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As soil moisture increases, slope stability decreases. Remotely sensed soil moisture data can provide routine
updates of slope conditions necessary for landslide predictions. For regional scale landslide investigations,
only remote-sensing methods have the spatial and temporal resolution required to map hazard increases.
Here, a dynamic physically-based slope stability model that requires soil moisture is applied using remote-
sensing products from multiple Earth observing platforms. The resulting landslide susceptibility maps using

ﬁggﬁ)ﬁs' the advanced microwave scanning radiometer (AMSR-E) surface soil moisture are compared to those created
Remote sensing using variable infiltration capacity (VIC-3L) modeled soil moisture at Cleveland Corral landslide area in
VIC-3L California, US. Despite snow cover influences on AMSR-E surface soil moisture estimates, a good relationship
Landslide between the downscaled AMSR-E's surface soil moisture and the VIC-3L modeled soil moisture is evident.
Soil moisture The AMSR-E soil moisture mean (0.17 cm?/cm?®) and standard deviation (0.02 cm?/cm?) are very close to the

Slope stability mean (0.21 cm®/cm?®) and standard deviation (0.09 cm®/cm?) estimated by VIC-3L model. Qualitative results
show that the location and extent of landslide prone regions are quite similar. Under the maximum

saturation scenario, 0.42% and 0.49% of the study area were highly susceptible using AMSR-E and VIC-3L

model soil moisture, respectively.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Remote-sensing and spatial analysis tools are widely used in
landslide studies including landslide detection, landslide assessment,
natural hazard, landslide mapping, and landslide inventories (e.g.,
Gorsevski et al., 2003; Guzzetti et al., 1999; Pradhan et al., 2006; van
Westen, 1994; Varnes, 1984). Remote-sensing data can be used to
predict catastrophic events and hazardous areas (Ostir et al., 2003)
and they have significant potential for landslide studies (Hong et al.,
2007).

Landslide inventory maps can be developed by field surveying.
However, surveying is time consuming, expensive and difficult for
regional or global scales. On the other hand, landslide inventory maps
can be developed using aerial photography (Brarddinoni et al., 2003;
Oka, 1998; van Westen & Getahun, 2003) as well as remotely sensed
data with image analysis technique (Abdallah et al., 2007; Nichol &
Wong, 2005). Over the past decade, the Earth Observing System (EOS)
platforms have deployed a suite of instruments that monitor land
conditions relevant to landslide hazard characterization such as Light
Detection and Ranging (LiDAR), Interferometric Synthetic Aperture
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Radar (InSAR), and Differential SAR Interferometry (DInSAR) data.
The predominant use of remotely sensed data is to map landslides
after they have occurred using aerial photographs (van Westen &
Getahun, 2003), to characterize landslide distributions using aerial
photographs (Carrara et al., 1991), and to inventory landslides using
SPOT satellite images (Cheng et al., 2004). Multi-temporal satellite
images are increasingly used to monitor, classify and detect landslides
(Hervas et al., 2003; Mantovani et al., 1996).

For landslide analyses, Landsat™ and Advanced Spaceborne
Thermal Emission and Reflection Radiometer (ASTER) have been
used to derive land cover in regions including the Himalayas range
(Saha et al., 2002; Sarkar & Kanungo, 2004; Zomer et al., 2002). InSAR
has been used to locate and characterize landslides (e.g., Canuti et al.,
2004; Singhroy & Molch, 2004). Kaab (2005) showed that recent
Shuttle Radar Topography Mission (SRTM) results are promising for
characterizing topography in regions having landslides. Pelletier et al.
(1997) indicated that continuous remote-sensing of soil moisture
coupled with a digital elevation model is a necessary component of a
successful landslide hazard mitigation program. Their work recom-
mended replacing soil moisture surrogates that have been used
extensively in slope stability analyses and landslide observations.
Typically, slope stability is analyzed using wetness indices to estimate
soil wetness (Acharya et al., 2006; de Vleeschauwer & De Smedt,
2002; Montgomery & Dietrich, 1994; van Westen & Trelirn, 1996). As
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pointed out by Rosso et al. (2006), these approaches neglect the
presence of soil moisture in the upper soil layer above the
groundwater table (unsaturated soil layer or surface soil layer) or
indirectly estimate the soil moisture. Existing studies do not directly
account for the temporal evolution of soil moisture prior to and during
the rainfall events. Nevertheless, it is necessary to link the surface soil
moisture to the subsurface layer (saturated soil layer) because
landslides are not triggered only by surface layer saturation; rather,
it is the combined effect of surface and subsurface saturation that is
critical (Ray & Jacobs, 2007). Ray et al.'s (2010) enhanced wetness
index model provides a means to apply vadose zone soil moisture.
While they used modeled soil moisture, many regions lack the
required datasets for steep terrains that are needed to appropriately
parameterize models. Remotely sensed soil moisture data are a
potentially viable alternative to modeled data because they are
available globally with frequent overpasses.

Satellite remote sensing can provide spatially integrated informa-
tion on soil moisture at regional and global scales (Gruhier et al.,
2010). There are various active microwave sensors such as Meteoro-
logical Operational Satellite Program (METOP)-Advanced Scatterom-
eter (ASCAT), RADARSAT 1, 2-Synthetic Aperture Radars (SAR),
Environmental Satellite (ENVISAT)-Advanced SAR (ASAR) and pas-
sive microwave sensors such as Advanced Microwave Scanning
Radiometer (AMSR-E), Tropical Rainfall Measuring Mission
(TRMM)-TRMM Microwave Imager (TMI), Soil Moisture and Ocean
Salinity (SMOS, from Nov-2009) that are in operation to measure soil
moisture at various spatial and temporal resolutions (Lakhankar et al.,
2009). Until now, most of the satellites are producing soil moisture
data at a course resolution. However, the proposed Soil Moisture
Active and Passive (SMAP) that is scheduled to launch in 2014, will
provide higher resolution soil moisture products (Gruhier et al.,
2010).

While no landslide studies thus far have used remotely sensed soil
moisture data, the AMSR-E soil moisture product has the potential to
characterize soil moisture profiles in landslide prone regions (Ray &
Jacobs, 2007). Numerous studies (e.g., Gao et al., 2006; Lacava et al.,
2005; Njoku & Chan, 2006; Njoku et al., 2003; Walker et al., 2004)
have shown that microwave remote-sensing measurements including
AMSR-E are affected by surface roughness, topographic features,
dense vegetation and soil texture. This indicates that soil moisture
data may have limited value on steep topography (Njoku et al., 2000).
The few validation experiments, such as Soil Moisture Experiments
2004 (SMEX04) in northern Sonora, Mexico (Jackson et al., 2008;
Vivoni et al., 2008), that have been conducted on such terrain show
that rocky slopes can mask the moisture signal.

There are two significant challenges to using AMSR-E data. The AMSR-
E retrievals provide measured soil moisture for an upper thin surface (less
than 5 cm) of the Earth (Jones et al., 2009; McCabe et al., 2005; Schmugge
et al., 2002). This thin layer soil moisture information may not truly
represent the entire soil moisture profile underneath thick soil layer
(subsurface) above the bed rock. To obtain a soil moisture profile, it may
be necessary to combine remotely sensed soil moisture with modeled soil
moisture such as that from a soil vegetation atmosphere transfer (SVAT)
model. Moran et al. (2004) demonstrated that SAR soil moisture with
SVAT modeled soil moisture can accurately estimate the soil moisture
profile. In addition, Drusch (2007) suggested that remotely sensed surface
soil moisture is directly linked with model's surface soil moisture and can
be combined to use in soil moisture analysis.

Another challenge is that AMSR-E processed data or EASE-gridded
daily L3 soil moisture products have a 25 km spatial resolution (Gruhier
et al., 2010). This is quite coarse for landslide studies even at regional
and global scales. Therefore, it may be prudent to downscale the low
resolution AMSR-E soil moisture to a finer scale. Wagner et al. (2008)
developed a downscaling technique based on temporal stability of soil
moisture. Doubkova et al. (2008) applied their technique to downscale
European Remote Sensing (ERS) scatterometer soil moisture data from

50 to 1 km spatial resolution. Surface wetness index approaches based
on land surface temperature (LST) and normalized vegetation index
(NDVI) are appropriate means to downscale AMSR-E soil moisture from
25 to 1 km spatial resolution (Hemakumara et al., 2004; Hossain &
Easson, 2008). Chauhan et al. (2003) included albedo in addition to
NDVIand LST to downscale soil moisture. Their approach was enhanced
by Yu et al. (2008) and found to provide a strong relationship between
the downscaled and original AMSR-E soil moisture (R?>=0.74).

Here, we test the AMSR-E soil moisture product's ability to provide
the vadose zone soil moisture estimates necessary to dynamically map
landslide susceptibility. The study region, Cleveland Corral, California, US,
is an active landslide area. The research objectives of this paper are (1) to
compare AMSR-E and variable infiltration capacity (VIC-3L) surface soil
moisture, and (2) to analyze the impacts in landslide susceptibility map
using AMSR-E and VIC-3L surface soil moisture. Results consider AMSR-E
25 km pixels as well as downscaled 1 km pixels.

2. Theoretical approach
2.1. Slope stability model

This study uses the modified infinite slope stability model (Ray et al.,
2010) to quantify landslide susceptibility including the vadose zone soil
moisture and groundwater effects. The model assumes a pervious soil
layer above an impervious soil layer or bed rock that has no vertical
groundwater flow from the bottom of the soil layer. The infinite slope
method (Skempton & DeLory, 1957), widely applicable for shallow
slope stability analysis, calculates safety factors as the ratio of resisting
forces to driving forces. The infinite slope stability model (Fig. 1) as
adapted by the several researchers is

G +G (1_my_w>tancp 1)

= vy, Hsind Y./ tand

where C, and C; are the effective soil and root cohesion [KN/m?], ve is
the effective unit soil weight [kN/m?], H is the total depth of the soil
above the failure plane [m], 6 is the slope angle [°], m is the wetness
index [adimensional], ¢ is the angle of internal friction of the soil [°],
and v, is the unit weight of water [kN/m>]. The effective unit soil
weight is estimated as

cos6
Yo = 122 + (1= myys + @)
where q is any additional load on the soil surface [kKN/m?] and vq is dry
unit soil weight [kN/m?] for the unsaturated soil layer.
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Fig. 1. Schematic diagram for the slope angle, saturated and total soil thickness, surcharge,
saturated and moist unit soil weights (adapted and modified from Skempton & Delory,
1957). The three soil layers used in the VIC-3L model are the top soil layer, L1 =0.05 m, the
middle soil layer, L2=0.35 m and a variable depth lowest soil layer, L3 =0.4 to 1 m. In the
presented slope stability model, h and H are used for saturated and total soil depth,
respectively.
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The wetness index model following Ray et al. (2010) is given as

h + (H—=h)*%
L @)
where h is the saturated thickness of the soil above the failure plane
[my], 6 is the volumetric soil moisture [cm?/cm?] and ) is the porosity
[em?/cm?].

The estimated factor of safety (FS) values were used to categorize
slopes into stability classes using Pack et al. (1998) and Acharyaetal.'s
(2006) stability classification system. Our four susceptibility classes,
used to develop landslide susceptibility map, are highly susceptible
(FS<1), moderately susceptible (1<FS<1.25), slightly susceptible
(1.25<FS<1.5) and not susceptible (stable) (FS>1.5).

2.2. Land surface model (VIC-3L)

This study used VIC-3L model results for the Cleveland Corral,
California study region as an independent measure of the soil moisture
profile. The VIC-3L model (Cherkauer & Lettenmaier, 1999; Liang et al.,
1994, 1996, 1999) is a three-layer SVAT land surface scheme
(Lohmann et al., 1998) that has been widely applied for surface runoff
generation and soil moisture profile estimation (Dengzhong and
Wanchang; Liang & Xie, 2003; Yuan et al., 2004). This macroscale land
surface model simulates water and energy budgets and includes
spatially variable soils, topography, precipitation, and vegetation. VIC-
3L models water dynamics at scales ranging from a fraction of degree
to several degrees or latitude and longitude (Maurer et al., 2002). The
model can represent sub-grid variability in land surface vegetation

California
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classes, soil moisture storage capacity, topography as well as
precipitation (Huang & Liang, 2006; Nijssen et al., 2001; Yuan et al.,
2004; Zhou et al., 2004). Soil moisture storage, evapotranspiration,
runoff and snow water equivalent are estimated at hourly to daily
time-steps. VIC-3L uses the variable infiltration capacity approach
(Nijssen et al., 1997) and varies runoff generation and evapotranspi-
ration based on topography, soil and vegetation (Wood et al., 1992).

The VIC-3L soil column has three layers (Fig. 1) (Parada & Liang,
2004). The top, thin soil layer and the middle soil layer characterize
the dynamic response of the soil to weather and rainfall events. The
lowest layer captures the seasonal soil moisture behavior (Huang &
Liang, 2006; Liang et al., 1996) and only responds to rainfall when the
upper layer is wet. Precipitation infiltrates through the first soil layer
to the second soil layer by gravity using the Brooks and Corey (1988)
relationship (Lohmann et al., 1998). Base flow from the third soil layer
contributes to runoff based on the ARNO model (Francini & Pacciani,
1991) with no downward groundwater flow from this layer.

The VIC-3L model characterizes N + 1 land cover types where N is the
different land cover types and 1 represents bare soil. Each land cover type
has a leaf area index (LAI), minimum stomatal resistance, roughness
length, displacement length and relative fraction of root (Liang et al., 1994;
Nijssen et al., 1997). This model uses the Penman-Monteith equation to
calculate evapotranspiration at each grid cell (Nijssen et al,, 1997).

The VIC-3L model can be operated in various simulation modes
including an energy balance and water balance. The energy balance
simulates the surface energy flux and solves the complete water
balance. The water balance model, applied for this research, requires
maximum and minimum temperatures, precipitation and wind speed
data (Yulin et al., 2008; Zhou et al., 2004).
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Fig. 2. The study region in El Dorado County in California with the mapped landslide.
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3. Downscaling

For application to the infinite slope stability model, AMSR-E soil
moisture can be used directly or downscaled. A linear or non-linear
regression approach can be used to downscale the AMSR-E data from
25 to 1 km spatial resolution (Chauhan et al., 2003; Yu et al., 2008). Yu
et al. (2008) found that it is possible to downscale AMSR-E soil
moisture from 25 to 1 or 5 km spatial resolution using NDVI, albedo
and LST. This paper uses Chauhan et al.'s (2003) approach to
downscale the AMSR-E soil moisture from 25 to 1km spatial
resolution. The general downscaling approach proposed by Chauhan
et al. (2003) and applied by Yu et al. (2008) is

i=nj=nk=n ik
=2 2 > a V' TA (4)

i=0j=0k=0
where V is the NDVI, T is the LST and A is the albedo (1 km). The

equation is applied with n=1, yielding a simple linear equation with
interaction terms

0, = aggg + Ggg1A + ap1oT + aq00V + g1 TA + a191VA + aq14VT. (5)

The AMSR-E (25 km) values and the NDVI, LST and albedo values,
aggregated to a 25km resolution, are used to determine the
regression coefficients for the linear regression model. Following Yu
et al. (2008), the 1 km NDVI, LST and albedo products are aggregated
to 25 km spatial resolution by

n m m n m
PBEDBA 2 Ty > 2 Ay
i=1j=1 i=1j=1 i=1j=1

Vys = mn__’ Tys = —mn Ay = “mn___ (6)

where V5 is the 25 km average NDVI, T,s is the 25 km average LST,
Ays is the 25 km average albedo and m and n are, respectively, the
number of 1 km pixels in ith rows and jth columns in the AMSR-E
pixel.

Once a regression model is established, the model is applied to
estimate the 1 km soil moisture from the 1 km NDVI, LST and albedo
values. The downscaled AMSR-E (1 km) can be re-aggregated to a
25 km resolution and compared with observed AMSR-E (25 km) to
quantify the model error.

4. Methods and data
4.1. Study region

The Cleveland Corral study region in Highway 50 corridor is
located in the Sierra Nevada Mountains, California, USA (Reid et al.,
2003). Highway 50 is a major road located between Sacramento and
South Lake Tahoe in California (Spittler & Wagner, 1998). Fig. 2 shows
observed recent landslide and location of study domain in California.
The investigated area is about 28 by 22 km (616 km?) with elevations
that range from about 902 to 2379 m. Since 1996, slope movement
and landslides occur infrequently during winter season. Additionally,
one major catastrophic landslide occurred in 1983 (Spittler & Wagner,
1998). Since 1997, the United State Geological Survey (USGS) has
monitored this region using real time data acquisition systems (Reid
et al.,, 2003). They found elevated pore-water pressures and wet soils
cause slope movement and landslides during the winter (rainy)
season.

Table 1 summarizes the study region's soils, land cover and
climate. The predominant soil is sandy loam (72%). The total soil
depth ranges from 0.6 to 1.4 m. Underneath the soil layer, the
potential failure plane is bedrock. Conifer and wooded grassland are
the dominant land covers, 80% and 14% of the study region,
respectively. Some rock outcrops were also observed along the

Table 1
Soil, vegetation, slope and climate characteristics for the Cleveland Corral, California, US
study area.

California

Land cover Area (%)
Evergreen forest 33
Conifer 79.9
Deciduous forest 2.7
Wooded grassland 14.1

Soil texture
Sandy loam 72.0
Loam 16.0
Sandy clay 3.0
Clay loam 9.0

Slope (°)
0-15 71.2
15-30 27.5
30-45 1.2
45-60 0.0

Climate
Average annual rainfall (mm) 1101.0
Average rainfall wet season (mm, Jan-May) 725.0
Average maximum temperature (°C) 19.6
Average maximum temperature (°C) 5.5

Highway 50 corridor. The north-east part of the study area has
limited data because of water bodies and rock outcrops. This region
has an average annual rainfall of 1101 mm, with 725 mm occurring
during the winter.

4.2. Remotely sensed data

4.2.1. AMSR-E soil moisture

The AMSR-E instrument was developed by the National Space
Development Agency of Japan (NASDA) and launched on the Aqua
satellite by the National Aeronautics and Space Administration
(NASA) on May 4, 2002 (Li et al., 2004). It measures radiation at six
frequencies in the range 6.9-89 GHz (Njoku et al., 2003). Lower
frequencies, L band (1-2 GHz), are more sensitive to soil moisture, but
they are more susceptible to dense vegetation and radio frequency
interference (RFI). The higher frequency C (6.9 GHz) and X
(10.65 GHz) bands can be used to retrieve soil moisture (Jackson et
al., 2005) because these higher frequency bands are comparatively
less susceptible to RFI. The AMSR-E directly measures brightness
temperature. Soil moisture retrievals use a radiative transfer (RT)
model that links surface geophysical variables to the observed
brightness temperature (Njoku et al., 2003). An RT model initially
assumes a soil moisture value and predicts the brightness tempera-
ture based on surface parameters, vegetation parameters, and sensor
parameters. If the difference between the predicted brightness
temperature and the observed temperature is less than acceptable
limit, then the final soil moisture value is derived. Otherwise the
iteration continues with a modified initial soil moisture value. A
detailed description of the retrieval algorithm appears in Njoku et al.
(2003).

AMSR-E level 3 products (e.g., surface soil moisture, vegetation
water contents, etc.) are developed from the level 2B product's
brightness temperature at a 25 km Earth grid scale both for ascending
and descending passes.

(http://www.ghcc.msfc.nasa.gov/AMSR/data_products.html). This
study used the ascending pass AMSR-E soil moisture level 3 products
from Jan 1, 2003 to Dec 31, 2006 on a daily basis. AMSR-E level 3
products were obtained from NASA Earth Observing System Data
Gateway through the National Snow and Ice Data Center (NSIDC).

4.2.2. MODIS data
The Moderate Resolution Imaging Spectroradiometer (MODIS)
instrument developed by NASA was launched on the Terra satellite in
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December 1999 and on the Aqua satellite in May 2002 (Wang et al.,
2009). MODIS can collect information both in the morning and in the
afternoon as Terra is scheduled to pass from north to south across the
equator in the morning and Aqua is scheduled to pass from south to
north in the afternoon. Even though Terra and Aqua satellites pass in the
morning and in the afternoon, respectively, the temporal resolution of
MODIS products is only every 1 to 2 days (Luo et al., 2008). MODIS data
are available at spatial resolutions of 0.25, 0.50, and 1.0 km as well as
coarser resolutions (Luo et al., 2008).

This study required NDVI, albedo and LST at a 1km spatial
resolution. The 1km MODIS TERRA albedo (MCD43B3), NDVI
(MYD13A2) and LST (MYD11A1) products were used to downscale
the AMSR-E surface soil moisture for 2005. Monthly LAI values, used
in VIC-3L model, were obtained from the MODIS. The MOD15A2, 8-
day composite LAI values were averaged to monthly values. These
data are available as tiles in the Sinusoidal (SIN) projection. All these
data were re-projected into a geographical projection.

4.3. Model data

The soil and vegetation parameter required for the slope stability
model were obtained from the States Soil Geographic (STATSGO) (Soil
Survey Staff, 2008), Land Data Assimilation System (LDAS; Mitchell et
al., 2004) as well as from the literature (Table 2). Root cohesion
enhances the shear strength of soil and acts as a resisting force against
sliding. Root cohesion values for each vegetation class were adapted
from Sidle and Ochiai (2006). The unit soil weight (saturated and dry)
was calculated based on the soil moisture, soil porosity, and specific
gravity of the soil samples using methods adapted by Ray et al. (2010).
Each soil type was assigned soil cohesion and friction angle values
based on Deoja et al. (1991) and the slope of the retention curve from
Clapp and Hornberger (1978). Similarly, soil bulk density, field
capacity, wilting point and saturated hydraulic conductivity values
were from Miller and White (1998) and Dingman (2002). A 90 m
SRTM digital elevation model (DEM) was used to calculate slope
angle.

For this region, validation data for landslide studies are difficult to
obtain. Daily groundwater measurements were obtained from the
USGS which uses piezometers to measure the hydraulic head at one of
the active landslides in the region. (Mark Reid, USGS, personal
communication, April 23, 2007). Previous research indicates that over
600 small to large landslides have occurred in this study region (Reid

Table 2
List of model parameters and sources by model.

Sources Model

Deoja et al. (1991)
Dingman (2002)

Parameters

Soil cohesion
Soil porosity

Slope stability
Slope stability and VIC-3L

Soil texture STATSGO Slope stability and VIC-3L
Soil depth STATSGO Slope stability and VIC-3L
Hydraulic conductivity STATSGO VIC-3L

Soil bulk density Dingman (2002)
Angle of internal friction Deoja et al. (1991)
Additional load (surcharge) Ray (2004)

Slope stability and VIC-3L
Slope stability
Slope stability

Land cover University of Maryland  Slope stability and VIC-3L
Root cohesion Sidle and Ochiai (2006) Slope stability
Root depth LDAS VIC-3L

Root fraction LDAS VIC-3L
Vegetation roughness LDAS VIC-3L
Vegetation height LDAS VIC-3L

Leaf area index (LAI) MODIS VIC-3L
Rainfall NCDC VIC-3L
Groundwater USGS Slope stability
Temperature NCDC VIC-3L

Wind speed NCDC VIC-3L

STATSGO = States Soil Geographic, LDAS=Land Data Assimilation System,
USGS =United States Geological Survey, VIC-3L=Variable Infiltration Capacity-3
Layers. NCDC = National Climatic Data Center.

et al., 2003; Spittler & Wagner, 1998). In addition, field observations
identified 10 locations where failures had occurred prior to December
2007. Table 4 lists slide locations and their physical characteristics.
Observations show that most of the mapped landslides were located
in woodland regions with sandy loam soil texture. The slopes of the
mapped landslides range from 24° to 37°.

4.4. Analysis methods

A course resolution AMSR-E (25 km) was downscaled to fine
(1 km) resolution using MODIS LAI, albedo, and NDVI at 1 km spatial
resolution. Using time series analysis, AMSR-E soil moisture at 25 km
resolution was compared with VIC-31 model surface soil moisture
(layers 1 and 2) at 1 km spatial resolution to study the soil moisture
variability in study area. Because no in-situ soil moisture measure-
ments were available, daily groundwater measurements were also
compared with AMSR-E and VIC-31 model soil moisture. The
maximum model saturation day, 8 May, 2005, was identified to
develop landslide susceptibility map. To address the low variability of
AMSR-E soil moisture, downscaled AMSR-E soil moisture was scaled
from residual soil moisture (minimum) to soil porosity (maximum).

This study uses a 90 m spatial resolution to calculate wetness
index, dry unit soil weight, effective unit soil weight and factor of
safety. The effective unit weight of soil was calculated using dry unit
weight, wetness index, depth of soil, surcharge and slope angle
(Eq. (2)). Wetness indices were calculated using Eq. (3) for modeled
groundwater depth on May 8, 2005 (maximum saturation) and the
groundwater table located at midpoint of the soil layer (half
saturation) with the 1 km VIC-3L model vadose zone soil moisture
values as well as the 1 and 25 km resolution AMSR-E soil moisture
values.

Finally, safety factors were calculated for these two groundwater
positions using VIC-3L model soil moisture and AMSR-E soil moisture.
Theoretically, landslides occur when the safety factor is less than one.
The estimated FS values were used to categorize slopes into the four
landslide susceptibility classes; highly susceptible, moderately sus-
ceptible, slightly susceptible and stable.

5. Results and discussion
5.1. Downscaling AMSR-E soil moisture

AMSR-E soil moisture at Cleveland Coral, California was down-
scaled from 25 to 1 km using daily data from January 1 to December
31, 2005. The 1 km NDVI, LST, and albedo were aggregated to 25 km
resolution using Eq. (6). The observed maximum LST, albedo and
NDVI are, respectively, 51 °C, 0.94 and 0.93. The minimum are,
respectively, —20°C, 0.01 and —0.14. The AMSR-E (25 km) was
regressed with aggregated NDVI, LST and albedo values (Eq. (5)). The
estimated regression coefficients for each individual parameter and
interaction term were used to develop Eq. (7). The regression model
which best fits the soil moisture observation is

6, = —1.426 + 4.169 A + 0.006 T + 2.254 V—-0.017 TA (7)
+ 0.781 VA—0.009 VT

This regression model provided a good fit with an R? of 0.73, a root
mean square error (RMSE) of 0.009 cm?/cm?® and p-values less than
0.0001 for all independent variables. As anticipated, soil moisture
increases with increasing vegetation index. However, the model
associates wetter soils with higher albedo values and higher tempera-
tures in contrast to typically observed physical relationships. Because
this equation describes the annual cycle of surface and moisture
conditions, the model interaction terms are very important. The soil
moisture variability is described primarily by the vegetation index
changes and the interactions between vegetation and albedo. The
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Fig. 3. Daily observed AMSR-E (25km spatial resolution) and downscaled AMSR-E (1km spatial resolution) aggregated to 25 km spatial resolution in 2005 at Cleveland Corral,

California, US. R? =0.58, RMSE = 0.017 cm®/cm”.

interaction terms between temperature and albedo, as well as
vegetation and temperature are critical to understanding the role of
albedo and surface temperature.

The resulting model was used to estimate the 1 km soil moisture
values. These values were aggregated to 25 km and compared to the
AMSR-E observed soil moisture values (Fig. 3). The results show very
good agreement between the observed and the downscaled AMSR-E
soil moisture. A moderate correlation was observed with an R? of 0.58
and a small RMSE of 0.017 cm?/cm®. The results are comparable to Yu
et al.'s (2008) R? values that ranged from 0.19 to 0.74 with 6 different
regression techniques and Chauhan et al.'s (2003) RMSE of 0.016 cm?/
cm’.

Both the downscaled (1 km) and the observed AMSR-E soil
moistures (25 km) capture the seasonal variations of moisture. The
observed and downscaled soil moisture values are high during the
winter wet season. However, a small time lag between the 25 km
AMSR-E values and the downscaled soil moisture is evident during
the wet season. The time lag is about a week. This time lag may be due
to two types of errors (Chauhan et al., 2003). The first error is due to
regression analysis and the second error is associated with input data.
They found a regression error in analysis and precision error in NDVI,
albedo and LST. Overall, the results suggest that reasonable down-
scaled AMSR-E soil moisture can be produced using 1 km MODIS LST,
albedo and NDVI values. In the future, it is recommended that
independent validations be performed using in-situ soil moisture
measurements for the 1 km spatial scale.

5.2. Comparison between observed AMSR-E and VIC-3L soil moisture

Fig. 4 shows the observed AMSR-E soil moisture, the VIC-3L
model's 1st and 2nd layers soil moisture, in-situ groundwater
measurements and snow accumulation at an active landslide pixel.
The VIC-3L's first and second soil layer thicknesses were 0.05 and
0.35 m, respectively. Both VIC-3L and AMSR-E estimate higher surface
soil moisture during the rainy season and lower soil moisture values
during the dry season. The results show minimal differences between
the first and second layers' soil moistures estimated by the VIC-3L
model. This suggests that the surface moisture is an indicator of the
vadose zone soil moisture profile for this region. For a shallow slope
stability analysis, the unsaturated soil layer is often a comparatively
thin layer.

As shown in Fig. 4, snow occurs regularly from December to March.
AMSR-E does not completely capture the soil moisture variability

when there is snow. When snow is present on the ground, the surface
temperature is often below 0 °C. At this freezing temperature, the
dielectric constant is very small and AMSR-E soil moisture retrievals
are not possible (Hallikainen et al., 1985; Wang et al., 2009). For this
region, lower or no soil moisture is indicated by AMSR-E every year in
early winter. Thus, it is recommended that operational in-situ or
remotely sensed snow monitoring be used in combination with
AMSR-E soil moisture for landslide studies in snowy regions.

Because no in-situ soil moisture measurements were available,
modeled and AMSR-E soil moisture values were compared to
groundwater measurements. Although groundwater, AMSR-E and
modeled soil moisture values are different measures, their temporal
evolution is similar during the wet season. If the snow period is not
taken into account, both AMSR-E and VIC-3L model predicted that
mid April to mid May is consistently very wet. For example, the
maximum soil moisture predicted by AMSR-E and VIC-3L model were
0.25 (cm?/cm®) and 0.37 (cm®/cm®) on May 10 and 8 in 2005,
respectively.

Another challenge is that the AMSR-E soil moisture measurements
are lower during the wet season as compared to the VIC-3L
measurements and have much lower variability overall. For example,
between the dry and wet periods, the soil moisture increase observed
by AMSR-E was about 50% whereas VIC-3L model estimated a 75%
increase. Some of this difference may be caused by the layer
thicknesses. AMSR-E's 0-2 cm thin soil layer may dry faster than the
VIC-3L's 5 cm soil layer. Previous research shows that the AMSR-E soil
moisture estimates are lower than land surface models and measured
values (Choi et al., 2008; Gruhier et al., 2008; Sahoo et al., 2008). These
limitations are particularly apparent for dense vegetation, steep
terrain and due to the course resolution of AMSR-E products.

Overall, the AMSR-E soil moisture measurements can capture the
timing of the modeled soil moisture wetting. However, the degree of
wetness is considerably different and further complicated by snow.

5.3. Scaling (AMSR-E)

Reichle et al. (2004) suggest that the satellite soil moisture values
be scaled using modeled data. Choi and Jacobs (2008) found that the
AMSR-E soil moisture can be scaled to match in-situ as well as
modeled land surface wetness. To address the low variability of the
AMSR-E surface soil moisture, the observed AMSR-E values were
scaled, then compared to the VIC-3L surface soil moisture.
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Fig. 4. Observed AMSR-E soil moisture, VIC-3L soil moisture layer (1 and 2), snow and groundwater measurements at Cleveland Corral, California, US. Groundwater thickness is

measured from the bottom of piezometer installed at 1.82 m below the surface.

AMSR-E soil moisture was scaled to minimum and maximum
values using a simple interpolation approach. The minimum and
maximum observed AMSR-E soil moisture values were 0.09 and
0.33 cm®/cm? in 2005, respectively. For the sandy loam soils in
Cleveland Corral, California, a residual saturation of 0.05 suggested by
Rawls et al. (1982) and an upper bound equal to the 0.48 soil porosity
were used. AMSR-E soil moisture values were scaled from 0.05 to
0.48 cm®/cm?>. Based on these two end values, a linear relationship
was established between the observed AMSR-E values and the scaled
values. This linear relationship was applied to each raw AMSR-E soil
moisture value to obtain a scaled AMSR-E soil moisture value.

Fig. 5 shows promising agreement between the VIC-3L soil
moisture and the scaled AMSR-E soil moisture. With the scaling,
AMSR-E has a soil wetness similar to that estimated by the VIC-3L
model during the dry and wet seasons with overall improved
variability. Using Eq. (3), the scaled AMSR-E provides higher wetness
index estimates than from the un-scaled AMSR-E soil moisture.
Without scaling, it may not be possible to capture actual wetness of
soil layer by AMSR-E in this study region. However, this may not be
true in other locations and the approach to scaling remains an open
question. While the snow challenges are still evident, soil moisture
values are still consistent during the critical failure period, late spring.

5.4. Soil moisture variability

Soil wetness defined by groundwater and vadose zone soil moisture
plays a critical role in slope instability. During the rainy season, rainfall
increases soil moisture and groundwater table. With the constant slope
and geotechnical parameters, soil saturation is the dynamic factor that
causes slopes to become unstable because instability increases with
increasing soil saturation. A slope becomes unstable when its soil
saturation results in its safety factor falling below 1.

For the 3-year study period, the maximum saturation occurred on
May 8, 2005. The maximum modeled saturation is the wettest day and
had a groundwater table close to the surface and high vadose zone soil
moisture. Fig. 6 shows AMSR-E (1 km) and VIC-3L (1 km) soil moisture
distributions on May 8, 2005. The VIC-3L soil moisture values are
somewhat higher than the AMSR-E values. The VIC-3L soil moisture
values range from 0.25 to 0.52 whereas the AMSR-E downscaled, but un-

scaled soil moisture values range from 0.09 to 0.33 (cm®/cm?). The
scaled AMSR-E soil moisture ranges from 0.05 to 0.48 cm®/cm?> which is
anincrease of 0.15 cm?/cm? at upper bound and very close to the VIC-3L
upper bound soil moisture value.

Both AMSR-E and the VIC-3L model reveal similar soil moisture
distribution patterns in the north-west and south-east corners as well
as along Highway 50. The VIC-3L and AMSR-E show a low soil
moisture values along the highway because the physical character-
istics of the ground such as paved highway, numerous retaining and
revetment walls, built up area and stream affects the quality of AMSR-
E and VIC-3L modeled soil moisture estimates.

Differences in the soil moisture distribution were observed at the
north-east and south-west corners of the study region. The north-east
region has a number of physical features that appear to challenge the
satellite soil moisture retrieval and the disaggregation approach. The
observed brightness temperature is used to retrieve AMSR-E soil
moisture. High albedo values were found in the north-east region
(Fig. 7a). Thus, a lower brightness temperature and higher albedo
caused by snow or bright exposed surface such as sand or bare rock
may influence disaggregation. AMSR-E measurements are compara-
tively low in the south western corner of the study region. This area
has the densest vegetation cover as evidenced by the high NDVI
values (Fig. 7b). AMSR-E cannot provide reasonable measurements
with dense vegetation (McCabe et al., 2005; Njoku & Chan, 2006)
because of the sensitivity of the C- and X-bands to dense vegetation.

On May 8, 2005, the observed AMSR-E soil moisture value was
0.17 cm?®/cm? at the native 25 km scale. This 0.17 cm?/cm? soil moisture
value matches the average of the 1 km pixels in the study region. The
simple downscaling model is promising. It captures much of the soil
moisture variability in the study region with values ranging from 0.09 to
0.33 cm®/cm? instead of the single 0.17 cm?/cm? soil moisture value for
the entire study region. In the future, higher resolution sensors and better
downscaling approaches that can produce soil moisture at finer than 1 km
may improve soil moisture estimation for landslide prone regions.

5.5. Susceptibility analysis

AMSR-E soil moisture values at the 25 and 1 km scale were used to
calculate safety factors. These results were compared to safety factors
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Fig. 5. Observed scaled (0.05-0.48 cm®/cm®) AMSR-E soil moisture, VIC-3L soil moisture layers (1 and 2) and snow values at Cleveland Corral, California, US.

estimated using VIC-3L soil moisture. This section presents regional
landslide susceptibility results using AMSR-E and VIC-3L soil
moistures. Three wetness scenarios were considered. The half
saturation condition occurred on May 23, 2005. On this date, the
vadose zone soil moisture varies spatially and the groundwater table
was located at the middle of the soil. The maximum saturation, May 8,
2005, was discussed in the previous section. The full saturation
scenario was not observed, but is presented to provide an upper
bound to landslide susceptibility based on an assumed completely
saturated profile.

Table 3 presents the predicted susceptible and stable areas using
the AMSR-E soil moisture (25 and 1 km) and the VIC-3L soil moisture
(1 km) for the three scenarios. As expected, the predicted susceptible
areas for all saturation scenarios were below the fully saturated

condition for both AMSR-E and VIC-3L soil moistures. Under the half
and maximum modeled saturation scenarios, the predicted suscep-
tible area with the VIC-3L soil moisture was slightly higher than that
using AMSR-E soil moisture. This reflects the wetter VIC-3L vadose
zone compared to the AMSR-E surface soil moisture under maximum
saturation scenario. The results show that 0.41% and 0.49% of the area
are highly susceptible using AMSR-E (25 km) and VIC-3L model
(1 km) soil moisture, respectively.

A small prediction difference was observed with AMSR-E (25 km)
and downscaled (1km) soil moisture under half and maximum
modeled saturation scenarios. This shows that it can also be
appropriate to use AMSR-E observed soil moisture in slope stability
analysis if downscaling is not possible or desirable. However, in
comparison to the observed AMSR-E (25 km), the downscaled AMSR-

<, Mapped Landslides

Fig. 6. Maximum modeled soil moisture day on May 8, 2005, (a) AMSR-E (b) VIC-3L.
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Fig. 7. On maximum modeled soil moisture day (May 8, 2005), (a) observed albedo at 1 km, (b) observed NDVI at 1 km.

E (1 km) may be more appropriate to use in slope stability analysis
because higher resolution datasets are consistently recommended for
landslide mapping.

Fig. 8 shows the susceptibility distributions by class for AMSR-E
and VIC-3L soil moistures under the maximum modeled saturation
scenario. Qualitatively, both VIC-3L and AMSR-E vadose zone soil
moistures identified the same hazard zones as highly, moderately and
slightly susceptible. However, small differences occur in the predicted
susceptible areas (Fig. 9). 83.2% of highly susceptible locations
predicted using VIC-3L vadose zone soil moisture were also identified
as highly susceptible by AMSR-E. Most of those locations not
successfully identified were adjacent to areas correctly predicted.

Because no methods exist to map an entire susceptible area for
validation, this study compares observed historical and present
landslides to the model results. The study area was surveyed to
identify a series of landslide locations for validation (Table 4). Due to
the study extent and terrain, the survey was not comprehensive or
exhaustive. Ten landslide sites (nine historical and one active) were
observed in this study area. At active landslide site, slope movements
and landslides occurred in May 2005 and earlier.

Susceptibility maps were compared with the landslide inventory
data. For the May 8, 2005 saturation conditions, six of the mapped

Table 3

landslide locations would have been considered highly unstable. On
May 8, 2005, four of the mapped landslides were identified as
moderately susceptible. Since, the exact dates of mapped landslides
are unknown; it is possible that some of the landslides occurred when
soil moisture was higher than maximum modeled soil moisture on
May 8, 2005. Moreover, moderately susceptible areas are not stable
zones. External forces such as of vibrations caused by an Earthquake,
large tree shaking (due to wind) and heavy highway traffic can trigger
a slope to fail in a moderately susceptible area. Interestingly, the four
mapped landslides are located along the Highway 50 and any external
forces that are not included in slope stability model can cause slope
failure in moderately susceptible area.

In addition, soil cohesion, root cohesion and angle of internal
friction that support stability are highly variable in space and time.
This study adapted those parameters from the literature. A small
variation in adapted value can change the susceptible area. For
example, a 1% increase in soil cohesion, root cohesion and angle of
internal friction reduced highly susceptible areas by 0.69%, 0.35% and
1.8%, respectively using the 1 km downscaled AMSR-E soil moisture
on May 8, 2005 (Fig. 10). Root cohesion has a relatively small on
stability because it is directly linked with vegetation cover which is
not uniformly distributed in the study area. The two soil strength

The portion of the study area (%) for each landslide susceptibility classification using VIC-3L, AMSR-E 25 km and downscaled soil moisture at Cleveland Corral, California, US. Three

wetness scenarios are presented.

Scenario Highly susceptible Moderately susceptible Slightly susceptible Stable
Full saturation 0.58 1.90 3.01 94.51
Half saturation®
VIC-3L (1 km) 0.31 1.14 2.32 96.23
AMSR-E (25 km) 0.24 0.90 1.96 96.90
AMSR-E (1 km) 0.22 0.95 213 96.70
Maximum modeled saturation”
VIC-3L (1 km) 0.49 1.69 2.89 94.93
AMSR-E (25 km) 0.41 1.41 2.59 95.59
AMSR-E (1 km) 0.42 147 2.67 95.44

2 Half saturation — groundwater position table at half of the soil layer (May 23, 2005).

> Maximum modeled saturation — the day having the groundwater was closest to the surface and wettest vadose zone (May 8, 2005).
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Fig. 8. Landslide susceptibility map for maximum modeled saturation day (May 8, 2005) using (a) AMSR-E soil moisture and (b) VIC-3L soil moisture.

parameters have greater impacts on slope stability. The soil cohesion
only applies to cohesive soil whereas frictional angle applies both to
cohesive and cohesionless soils. Because the study area has both
cohesive and cohesionless soils, the impact of frictional angle on slope
stability is greater than the soil cohesion. Moreover, the major part of
the driving/destabilizing force caused by a slope angle is resisted by
angle of internal friction. For example, the angle of internal friction in
a cohesionless soil is equal to the angle of repose (angle at which the
soil can settle naturally). Future landslide studies at large-scale

N

A

o

9
ROul 3 > 6 ~¢‘;§%ﬁ'—::
_- = 7 8 _—
- ey & S Sy
'
[ Stable to Moderately Susceptible
mm VIC-AMSR-Matched
0 25 5 1 VIC-AMSR-Unmatched
— Km o7 Mapped Landslides

Fig. 9. Comparison of highly susceptible area predicted using VIC-3L and AMSR-E on
maximum modeled soil moisture day (May 8, 2005). Black squares indicate identical
predictions. Gray squares are location identified by VIC-3L highly susceptible, but not by
AMSR-E.

remote-sensing studies will benefit from improved confidence in soil
parameters.

6. Conclusion

This research used an infinite slope stability model with a pervious
soil layer above the impervious soil layer or bed rock having no
vertical groundwater flow from the bottom of the soil layer in
combination with downscaled AMSR-E soil moisture measurements
to map landslides. Through comparisons to VIC-3L model surface soil
moisture and groundwater measurements, AMSR-E surface soil
moisture was demonstrated to provide a quantitative estimate of
vadose zone moisture for landslide susceptibility mapping at regional
and global scales. Susceptibility maps for this study region were
compared and validated with landslides inventory data and show
promising agreement. The satellite-based products can provide an
efficient means to develop landslide susceptibility maps based on
antecedent soil moisture conditions.

While AMSR-E can provide surface soil moisture, there are
challenges and significant research needs. Because AMSR-E had
much lower soil moisture and less variability than would be expected,
it was necessary to scale the AMSR-E soil moisture. In addition, the
spatial scale of AMSR-E observations is much greater than the typical
landslide scale. Downscaling provides some improvement, but better
methods that can downscale AMSR-E soil moisture to finer than 1 km
spatial resolution, are needed. Moreover, AMSR-E cannot produce
reasonable soil moisture when there is snow on the surface. Finally,
the lack of in-situ soil moisture on landslides prone slopes as well as
observed slope failures coincident with soil moisture observations is a
significant obstacle to validating results and enhancing hazard
mitigation.

The ability to capture the evolution of soil moisture will allow us to
anticipate critical hazard periods on an ongoing, real time basis. For
developed nations, EOS measurements can complement existing
physical databases by characterizing changing terrestrial systems and
hydrologic stores. For less data rich regions, EOS measurements
provide high resolution characterization of the Earth's surface. This
approach is not recommended for local/hillslope scale slope stability
analysis, but is very promising for regional and global scales.
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Physical characteristics and estimated safety factor (FS) of the mapped landslide's region. FS values were calculated under maximum modeled saturation conditions (May 8, 2005)

and full saturation.

S.N.  Longitude Latitude Slope (°) Land cover  Soil types FS: Full saturation ~ FS: VIC-3L (1 km)  FS: AMSR-E (1 km)  FS: AMSR-E (25 km)
1 —120° 27’ 26" 38° 51 03" 274 Evergreen Loam 0.753 0.770 0.797 0.799
2 —120° 29’ 18” 38° 50’ 23" 28.6 Evergreen Loam 0.875 0.896 0.933 0.931
3 —120° 24’ 22" 38° 46’ 46" 325 Woodland Sandy loam  0.815 0.838 0.861 0.864
4 —120° 23’ 34" 38° 46’ 37" 274 Woodland Sandy loam  0.987 1.016 1.040 1.047
5 —120° 23’ 23" 38° 46’ 33" 241 Woodland Sandy loam  0.997 1.026 1.050 1.058
6 —120° 22’ 53" 38° 46’ 23" 36.1 Woodland Sandy loam  0.988 1.012 1.040 1.040
7 —120° 21’ 34" 38° 46’ 05" 31.1 Woodland Sandy loam  0.856 0.881 0.905 0.908
8 —120° 20" 28”  38°46' 04" 296 Woodland Sandy loam  0.939 0.965 0.994 0.992
g —120° 16’ 33" 38° 46’ 58" 36.6 Woodland Sandy loam  0.988 1.014 1.025 1.040
10 —120° 16’ 47" 38° 46’ 20" 349 Woodland Sandy loam  0.751 0.775 0.802 0.796
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Fig. 10. Impact of soil cohesion, root cohesion and angle of internal friction on slope instability.
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