefficients (r values) calculated between eddy covariance tower measurements of gross primary productivity (GPP) and the MERIS
Terrestrial Chlorophyll Index (MTCI), the MODIS Gross Primary Productivity (MODIS MOD17 GPP) and the Enhanced Vegetation Index (EVI) products.a

No. samples MTCI 1 pixel versus
Tower GPP

MTCI 3×3 versus
Tower GPP

MODIS GPP 3×3
versus Tower GPP

EVI 3×3 versus
Tower GPP

r p r p r p r p

Willow Creek 32 0.942 b0.001 0.945 b0.001 0.913 b0.001 0.944 b0.001
Harvard Forest 36 0.917 b0.001 0.925 b0.001 0.810 b0.001 0.889 b0.001
Lost Creek 24 0.837 b0.001 0.828 b0.001 0.887 b0.001 0.887 b0.001
Bartlett 37 0.862 b0.001 0.871 b0.001 0.882 b0.001 0.967 b0.001
Missouri Ozark 51 0.869 b0.001 0.868 b0.001 0.901 b0.001 0.902 b0.001
Blodgett 51 0.259 ns 0.243 ns 0.311 0.026 0.283 0.045
Niwot Ridge 37 0.298 ns 0.297 ns 0.729 b0.001 0.348 0.035
Donaldson 27 0.167 ns 0.187 ns 0.521 0.005 0.228 ns
Mize 17 0.521 ns 0.645 0.005 0.530 0.028 0.686 0.002
Walnut River 23 0.974 b0.001 0.969 b0.001 0.977 b0.001 0.847 b0.001
Vaira Ranch 42 0.612 b0.001 0.628 b0.001 0.648 b0.001 0.744 b0.001
Fort Peck 29 0.583 b0.001 0.575 0.001 0.766 b0.001 0.764 b0.001
Bondville 57 0.901 b0.001 0.894 b0.001 0.908 b0.001 0.656 b0.001
Mead Rainfed 56 0.822 b0.001 0.828 b0.001 0.837 b0.001 0.627 b0.001
Mead Rotation 35 0.822 b0.001 0.797 b0.001 0.760 b0.001 0.713 b0.001
Deciduous Forest 180 0.874 b0.001 0.875 b0.001 0.812 b0.001 0.908 b0.001
Evergreen Forest 132 0.319 ns 0.265 0.002 0.616 b0.001 0.567 b0.001
Grassland 94 0.650 b0.001 0.648 b0.001 0.680 b0.001 0.636 b0.001
Cropland 148 0.822 b0.001 0.820 b0.001 0.825 b0.001 0.627 b0.001
All sites 554 0.787 b0.001 0.780 b0.001 0.606 b0.001 0.709 b0.001

a MTCI in the first column is based on the central 1 km pixel most closely overlapping the tower footprint. The rest of the columns represent themean for the 3×3 km area centred
on the tower. All relationships were based on the individual data points from the photosynthetically active period (i.e. excluding winter); ns=not significant (pN0.05).
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correlation for the 3×3 km data was substantially higher (Table 2).
Previous studies using a number of the same flux tower sites have
reported slightly higher correlations between tower GPP and MODIS
derived products (i.e. EVI and MODIS GPP) for the 3×3 km means
surrounding the tower (e.g. Sims et al., 2006). Thus, for comparison
we used the 3×3 km mean MTCI, MODIS GPP and EVI for the rest of
our analysis. Out of the 20 correlations computed between the MTCI
and GPP, 15 were statistically significant, although the strength of the
correlations varied between and sometimes within land cover types.

The correlation between MTCI and tower GPP was strongest for
deciduous forests, both within and across sites (Table 2; Fig. 2). The
MODIS GPP product and the EVI were also strongly correlated with
tower GPP for deciduous forests although the MODIS GPP product
overestimated tower GPP atmost of the sites (points falling above the 1
to1 line in Fig. 2). In comparison to thedeciduous forests, the strengthof
the correlations between all the satellite derived measures and tower
GPP was relatively weak across most of the evergreen forests (Table 2;
Fig. 1). Only the Mize site showed a significant correlation between
MTCI and tower GPP (r=0.645, p=0.005). However, this relationship
was not significant when tower GPP was correlated with the MTCI
values of the single pixel centred upon the flux tower (Table 2). The
difference in the strength of the relationship is likely to be related to the
heterogeneity of the land cover surrounding the flux tower at Mize.
Whereas evergreen forest is the predominant land cover at the 1 km
scale, the increase in the spatial extent of theMTCI footprint to 3×3 km
may have resulted in the inclusion of deciduous vegetation, producing a
stronger correlation between MTCI and tower GPP at this scale (http://
daac.ornl.gov/MODIS/). The correlations between tower GPP and the
EVI for the evergreen sites were statistically significant, but generally
weak. As for the MTCI, the Mize site showed the strongest correlation
between EVI and tower GPP (Table 2; Fig. 2). However, there was a
difference in the pattern of the correlation between the two indices and
tower GPP for the Blodgett site. Here, MTCI values were higher than
those observed at any of the other evergreen sites for the same value of
tower GPP. This patternwas not visible in the EVI data where EVI values
were similar for a given tower GPP for all evergreen sites (Fig. 2). The
higher MTCI values recorded at Blodgett may reflect a higher
concentration of chlorophyll in the leaves of these trees, which is
indicative of young forests such as Blodgett (Table 1), although further
work is required to confirm the actual cause and effect. TheMODIS GPP
product was also weakly correlated with tower GPP at the Blodgett site
but was more strongly correlated with tower GPP for the remaining
evergreen sites than either of the vegetation indices. More work is
needed to identify theexact reasons for the lackof variation inMTCI for a
number of the evergreen forests but reasons could include: shadowing
effects caused by the conical canopy structure and density of the
evergreen needleleaf trees, the inability of the MTCI to detect the small
changes in seasonal chlorophyll content characteristic of needleleaf
species (e.g. Lewandowska & Jarvis, 1977; Khan et al., 2000) and/or
stress induced declines in photosynthetic efficiency that are not
accompanied by changes in chlorophyll content (e.g. Bourdeau, 1959;
Gamon et al., 1995).

At the grassland sites, MTCIwas significantly correlatedwith tower
GPP both for individual sites and across all grassland sites, but the
strength of the correlation across sites was weaker than that observed
across the deciduous forests (r=0.648, pb0.001 and r=0.785,
pb0.001; respectively; Table 2). All remotely sensed products were
more strongly correlated with tower GPP at Walnut River than at the
other grasslands. The range ofMTCI valueswas also greatest atWalnut
River despite similar recorded values of towerGPP (Fig. 2; Table 2).We
propose that these observed differences are related to differences in
species composition between the grassland sites. Grasslands are
naturally vertically and horizontally heterogeneous. For example,
Vaira Ranch is a grazed grassland opening in a region of oak/grass
woodland dominated by C3 plants, whereas the Walnut River
grassland site is dominated by tall prairie grasses and contains a
mixture of C3 and C4 species (http://www.modis.ornl.gov/modis/
index.cfm). Results from a recent study aimed at mapping C3 and C4
grassland species using the MTCI, suggest that C4 grasslands exhibit
higherMTCI values during the peak growing season compared to those
dominated by C3 species (Foody & Dash 2007), which could explain
the higher MTCI values observed at the Walnut River site.

Of all satellite derived products, MTCI showed the strongest
correlations with tower GPP for the cropland sites (Table 2), although
there was a significant amount of scatter within these relationships
(Fig. 2). The large scatter at low levels of tower GPP is primarily a
function of increasing values of MTCI when GPP is low and stable
(Fig. 1). Although further research is needed to elucidate the exact
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cause(s) of these variations, one reason for this may be related to how
the active period of photosynthesis was determined. Although the
MTCI begins to increase towards the end of January, soybean and corn
seeds are often not sown until the spring time. Consequently, the low
tower GPP values and increasing MTCI values which were observed
during thefirst 2–3 months of the yearmay be representative of fallow
land, either gradually being colonised by weed species or subject to a
change inmoisture regime, as opposed to actual crop growth. Thismay
also explain why the seasonal profiles of MCTI do not show similar
variation when GPP is low and stable towards the end of the active
period of photosynthesis (Fig. 1) but rather an abrupt decrease, which
may be indicative of crop harvest and a return to fallow land. Although
the correlation coefficients were also strong between cropland tower
GPP and the MODIS GPP product, the product consistently and
significantly underestimated tower GPP for these sites (Table 2,
Fig. 2). The strong correlation observed between MTCI and GPP at the
cropland sites is consistent with the findings of Wu et al. (2009).
Gitelson et al. (2006) also reported similar correlations between
chlorophyll related indices, and estimates of GPP at the same two
Mead sites used in this study. The chlorophyll indices utilised in both
studies were derived from the same spectral region as MTCI, but
measures were derived at a much higher spatial and spectral resolution
using in situ sensors.

This paper is the first to investigate the relationships between MTCI
and GPP within and across a range of land covers and vegetation types.
Our results indicate that even though the MTCI and EVI show similar
correlations with GPP for some vegetation types (e.g. deciduous) the
indices are actually depicting different, but sometimes related,
attributes of the vegetation. Differences between the two indices were
clearly apparent in the time series profiles where a greater lag was
observed between the onset of the end of season reduction in GPP and
downturn in the EVI. This was also seen in the scatter plots, where
relationships between MTCI and GPP differed somewhat to that of the
EVI. Because the EVI is ameasure of vegetation structure and greenness,
whereas the MTCI is relatively insensitive to vegetation configuration,
similar relationships were observed between GPP and both vegetation
indices when canopy greenness and structure were strongly correlated
in time (e.g. in deciduous vegetation). Differences became apparent
when seasonality in the temporal profile of the indices was weak
(e.g. grasslands, agricultural sites and evergreen forests).

Because GPP is not solely a function of chlorophyll content, there
were clear differences in the MTCI–tower GPP relationship amongst
land cover types and sometimeswithin. Therefore, the use ofMTCI as a
single variable to predict GPP is evidently not feasible for sites that are
not dominated by deciduous vegetation with a predictable seasonal
cycle. To a large extent the same is true for the EVI derived fromMODIS
data. The correlation between GPP and MTCI was however, stronger
than the correlations between GPP and the other satellite derived
products tested when data from all sites were combined (r=0.780
pb0.001, Table 2). Thus there is evidently a potential for MTCI to be
used as an alternative to EVI in GPP modelling efforts. Clearly for the
accurate estimation of GPP, any MTCI-based model must include
variables that are able to account for stress induced changes in
photosynthetic efficiency. Sims et al. (2008) found that adding a
temperature component to their EVI-based model improved GPP
estimations for both deciduous and evergreen sites. What effect the
addition of a temperature or radiation component will have on an
MTCI-basedmodel, given the differences observed in the relationships
between tower GPP and both spectral indices for certain land covers,
requires further investigation. If chlorophyll content is the most
relevant community property for predicting vegetation productivity
(Whittaker & Marks, 1975; Dawson et al., 2003), then a GPP model
based on physiologically driven spectral indices such as MTCI should
also complement existing satellite-drivenmodels, which estimate GPP
from primarily structurally driven spectral indices such as the EVI.
Further research should also be directed towards understanding the
effect of compositing period on the relationship between GPP and
MTCI. In this study we conformed to the 16-day compositing period of
the standard MODIS EVI product for comparison purposes, even
though the MTCI is routinely available as an 8-day composite product.
Further research efforts should also focus on the effect of variable pixel
size on MTCI–GPP relationships, specifically in heterogeneous loca-
tions. We found that the correlations between MTCI and tower GPP
over 1×1 km and 3×3 km areas were consistent for all but one of the
sites studied, indicating a degree of homogeneity in the seasonal
responses of vegetation at both these scales. However, we did not
account for the heterogeneity thatmay exist at the sub-kilometre scale
or temporal variation in flux tower footprints. From a technical
perspective, further work should also be focused on the potential
benefits of more rigorous pre-processing procedures to derive the
standard 8-day composite MTCI data. Currently only a relatively
simple atmospheric correction is applied to the data (i.e. correction for
Rayleigh scattering, water vapour and ozone absorption) and no
correction is made for the influence of directional effects (although
preliminary investigations suggest that MTCI is minimally affected by
changes in view angle). Consequently, it is expected that additional
pre-processing and an improved atmospheric correction, including a
correction for aerosol loading and cloud shadowing, could further
improve the strength of the correlations between MTCI and GPP.

4. Conclusion

Carbon flux models that rely solely on remote sensing data have
shown promise for estimating GPP across a variety of land cover types.
However, these models are commonly derived from predominantly
structurally-driven spectral indices and most are obtained from the
MODIS sensor. With the continuity of MODIS uncertain and data from
other high temporal, spatial and spectral resolution sensors becoming
more widely available it is worthwhile exploring alternative methods
of estimating GPP using remote sensing products. In this study, we
have shown that correlations between the physiologically-driven
MTCI derived from MERIS, and GPP were often as strong as and
sometimes stronger than those between GPP and the MODIS derived
EVI and GPP products across a range of different land cover types and
climatic conditions. The MTCI appears to be a viable alternative to EVI
for inclusion in carbon modelling efforts. Correlations between tower
GPP and the MTCI and EVI were similar for many of the deciduous and
grassland sites, although different relationships emerged between the
two indices and tower GPP for evergreen and cropland sites, probably
due to the decoupling of structural and physiological properties of the
vegetation. Consequently, per pixel models based on physiological
spectral indices such as the MTCI may also complement existing
models driven by structural information. Work is ongoing to fully
explore whether improvements in the MTCI atmospheric correction
procedure and the inclusion of climate variables will aid in the
development of a robust model of GPP using MERIS data.
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