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A B S T R A C T

Complete and accurate burned area map data are needed to document spatial and temporal patterns of fires, to
quantify their drivers, and to assess the impacts on human and natural systems. In this study, we developed the
Landsat Burned Area (BA) algorithm, an update from the Landsat Burned Area Essential Climate Variable
(BAECV) algorithm. Here, we present the BA algorithm and products, changes relative to the BAECV algorithm
and products, and updated validation metrics. We also present spatial and temporal patterns of burned area
across the conterminous U.S., how burned area varies in relation to the number of operational Landsat sensors,
and a comparison with other burned area datasets, including the BAECV, Monitoring Trends in Burn Severity
(MTBS), GeoMAC, and Moderate Resolution Imaging Spectroradiometer (MODIS) MCD64A1.006 data. The BA
algorithm identifies burned areas in analysis ready data (ARD) time-series of Landsat imagery from 1984
through 2018 using machine learning, thresholding, and image segmentation. Validation with reference data
from high-resolution commercial satellite imagery resulted in omission and commission error rates averaging
19% and 41%, respectively. In comparison, validation with Landsat reference data had omission and commission
error rates averaging 40% and 28%, respectively when burned areas in cultivated crops and pasture/hay land-
cover types were excluded. Both validation tests documented lower commission error rates relative to the BAECV
products. The amount of burned area detected varies not only in response to climate but also with the number of
operational sensors and scenes collected. The combined amount of burned area detected by multiple sensors was
larger than from any individual sensor, but there was no significant difference between individual sensors.
Therefore, we used BA products from individual sensors to assess trends over time and all available sensors to
compare with other existing BA products. From 1984 through 2018, annual burned area averaged 30,000 km2,
ranged between 14,000 km2 in 1991 and 46,500 km2 in 2012, and increased over time at a rate of 356 km2/year.
Compared to existing burned area products, the new Landsat BA products identified 29% more burned area than
the BAECV products (1984–2015), 183% more than the MTBS/GeoMAC products (1984–2018), and 56% more
than the MCD64A1.006 products (2003–2018). The products had similar patterns of year-to-year variability; the
R2 values of linear regressions between annual burned area were> 0.70 with the BAECV products and the
MTBS/GeoMAC products, but somewhat lower for the MCD64A1.006 product (R2 = 0.66). The BA products are
routinely produced as new Landsat data are collected and provide a unique data source to monitor and assess the
spatial and temporal patterns and the impacts of fire.

1. Introduction

Fires are discrete events with highly variable spatial and temporal

occurrence patterns and wide-ranging impacts on human and social
systems (Abatzoglou and Kolden, 2013; Abatzoglou and Williams,
2016; Dennison et al., 2014; French et al., 2014; Ghimire et al., 2012;
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Liu and Wimberly, 2015; Parthum et al., 2017; Picotte et al., 2016;
Radeloff et al., 2018; Sankey et al., 2017; Shakesby and Doerr, 2006;
Urbanski et al., 2018). Although many governmental agencies are
tasked with reporting prescribed fires, and human-caused and natural
wildland fires, there are few comprehensive data sources that con-
sistently track fire occurrence over space and time (Brown et al., 2002;
Fusco et al., 2019; Hawbaker et al., 2008; Short, 2015; Nowell et al.,
2018). The incompleteness of fire data makes assessing trends and
impacts of fires challenging. Thus, routine generation of data products
that consistently track fires and the area they burn over time and across
space are needed to understand their patterns, drivers, and con-
sequences, as well as to project future potential changes (Chuvieco
et al., 2019; Hollmann et al., 2013; Roy et al., 2014).

In 2017, the Landsat Burned Area Essential Climate Variable
(BAECV) products were released. This was the first fire-related data
product consistently generated on an annual time step for the con-
terminous U.S. (CONUS) using the entire pixel-level time series of all
available Landsat 4, 5, and 7 images (Hawbaker et al., 2017). The
BAECV algorithm was designed to identify burned areas ≥4 ha in both
forest and non-forest ecosystems, differing from previous Landsat-based
efforts to monitor disturbances that specifically target forest ecosystems
(Hansen et al., 2014; Huang et al., 2010; Kennedy et al., 2010) and
other change detection methods that map persistent land change (Zhu
and Woodcock, 2014a) potentially missing burned areas that do not
result in long-lasting spectral change (Zhu et al., 2019). The BAECV
products demonstrated the capability of moderate-resolution satellites
to generate fire information at scales relevant to managers and policy
makers over durations needed to separate spurious changes from long-
term trends. Furthermore, the BAECV products documented unique
spatial patterns and rates of burning, indicating that burned area has
increased by 130% over the past 3 decades but that the rate of increase
may not have been as extreme as previously reported (Hawbaker et al.,
2017). Compared to other fire monitoring efforts (Alonso-Canas and
Chuvieco, 2015; Andela et al., 2018; Chuvieco et al., 2016, 2018, 2019;
Eidenshink et al., 2007; Giglio et al., 2016, 2018; Long et al., 2019;
Plummer et al., 2006; Roy et al., 2008; Schroeder et al., 2016; Short,
2013; Tansey et al., 2008), the BAECV products identified both large
and small fires across CONUS with the spatial detail and temporal depth
needed to understand which human and natural systems are being
impacted by fires, to guide local and national fire policy, and to inform
land management activities.

Validation of remote sensing products provides critical information
to help users determine if data meets their needs and benchmark al-
gorithm improvements (Morisette et al., 2006). The Committee on
Earth Observing Satellites Working Group on Calibration and Valida-
tion (CEOS; https://lpvs.gsfc.nasa.gov/) defines validation as “the
process of assessing, by independent means, the quality of the data
products derived from the system outputs”. Recommendations for va-
lidation of global, coarse resolution burned area products (Boschetti
et al., 2009) suggest collecting reference data from images that: (1)
have higher spatial resolution and enough spectral resolution to iden-
tify burned areas, (2) span the time period of the products being vali-
dated, and (3) allows for use of paired images to separate recent burned
areas from older burned areas and avoids confusion with other types of
change. Validation of global, coarse resolution burned area products
following these protocols typically use Landsat image pairs to develop
reference data (Padilla et al., 2014, 2015; Boschetti et al., 2016; Padilla
et al., 2017). Applying the CEOS validation protocols to Landsat pro-
ducts that span the entire length of the archive remains challenging if
not impossible and alternative approaches are needed (Chuvieco et al.,
2019). For validating Landsat products, aerial photography and com-
mercial satellite imagery are the primary sources of high-resolution
imagery to derive reference data from, but these data have not been
collected systematically over the length of the Landsat archive and can
be costly. Furthermore, it has not been demonstrated that it is feasible
to use statistical sampling and image pairs with high-resolution imagery

as was done in coarse resolution burned area product validations
(Padilla et al., 2014; Boschetti et al., 2016; Padilla et al., 2017).

Because of the challenges of collecting high-resolution reference
data, Landsat-derived reference data are commonly used to validate
Landsat products (Stroppiana et al., 2012; Schroeder et al., 2016;
Vanderhoof et al., 2017b; Long et al., 2019), although some have
suggested that this approach is not strictly validation and is better de-
scribed as product comparison or evaluation (e.g., Boschetti et al.,
2015; Roy et al., 2019). Deriving reference data from Landsat imagery
allows for validation of Landsat products over the entire length of the
archive but is not without challenges. As with high-resolution imagery,
visual interpretation of Landsat imagery can be difficult, especially
when identifying small burned areas. This can be ameliorated by uti-
lizing Landsat time series data and image pairs, consulting ancillary fire
information, and having multiple experts develop the reference data
(Cohen et al., 2010; Vanderhoof et al., 2017b; Pengra et al., 2019).

Collecting Landsat reference data following a statistical sampling
design and using image pairs over the length of the archive and also
collecting high-resolution post-fire reference data where available is the
best possible compromise to meet the CEOS protocols. These are the
approaches we took to validate the Landsat BAECV products.
Vanderhoof et al. (2017a) validated the BAECV products with 286 high
resolution images from 2003 through 2015 but were unable to use
image pairs or validate products prior to 2003 because of limitations in
how and when high resolution imagery has been collected across
CONUS. Additionally, Vanderhoof et al. (2017b) used a reference da-
taset derived from Landsat image pairs at 28 path/rows and five years
(1988, 1993, 1998, 2003, 2008) following the stratified sampling
strategy suggested by Padilla et al. (2014, 2015).

The results of our previous BAECV validation studies found that
detection rates varied with fire size: 50% or more of fires ≥10 ha were
detected across CONUS and 70% of all fires ≥10 ha were detected
across the western United States (Vanderhoof et al., 2017a). Errors of
omission and commission for burned area averaged 42% and 33%, re-
spectively, using the Landsat reference dataset (Vanderhoof et al.,
2017a), and 22% and 48%, respectively, using the high-resolution re-
ference dataset (Vanderhoof et al., 2017b). The BAECV omission and
commission error rates were much lower than those found for global
products which have documented omission and commission error rates
ranging between 68% to 93% and 42% to 94%, respectively (Padilla
et al., 2015). Coarse resolution burned area products have even higher
error rates for the major biomes present across CONUS. For example,
the Moderate Resolution Imaging Spectroradiometer (MODIS) burned
area product (MCD45; Roy et al., 2008) performed well overall relative
to other global burned area products; however, it performed poorly in
temperate forest (99% omission, and 95% commission) and temperate
grassland and savanna (87% omission, 69% commission), the land-
cover classes dominating CONUS (Padilla et al., 2014). The lower
commission and omission error rates of the BAECV products high-
lighted the potential to create both scene-level and annual composite
burned area products from the Landsat archive that outperform coarse
resolution burned area products. This finding was further confirmed by
the Long et al. (2019) global map of burned areas generated with 2015
Landsat data in Google Earth Engine.

Since the release of the BAECV products, a few developments have
necessitated changes to our approach. Here, we present the BA algo-
rithm and products and highlight changes and improvements made
from the BAECV algorithm and products. The first improvement in-
volved bringing the BA products up to date because the existing pro-
ducts were only produced for 1984 through 2015. Users requested
routine BAECV processing of new Landsat images as they were ac-
quired. However, atmospherically corrected Landsat 8 Operational
Land Imager (OLI) and Thermal Infrared Sensor (TIRS) data were not
available during initial BAECV algorithm development. The algorithm
could have been used as it is, however, with only ETM+ imagery. This
was undesirable because of the scan-line-corrector (SLC) error gaps in
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ETM+ imagery and exclusion of the more recent OLI/TIRS imagery.
Surface reflectance data are now produced for OLI imagery using the
Landsat 8 Surface Reflectance Code (LASRC; Vermote et al., 2016).
Bringing the BA products up to date required algorithm adjustments to
incorporate OLI/TIRS imagery, which also necessitated creation of new
OLI/TIRS training and validation data to evaluate algorithm perfor-
mance and update the validation metrics.

The second alteration we made to the algorithm was to incorporate
the new Landsat analysis-ready data (ARD) delivery format (Dwyer
et al., 2018) because the BAECV algorithm was designed to use the
Landsat World Reference System (WRS-2) path/row format. Each ARD
tile spans 5000 by 5000 pixels and crops all intersecting Landsat path/
row images to the tile extent. The consistent size of ARD images elim-
inates the need to preprocess all images to a common spatial extent and
facilitates the generation of temporal composites. Also, including all
intersecting Landsat images in an ARD tile allows for more dense time-
series data in areas with overlapping path/rows, potentially improving
the effectiveness of variables based on summaries of historical condi-
tions and change metrics. Furthermore, the ARD data are processed
using consistent methods for geolocation, spatial alignment, radio-
metric calibration, atmospheric correction, and pixel quality assess-
ment, eliminating the number of preprocessing steps performed by
users of Landsat data (Dwyer et al., 2018).

In spite of the efficiencies provided by the ARD data and the
availability of high-performance computing (Gorelick et al., 2017),
processing the entire Landsat archive remains an arduous task and re-
quires efficient approaches to apply algorithms to a large number of
images; the archive held over ½ million individual Landsat 4, 5, 7, and
8 scenes covering CONUS for 1984–2018. The volume of data is am-
plified when using the ARD data because there are approximately 2000
images in an ARD time-series stack compared to approximately 500
images in a path/row time-series stack. One way to improve processing
speed is to reduce the number of calculations made for each image in
the time-series stack by limiting predictors used for burned area clas-
sification. For the BAECV algorithm, we selected spectral indices shown
to be useful for mapping disturbances and burned areas based on pre-
vious studies. However, we did not consider all potential indices and
many indices were correlated. The gradient boosting regression model
(GBRM; Hastie et al., 2009) we used in the BAECV algorithm does not
assume independence among predictors and can handle correlated
variables; however, it is questionable whether inclusion of many vari-
ables and also highly correlated variables improved accuracy sub-
stantially. Therefore, in the BA algorithm, we introduced a suite of
predictors especially tuned to ash and charcoal deposition after fire and
changes in surface temperature. To limit the number of predictors used
in the final model, we implemented a variable selection procedure to

Fig. 1. Locations of Landsat Analysis Ready Data (ARD) tiles used for training the Landsat Burned Area algorithm, World Reference System path/row Thiessen
polygons of areas where validation was performed using Landsat reference data, and areas where validation was performed using high-resolution commercial
satellite imagery.
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reduce the number of predictors used, and thus also reduced compu-
tational demand.

Finally, we sought to improve accuracy to better meet the needs of
users. In the BA algorithm, our efforts were focused on reducing com-
mission error. As part of that effort, we also developed an additional
filtering step to eliminate burned areas that were persistent over mul-
tiple years in the annual composites. Such areas would result in double
counting and overestimating burned area. Once annual composites are
filtered for persistent burned areas, we convert the rasters to vectors
(fire perimeters) and attribute the perimeters with information to en-
able additional subsetting by users.

The Landsat BA algorithm follows the general approach outlined in
Hawbaker et al. (2017), but with significant changes. As in the BAECV
algorithm, a GBRM (Hastie et al., 2009) was used to estimate pixel-level
burn probabilities, followed by a thresholding and segmentation pro-
cess to classify each pixel as burned or not. In the BA algorithm, we
altered the collection of training data, selection of predictor variables,
and segmentation of the burn probability image. In this paper, we
present details of changes made in the BA algorithm and validation
methods, validation metrics, and products generated, as well as
CONUS-wide spatial and temporal trends in burned area. The annual
burned area detected in the Landsat BA products is also compared with
other burned area products.

2. Methods

To train and evaluate the BA algorithm for the CONUS, we selected
38 ARD tiles that overlapped with the WRS-2 path/rows we used to
train the BAECV algorithm (Fig. 1; Hawbaker et al., 2017). After
training the BA algorithm, we used it to generate BA products from
1984 through 2018 for all ARD tiles covering the CONUS. Analyses
were restricted to Tier 1 Level 1 Precision and Terrain (L1TP) corrected
images with< 80% cloud cover. For validation of the BA products, we
used the same approach used to validate BAECV products (Vanderhoof
et al., 2017a,b). This included validation using a reference dataset de-
rived from high-resolution (≤5-m resolution) satellite imagery for 286
images across CONUS (Vanderhoof et al., 2017a) and a second re-
ference dataset derived from Landsat image pairs for 28 path/rows in
CONUS (Vanderhoof et al., 2017b), updated to include 2013 OLI/TIRS
image pairs. After validation, we assessed spatial and temporal patterns
of burned area. To consider the potential influence of image count, the
amount of burned area was also analyzed per sensor. Finally, we made
comparisons among the BA products, the BAECV products, Monitoring
Trends in Burn Severity (MTBS; Eidenshink et al., 2007) and GeoMAC
data (www.geomac.gov), and the MODIS MCD64A1.006 (Giglio et al.,
2018) data. Additional details of the various methods applied in this
manuscript are provided in the following subsections and a flowchart of
processing steps is provided in Fig. S1. The scene-level and annual
composite burned area products are listed in Tables S1 and S2.

2.1. Predictor variables

In the BA algorithm, we included OLI scenes and used only the OLI
bands that had spectral characteristics similar to the TM and ETM+
bands (see Table 1 for the band naming conventions used in this study).
We also included a larger suite of spectral indices more specific to
mapping burned areas (Table 2) but used the same general types of
predictor variables as in the BAECV algorithm. These included (1) land
surface conditions in each scene; (2) reference conditions that char-
acterize the land surface prior to disturbances visible in each scene; and
(3) change metrics quantifying the magnitude of change between the
reference conditions and each scene. Scene-level predictors used by the
BA algorithm included the spectral indices listed in Table 2. The re-
ference variables represented pre-fire surface conditions using 3-year
lagged means and standard deviations for each of the single-scene
predictor variables. The change predictor variables included the

difference between the values of a given predictor in a Landsat scene
(e.g. normalized burn ratio, NBR) and its corresponding reference
predictor (e.g. the 3-year lagged mean of NBR). Three-year lags were
used as development of the BAECV products indicated that results were
less noisy using 3-year lags than when using 1-year lags and would
better represent pre-fire conditions early in the archive when temporal
gaps between cloud-free observations can be large (Egorov et al., 2019).
Surface reflectance products were used for spectral bands produced by
the Landsat Ecosystem Disturbance Adaptive Processing System (LE-
DAPS; Masek et al., 2006) for TM and ETM+ and LASRC for OLI
(Vermote et al., 2016). Top-of-atmosphere (TOA) thermal brightness
temperature values were used because operational land surface tem-
perature products were not yet available. Thermal brightness tem-
perature values are delivered with 30-m resolution in the ARD data,
resampled to match the resolution of the surface reflectance bands even
though the resolution of the thermal band has varied between 60 m and
120 m across the Landsat sensors used in this study. Pixels flagged as
cloudy, water, or snow/ice by the function of mask algorithm (FMask;
Zhu and Woodcock, 2014b) were excluded from all calculations.

2.2. Training and evaluation data

The MTBS data (Eidenshink et al., 2007) were the primary source of
known burned areas used to train the GBRM in the BA algorithm. The
MTBS data only include large fires, defined as ≥2 km2 in the eastern US
and ≥4 km2 in the western US. Data for each MTBS fire consist of a fire
perimeter polygon and a categorical burn severity raster layer derived
from either a single post-fire Landsat scene or a pair of pre- and post-fire
Landsat scenes. The MTBS fires used for training the GBRM in this study
spanned the Landsat 7 and 8 eras (1999–2015).

To generate the training data required by the GBRM, we selected
point locations within each of the selected ARD tiles (Fig. 1). Points
were spatially distributed between unburned and burned areas, as in-
dicated by the MTBS polygon data. An initial set of point locations were
randomly selected within burned areas at a rate of 1 point/100 burned
pixels up to a maximum of 1500 points per ARD tile. The burned points
were combined with the MTBS severity rasters (retaining points with
low, moderate, or high burn severity) and perimeters (for fire dates).
Unburned point locations were selected outside of the MTBS burned
areas and also randomly stratified across the 1992 National Land Cover
Database (NLCD; Vogelmann et al., 2001) classes. The unburned sam-
pling rate was 1 point/1000 pixels in each NLCD class, up to a max-
imum of 100 points per NLCD class per ARD tile. There were on average
15 unique NLCD classes in each tile; so, this approach provided a nearly
equal number of burned and unburned points in each ARD tile. All
burned points were visually assessed with Landsat ETM+ and OLI
scenes to confirm they were actually burnt areas. The burned and un-
burned points were combined; then predictor values were extracted for
each point from the Landsat ETM+ and OLI scenes in the ARD time
series. The amount of unburned data relative to burned data was

Table 1
Landsat Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and
Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) bands used
by the Landsat Burned Area algorithm. NIR: near infrared, SWIR: shortwave
infrared.

Band name Wavelength (μm)

TM ETM+ OLI/TIRS

Blue 0.45–0.52 0.45–0.52 0.45–0.51
Green 0.52–0.60 0.52–0.60 0.53–0.59
Red 0.63–0.69 0.63–0.69 0.64–0.67
NIR 0.76–0.90 0.77–0.90 0.85–0.88
SWIR1 1.55–1.75 1.55–1.75 1.57–1.65
Thermal 10.40–12.50 10.40–12.50 10.60–11.19
SWIR2 2.08–2.35 2.09–2.35 2.17–2.29
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excessive and fitting GBRMs to the entire time series was not practical.
Therefore, we subset the points for each ARD by randomly selecting 12
unburned observations for each point and, if the point burned, only the
first burned observation was retained. We also augmented the un-
burned sample with 100 random pixels marked as cloud, cloud shadow,
water, and snow/ice by FMask per year to ensure these were well re-
presented as unburned in our training data and that any cloud, cloud
shadow, water, and snow/ice areas missed by FMask would not confuse
the classification. Finally, we combined the points from the individual
ARDs. This resulted in 127,776 points or an average of 3363 points per
ARD tile. The combined points were split 50/50 into training and
testing datasets prior to fitting the GBRM.

2.3. Scene-level burned area probability mapping

The BA algorithm used a GBRM to estimate the probability that each
pixel in a Landsat ARD time series had burned. Training a GBRM re-
quires specifying parameters for the (1) number of trees, (2) number of
splits per tree, and (3) learning rate between successive trees (Hastie
et al., 2009). In practice, setting these three parameters involves fitting
models for a range of parameter values and then evaluating tradeoffs
among model complexity, accuracy of predictions, and computation
time. We selected a range of values for the learning rate (0.1, 0.05, and
0.01) and the number of splits per tree (1, 3, 5, and 7) parameters. For
each combination of learning rate and number of splits per tree, we fit a
GBRM with our training data using 2000 trees. After initial model fits,
the number of trees used in each GBRM was systematically reduced by
evaluating changes in the accuracy metric for the test data as a function
of the number of trees, to determine the smallest number of trees
needed to achieve the maximum value of the area under the curve
(AUC) of receiver operator characteristic plots. We selected the GBRM
parameter set that resulted in the highest accuracy with the lowest
number of trees.

Even though GBRMs are capable of handling a large number of
predictors, unimportant predictors, and highly correlated predictors,
inclusion of additional predictors does come with the expense of the
processing time required to calculate and make predictions with them.
Additionally, inclusion of unimportant predictors is likely to introduce

noise in the results (Murphy et al., 2010). Therefore, to train the GBRM
for the BA algorithm, we implemented a stepwise forward variable
selection routine to select the most important predictors (Elith et al.,
2008; Ramo et al., 2018). Our routine sequentially tested a suite of
potential predictors and selected the single predictor that increased the
GBRM's AUC value most. During each step, remaining predictors to test
were removed if they had a 0.95 or greater correlation with any of the
selected predictors. This process continued until the change in AUC
was< 0.001. Reference and change predictors for each spectral index
were only considered after the scene-level spectral index was selected
as a predictor. Once the final set of predictors was selected and used to
train a GBRM, the GBRM was applied to all the Landsat scenes in each
ARD to generate scene-level burn probability (BP) products (Table S1).

2.4. Scene-level burned area classification

Classification of burned areas within the burn probability images
was performed using a combination of thresholding and image seg-
mentation techniques, similar to the approach used with the BAECV
algorithm (Hawbaker et al., 2017) and approaches taken by others
(Chuvieco et al., 2002; Goodwin and Collett, 2014; Koutsias, 2003;
Stroppiana et al., 2012). The first step in this process uses a con-
servative burn probability value (96%) to threshold the individual burn
probability images into candidate burned areas. The candidate burned
areas were then grouped into patches and patches< 2 ha (22 pixels)
were removed; visual analyses indicated that this was a reasonable
threshold. The remaining candidate burned area patches were allowed
to spread into neighboring pixels with burn probability values ≥71%
using random walker segmentation (Grady, 2001). In the resulting
scene-level burn classification (BC) products (Table S1), pixels with
burn probability values< 90% were removed to ensure within-fire
heterogeneity was maintained.

2.5. Validation of acquisition-level products

We validated the scene-level BA products (Table S1) using two in-
dependent reference datasets, following the same approaches used to
validate BAECV products (Vanderhoof et al., 2017a,b). This included

Table 2
Spectral indices tested as potential scene, reference, and change predictor variables in the Landsat Burned Area algorithm. See Table 1 for spectral and thermal bands
used from the different Landsat sensors. NIR: near infrared, SWIR: shortwave infrared.

Name Abbreviation Formula Reference

Burned Area Index BAI 1 / ((0.1 − Red)2 + (0.06 − NIR)2) (Chuvieco et al., 2002)
Char Soil Index CSI NIR / SWIR2 (Smith et al., 2007)
Enhanced Vegetation Index EVI 2.5 ∗ (NIR − Red) / (NIR + (6.0 ∗ Red) − (7.5 ∗ Blue) + 1.0) (Huete et al., 2002)
Global Environmental Monitoring

Index
GEMI η ∗ (1.0–0.25 ∗ η) − (Red − 0.125) / (1 − Red);

η = (2 ∗ (NIR2 − Red2) + (1.5 ∗ NIR) + (0.5 ∗ Red)) / (NIR + Red + 0.5)
(Pinty and Verstraete, 1992)

Mid InfraRed Burn Index MIRBI (10.0 ∗ SWIR2) − (9.8 ∗ SWIR1) + 2.0 (Trigg and Flasse, 2001)
Normalized Burn Ratio NBR (NIR − SWIR2) / (NIR + SWIR2) (García and Caselles, 1991; Key and

Benson, 2006)
Normalized Burn Ratio 2 NRB2 (SWIR1 − SWIR2) / (SWIR1 + SWIR2) (García and Caselles, 1991; Key and

Benson, 2006)
Normalized Burn Ratio Thermal NBRT1 (NIR − (SWIR2 ∗ Thermal)) / (NIR + (SWIR2 ∗ Thermal)) (Holden et al., 2005)
Normalized Difference Moisture

Index
NDMI (NIR − SWIR1) / (NIR + SWIR1) (Gao, 1996; Wilson and Sader, 2002)

Normalized Difference Vegetation
Index

NDVI (NIR − Red) / (NIR + Red) (Tucker, 1979)

Normalized Difference Wetness
Index

NDWI (Green − NIR) / (Green + NIR) (McFeeters, 1996)

Soil-Adjusted Vegetation Index SAVI 1.5 ∗ (NIR − Red) / (NIR + Red + 0.5) (Huete, 1988)
Vegetation Index 6 Thermal VI6T (NIR − Thermal) / (NIR + Thermal) (Holden et al., 2005)
NIR/red ratio VI43 NIR / Red (Tucker, 1979)
NIR/SWIR1 ratio VI45 NIR / SWIR1 (Epting et al., 2005; Kushla and Ripple,

1998)
NIR/thermal ratio VI46 NIR / Thermal (Holden et al., 2005)
SWIR1/SWIR2 ratio VI57 SWIR1 / SWIR2 (Epting et al., 2005; Kushla and Ripple,

1998)
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using a reference dataset derived from 286 high-resolution images
across CONUS (2003–2015; Vanderhoof et al., 2017a), and a second
reference dataset derived from Landsat image pairs across 28 path/rows
and six years (1988, 1993, 1998, 2003, 2008, 2013), updated with the
2013 image pairs from Vanderhoof et al. (2017b).

2.5.1. High-resolution reference data
High-resolution images with image acquisition dates between 2003

and 2015 were selected using a disproportionate sampling approach to
increase the proportion of samples collected within rare cover classes,
in this case burned areas. To find images containing burned areas, we
targeted “hot spots” of burned areas or regions that frequently burn, as
identified using the MTBS perimeters and MODIS active fire detections
(MCD14ML.006; Giglio et al., 2016). Each DigitalGlobe (https://www.
digitalglobe.com) and Planet (https://www.planet.com) image that
contained a burned area was paired with a nearby image, that showed
no burned area, to test for errors of commission. This second image was
not necessarily collected on the same date as the nearby image. With
this approach, we identified a total of 286 high-resolution images across
the Arid West (45 images containing a burn, 45 with no burn), the
Mountain West (33 images containing a burn, 33 with no burn), the
Great Plains (34 images containing a burn, 34 with no burn), and the
East (31 images containing a burn, 31 with no burn; Fig. 1). Because
these images are not regularly collected, burned area extent was
mapped from single images, not image pairs. The images were dis-
tributed between GeoEye-1 (n = 9, 2 m resolution), QuickBird-2
(n = 172, 2 m resolution), WorldView-2 (n = 73, 2 m resolution) and
RapidEye satellites (n = 37, 5 m resolution). For images in which the
dominant land-cover type, as defined by the 2011 NLCD, was grassland,
agriculture or hay/pasture, the gap between the high-resolution image
and corresponding Landsat image was limited to 5 days or less to reduce
the possibility of confusing burned areas with other change in these
cover types. The date gap between all high-resolution and Landsat
images averaged 8 days.

The high-resolution imagery was processed in both PCI Geomatica
and ENVI. Two programs were used due to changes in the availability of
the atmospheric correction modules, mid-project. In PCI Geomatica, the
imagery was atmospherically corrected and converted to ground re-
flectance using ATCOR (the Atmospheric Correction module; Richter
and Schläpfer, 2016). In ENVI, imagery was atmospherically corrected
and converted to ground reflectance using FLAASH (Adler-Golden
et al., 1998, 1999). In both programs, burned area was identified using
maximum likelihood supervised classification, in which each image was
trained on manually selected “burned” and “unburned” polygons. A
sieve filter, in PCI Geomatica, and a low-pass filter, in ENVI, were ap-
plied to reduce noise in the output images with the window size and
pixel aggregation varying based on the amount of noise produced by
each classification. Most images were filtered using a 5 × 5 window
size. Classified images were then manually edited. Each classified high-
resolution image was compared to the nearest, cloud-free (< 20% cloud
cover) scene-level Landsat burn classification. Each Landsat burn clas-
sification was upsampled to 2 m resolution. Additional details on the
development of the high-resolution reference dataset can be found in
Vanderhoof et al. (2017a).

2.5.2. Landsat reference data
The Landsat reference dataset was developed across 28 Landsat

path/rows and six years (1988, 1993, 1998, 2003, 2008, 2013) for a
total of 168 Landsat image pairs (Fig. 1). Fires are rare events and the
resulting burned area is difficult to capture in reference data when
validation sites are selected with random sampling. Instead stratified
sampling can improve efficiency when collecting reference data and
reduce the variance of accuracy estimates (Padilla et al., 2014;
Boschetti et al., 2016; Padilla et al., 2017). Therefore, we used a stra-
tified, random, one-stage clustering sampling design where each cluster
was defined by a Thiessen scene area (TSA; Stehman, 2009). The TSAs

were stratified across the major Olson biomes (Olson et al., 2001) in-
cluding (1) temperate forest, (2) Mediterranean forest, (3) temperate
grassland and savannah, (4) tropical and subtropical grasslands and
savannah, and (5) xeric/desert shrub. The TSAs selected within each
biome were meant to represent high and low burned areas as specified
by the Global Fire Emissions Database (GFED) version 3 (Giglio et al.,
2009, 2010). Landsat image pairs were selected to detect changes in-
curred over the peak fire season and were limited to those with a root
mean squared error (RMSE)<10 m,< 20% cloud cover, and available
as a L1T Surface Reflectance product. The fire season varied by ecor-
egion, peaking between June through August in the Arid West, July
through September across the Mountain West, March through April and
September through October in the Great Plains, and September through
May across the East, with the post-image occurring in the peak fire
season in 70%, 91%, 76%, and 98% of the image pairs, respectively
(Vanderhoof et al., 2017b). The FMask from the Landsat surface re-
flectance product was applied to both images to mask out clouds, cloud
shadows, snow and open water (Zhu and Woodcock, 2012, 2014b).
“New” burned area (post-fire – pre-fire) maps were generated using the
Burned Area Mapping Software (BAMS), which is a semi-automated
algorithm developed by the University of Alcala, Madrid (Bastarrika
et al., 2014). The Normalized Burn Ratio (NBR), Mid-infrared Burned
Index (MIRBI), Global Environmental Monitoring Index (GEMI), and
Normalized Difference Vegetation Index (NDVI) were utilized in a su-
pervised classification. The algorithm was trained on manually selected
polygons containing (1) clearly burned pixels and (2) spectrally similar
but less distinct burned pixels. The algorithm applied a region-growing
function between the two types of training polygons, while cut-off va-
lues for each variable were extracted from the training polygons. Be-
cause no independent reference data were available for burned areas in
agricultural cover types, the Landsat-based BAMS reference dataset did
not train on agricultural fires and consequently cannot be considered
accurate for this cover type. Following classification, the “new” burned
areas were visually assessed and manually edited. Each image pair was
classified into a burned area map and edited independently by three
different analysts. When calculating validation metrics, a pixel was
classified as burned if it was identified as burned by two of the three
analysts. The “new” burned area reference data were compared to the
“new” BA product burned area calculated by subtracting the corre-
sponding scene-level burned area images. The inclusion of a Landsat-
based reference dataset was essential to systematically validate the
product across space and over the entire time series. Additional details
on the development of the Landsat reference dataset can be found in
Vanderhoof et al. (2017b). Using the validation hierarchy established
by the Committee on Earth Observation Satellites Land Product Vali-
dation subgroup, this validation represents a Stage 4 validation where
the reference datasets validate the product over a significant set of lo-
cations and time periods to quantify and characterize the uncertainties
in the product (Morisette et al., 2006). Furthermore, the validation
results have been updated to characterize the updated Landsat Burned
Area product.

2.5.3. Validation metrics
Validation metrics included errors of omission and commission and

relative bias for the burned category. To account for the influence of
stratification and clustering (Stehman, 1997), the pixel-level accuracy
metrics were calculated for each TSA or image, individually. Standard
errors were then estimated to account for the stratified sampling design
(Stehman et al., 2007). The general estimator for each accuracy metric
was defined as the stratified combined ratio estimator (Cochran, 1977):

= =

=

R
K y
K x

h
H

h h

h
H

h h

1

1 (1)

where H is the number of strata, Kh is the size of stratum h, yh and xh
are the sample means of yt and xt of stratum h, and yt and xt are the
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numerator and denominator of each accuracy metric equation, re-
spectively (Padilla et al., 2014). The estimated variance of R was in
turn defined as:
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where kh is the number of images sampled in stratum h and X and dt are
defined as:

=
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Lastly, the standard error was calculated as:

=SE V R^ ( ^) (5)

We calculated validation metrics using both of the reference data-
sets. Comparisons were made between the previous BAECV and the new
BA validation metrics with the high-resolution reference data for
CONUS and four regions of the CONUS (Arid West, East, Great Plains,
and Mountain West). Comparisons were made between the previously
published BAECV validation metrics (Vanderhoof et al., 2017b) and the
newly calculated BA validation metrics across CONUS and by land-
cover class using Landsat reference data from 1988 through 2008 (2013
reference data were not assessed in the original BAECV validation
study). Finally, we present validation metrics for the BA products for
CONUS using the 1988 through 2013 Landsat reference data.

2.6. Annual composites

Burn probability and classification products were generated for each
Landsat scene in the ARD time series from 1984 through 2018. The
large number of scenes in these time series can make them unwieldly
for visualization and analysis. Consequently, we also generated several
products that are annual composites of the scene-level products (Table
S2). These include (1) the per-pixel maximum burn probability (BP), (2)
the burn classification count (BC) or the per-pixel count of the number
of scenes that were classified as burned in a year, and (3) the burn date
(BD) or the day of year (1–366) of the collection date of the first scene
in which a pixel was classified as burned. The annual composites were
generated from the scene-level products for each sensor individually
(TM, ETM+, and OLI/TIRS) and also combining the scene-level pro-
ducts from TM and ETM+ and ETM+ and OLI/TIRS. The sensor-spe-
cific annual composites were not entirely independent as our algorithm
uses multiple historical variables that were derived from all available
sensors.

In the BAECV products, burned areas sometimes persisted from
previous years, especially late-season fires. In the BA algorithm, we
added a filter to remove the residual burned areas. This step identifies
contiguous clusters of burned pixels in the annual BC images and pro-
duces a new output: filtered burn classification (BF). Burned area
clusters that had> 33% overlap with clusters in the previous year were
removed and added to the previous year's BF image. This step was
implemented for ecoregions where burned areas are persistently visible
over multiple years in Landsat images. These include the following
Omernik Level I ecoregions (Omernik and Griffith, 2014): Northern
Forests (5), Northwestern Forested Mountains (6), Marine West Coast
Forests (7), Eastern Temperate Forests (8), Mediterranean California
(11), Southern Semi-Arid Highlands (12), and Temperate Sierras (13).

The annual composites initially showed some large and obvious
commission errors. Some appeared to be caused by artifacts not masked
in the Landsat quality assurance bands, but in other areas, were likely
caused by misclassification from our algorithm (Fig. 2). To remove
these excessive commission errors, we visually examined results for
each Landsat scene and flagged them for removal when they contained
large commission errors. This step ranked scenes from high to low by

the percentage of clear pixels that were classified as burned. Scenes
with> 1.0% burned (n = 11,625) were visually assessed, starting with
the highest percentage burned and working down. Each scene was
flagged as acceptable or not based on visual analysis of the original
Landsat scene and the corresponding burn probability and burn clas-
sification products. When necessary, we also consulted other fire data
sources such as the MODIS active fire detections (MCD14ML.006; Giglio
et al., 2016) and MTBS perimeters (Eidenshink et al., 2007) and
GeoMAC perimeters (www.geomac.gov). After all scenes were assessed,
annual composites were regenerated excluding any scenes flagged as
unacceptable.

2.7. Vector products

In addition to the scene and annual raster products (Tables S1 and
S2), we also created a version of the annual BF layer vectorized using an
eight-neighbor rule to generate burned area polygons. Each burned area
polygon was attributed with a count of 30-m pixels in the BF patch, and
the minimum, maximum, mean, and standard deviation of the BC, BD,
and BP annual composite values within the BF patch. Additional attri-
butes in the vectorized BF product include the majority value from the
Level III ecoregion layer (Omernik and Griffith, 2014) and the count of
pixels in each NLCD class (Vogelmann et al., 2001; Yang et al., 2018).
The version of NLCD used depended on the year of the annual BA
product (Table S3). Because NLCD classifications varied over time, we
also aggregated the counts by the original NLCD values to reclassified
values common across NLCD versions (Table S4).

2.8. Assessing patterns of burning and differences among datasets

We assessed the overall spatial patterns of burned areas across
CONUS from 1984 through 2018. Annual trends in burned area may be
influenced by the number of operational Landsat sensors. Therefore,
prior to assessing annual trends in burned area, we first determined the
annual count of unique path/row scenes used by the BA algorithm
across CONUS for each sensor. Then, we quantified the amount annual
burned area that was mapped in the annual composites of the scene
level products for each individual sensor and all sensors combined. We
compared the annual scene count and area burned between time per-
iods where (A) 1984–1998 when TM4 and TM5 were operational, to (B)
2000–2011 when TM5 and ETM+ were operational, and (C)
2014–2018 when ETM+ and OLI/TIRS were operational. Within time
periods where 2 sensors were operational, we used 2-sided t-tests to
determine if burned area was significantly different between individual
sensors and from the combined results.

We also compared patterns among the BA data, the BAECV data, the
MTBS data, and the MODIS MCD64A1.006 data (Giglio et al., 2018).
Differences in data availability limited the years over which we made
comparisons. Specifically, comparisons between the BA and BAECV
data were limited to 1984–2015, the temporal range of the BAECV data.
Because MTBS data were only available from 1984 to 2016, we aug-
mented them with rasterized GeoMAC perimeters from 2017 and 2018
(www.geomac.gov) and made comparisons with the BA data for
1984–2018. The MTBS and GeoMAC data are collected differently.
MTBS perimeters and burn severity rasters are manually delineated
using Landsat data (Eidenshink et al., 2007). The GeoMAC data are
initially generated by incident management teams using a wide range of
mapping methods, then collected, standardized, and acquired by the
U.S. Geological Survey (USGS). The GeoMAC data include both large
and small fires and can contain multiple perimeters for individual fires
(collected on different dates). We selected the final GeoMAC perimeter
based on the last date and retained only large fires to be consistent with
the MTBS methodology (≥4 km2 in the West and ≥2 km2 in the East).
We limited comparisons with the MODIS MCD64A1.006 data to
2001–2018.

Finally, we assessed differences in the date of burned area detection
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between the BA annual composite burn date products and dates re-
ported in both the Fire Program Analysis (FPA) Fire Occurrence
Database (FOD) from 1992 to 2015 (Short, 2015) and the
MCD14ML.006 active fire detections from 2001 to 2018. We used the
FPA-FOD data instead of the MTBS data because they include point
locations with dates for both large and small fires whereas the MTBS
data only include large fires. However, we excluded FPA-FOD fires<
2 ha, the minimum burned area patch size in the Landsat BA products.

3. Results

3.1. Algorithm performance

Tests of model parameters indicated that the GBRM fit was max-
imized when using 1000 trees with three splits/tree and a 0.1 learning
rate. These parameters were then used in a GBRM to select predictor
variables. The final suite of predictors included eight variables (Fig. 3
for selected predictors and Table 2 for predictor descriptions). The
predictor variables selected included NBRT1 and its 3-year lagged mean
and standard deviation, VI45 and its 3-year lagged mean, NDVI and its
3-year lagged mean, and VI6T. The scene-level NBRT1 and VI45 pre-
dictors had the highest relative importance of the eight predictors. All
of the predictors were based on the red, near infrared, shortwave in-
frared, and thermal bands. More than half the predictors included the
thermal band (VI6T, NBRT1, and the 3-year lagged mean and standard
deviation of NBRT1). Model fit measured with AUC was high (0.91)
when the first predictor was selected (NBRT1), increased substantially
to 0.97 as the second predictor was added (3-year lagged mean of
NBRT1), and slowly leveled off as additional predictors were added to
0.99.

3.2. Validation results with high-resolution imagery

Validation of the BA products using the 2003–2015 high-resolution
reference data showed an overall increase in performance across
CONUS compared to the BAECV products (Table 3). Based on these
reference data, the BA products had 19% omission error (3% decrease
from the BAECV products) and 41% commission error (7% decrease).
The 3% decrease in omission error is within the standard error esti-
mates of the two products. Across CONUS, the relative bias decreased
by 27% compared to the BAECV products; however, because the com-
mission error of the BA products exceeded omission error in most re-
gions relative bias remained positive (39%).

Fig. 2. Example of commission errors caused by poor image quality and sensor artifacts for Analysis Ready Data (ARD) tile h026v014 (A), Landsat 5 data from March
29, 2002 (B), and high burn probability values (C). Also, for ARD tile h002v008 (D), Landsat 5 data from August 23, 1996, and high burn probability values (F). Red
areas in subfigure C and F indicate high burn probability. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)
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Fig. 3. The solid black line shows changes in area under the curve (AUC) of
receiver operator characteristic plot as variables were added using stepwise
forward selection. Grey bars show the relative importance of predictor variables
in the final model. NBRT1: normalized burn ratio thermal; VI6T: near infrared/
thermal ratio, VI45: near infrared/short-wave infrared ratio; NDVI: normalized
vegetation index. Mean and sd indicate 3-year lagged mean and standard de-
viation of the specified spectral index.
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When analyzed regionally, error metrics for almost all regions
showed improvement in the BA products (Table 3). Visually portraying
patterns and errors for national-scale products is challenging; therefore,
the examples shown in the figures were selected to (1) best represent
regional error rates and differences in error rates between products, and

(2) provide visual examples of the BA products in different regions.
Omission errors changed little in most regions; the Great Plains was the
only region with substantial changes with 6% lower omission error in
the BA products than in the BAECV products, but standard errors were
also relatively large. Changes in commission error were more prevalent.
In the Great Plains, commission error was 29% lower and relative bias
decreased substantially here from 194% to 57%. In the East, commis-
sion error decreased by 11%, but relative bias changed from 3% to
−12%. A visual example of this type of change is shown in Fig. 4 where
commission error was lower in the BA products than in the BAECV
products for the Sweat Farm Road and Big Turnaround Complex fires,
which burned in 2007 in Florida. In the Mountain West, commission
error decreased by 5% and relative bias decreased by 10%. The Arid
West was the only region that experienced an increase in commission
error between the BA and BAECV products (8%); however, the differ-
ences between products in this region can be difficult to visually discern
as they identify similar fire patterns (Fig. 5).

3.3. Validation with Landsat imagery

To ensure we were making appropriate comparisons between the
BA and BAECV products, we initially limited validation analyses to
Landsat reference data from 1988 to 2008 used in Vanderhoof et al.
(2017b). Validation of the BA products using the 1988–2008 BAMS
reference data in CONUS showed minimal change in omission error

Table 3
Validation statistics for the Landsat Burned Area Essential Climate Variable
(BAECV) and Burned Area (BA) products, based on comparison with reference
data derived from high-resolution commercial satellite imagery for 2003–2015
for the conterminous US (CONUS) and regions of CONUS. Standard errors are
provided in parentheses (n = 286).

Region Version Omission error
(%)

Commission error
(%)

Relative bias
(%)

CONUS BAECV 22 (4) 48 (3) 66 (10)
CONUS BA 19 (3) 41 (3) 39 (7)
Arid West BAECV 14 (4) 36 (6) 34 (19)
Arid West BA 16 (1) 44 (3) 50 (12)
East BAECV 46 (3) 48 (5) 3 (13)
East BA 45 (3) 37 (5) −12 (11)
Great Plains BAECV 13 (13) 70 (5) 194 (27)
Great Plains BA 7 (13) 41 (3) 57 (19)
Mountain

West
BAECV 22 (3) 39 (5) 27 (13)

Mountain
West

BA 23 (3) 34 (5) 17 (5)

Fig. 4. Example of high-resolution validation data and comparison with Landsat Burned Area Essential Climate Variable (BAECV) and Burned Area (BA) products,
including (A) location of figures; (B) QuickBird-2 imagery collected on April 29, 2007; (C) reference burned area data derived from QuickBird-2 imagery with burned
areas shown in red; (D) Landsat 5 Thematic Mapper imagery collected on May 21, 2007; (E) Landsat Burned Area Essential Climate Variable (BAECV) classification;
and (F) Landsat Burned Area (BA) classification. Monitoring Trends in Burn Severity perimeters are outlined in black for the Sweat Farm Road (SFR) fire (started
April 16, 2007) and the Big Turnaround Complex (BTC) fire that burned in Okefenokee National Wildlife Refuge (started May 5, 2007). Omission error (OE) and
commission error (CE) are shown in subfigure E and F for the BAECV and BA products, respectively. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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(44% in the BA products vs. 42% in the BAECV products) and an in-
crease in commission error (44% vs. 33%; Table 4). Because omission
and commission errors were equal in the BA products, relative bias was
zero. However, the increases in omission and commission error were
troubling. Based on Vanderhoof et al. (2017b), mapping burned areas
with Landsat in agriculture and pasture cover classes is challenging,
even with visual analysis. This makes the BAMS reference dataset in-
accurate in these cover classes. Additionally, validation statistics by
land-cover type (Table 5) showed that commission errors increased by
10% in the pasture/hay cover class and relative bias was very high in
both the pasture/hay and cultivated crops cover classes (121% and
126%, respectively). This increase is apparent when the BAECV and BA
products are compared (Figs. 6 and 7). Therefore, we calculated the
validation statistics with those two cover classes excluded (Table 4).

Errors of omission and commission for the BA products, with pasture/
hay and cultivated crops excluded, were similar, within 2% of the
BAECV validation statistics.

In developing the algorithm, we added a step to remove burned
areas detected in prior years, potentially reducing commission error.
Comparisons between validation statistics show that excluding burned
areas from prior years lowered commission error by an additional 2% in
the BA products from 27% to 25%, but with the expected consequence
of increased omission error by 1% (Table 4). After excluding pasture/
hay and cultivated crops cover classes and removing burned areas from
prior years, relative bias was −20% suggesting that the BA products
provide a conservative estimate of burned area across CONUS.

The BA products incorporated OLI imagery from 2013 forward;
consequently, we also generated validation statistics for CONUS and

Fig. 5. Example of high-resolution validation data and comparison with Landsat Burned Area Essential Climate Variable (BAECV) and Burned Area (BA) products,
including (A) location of figures; (B) GeoEye-1 imagery collected on September 15, 2009; (C) reference burned area data derived from GeoEye-1 imagery with burned
areas shown in red; (D) Landsat 7 Enhanced Thematic Mapper Plus imagery collected on September 4, 2009; (E) Landsat Burned Area Essential Climate Variable
(BAECV) classification; and (F) Landsat Burned Area (BA) classification. The Monitoring Trends in Burn Severity perimeter for the Lockhead fire (started Aug. 12,
2009) is outlined in black. Omission error (OE) and commission error (CE) are shown in subfigure E and F for the BAECV and BA products, respectively. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 4
Validation statistics for the Landsat Burned Area Essential Climate Variable (BAECV) and Burned Area (BA) products, based on comparison with reference data
derived from Landsat imagery from 1988 to 2008 for the conterminous US (CONUS) and regions of CONUS. Standard errors are provided in parentheses. Values show
the mean of each accuracy statistic across all of the Theissen scene area polygons in CONUS used for validation (n = 28).

Exclusions Version Omission error (%) Commission error (%) Relative bias (%)

None BAECV 42 (6) 33 (3) −14 (8)
None BA 44 (6) 44 (7) 0 (16)
Cultivated crops, pasture/hay BAECV 39 (6) 29 (3) −15 (8)
Cultivated crops, pasture/hay BA 40 (6) 27 (7) −18 (17)
Cultivated crops, pasture/hay, prior years fires BA 41 (6) 25 (7) −20 (17)
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regions within CONUS based on the updated Landsat reference data
from 1998 to 2013, excluding burned areas in pasture/hay and culti-
vated crops cover classes, and excluding burned areas from prior years
(Table 6). These statistics show that omission error was greater than
commission error across CONUS (40% vs. 28%), resulting in a relative
bias of −17%. The validation statistics varied regionally. Across all
regions, relative bias was negative because omission errors were greater
than commission errors. Relative bias was lowest in the Arid West
(−4%) because omission errors (30%) roughly balanced commission
errors (27%). The Mountain West had the next lowest relative bias
(−22%) as a result of higher omission error (41%) but similar com-
mission errors compared to the Arid West. In the East, omission error
(61%) was greater than commission error (41%) resulting in a relative
bias of −34%. Relative bias was largest in the Great Plains (−49%),
where commission error was 33% and omission error was the highest
across all regions (66%). Example comparisons of raw Landsat OLI
imagery, BAMS reference data, and BA products are shown in Fig. 8.
These examples show that the BAMs reference data and the Landsat BA
products usually map the same burned patches, but with pixel-level
differences in burned area around margins of patches.

3.4. Assessing spatial and temporal patterns of burning

The filtered product was used to assess the spatial and temporal
patterns in the BA products. In this step, a total of 12,063 scenes with
≥0.010 proportion burned were examined; 4167 of those scenes were
excluded because of excessive commission errors, which represents<

Table 5
Validation statistics by land-cover class for the Landsat Burned Area Essential
Climate Variable (BAECV) and Burned Area (BA) products based on comparison
with reference data derived from Landsat imagery from 1988 to 2008 for the
conterminous US (CONUS) and regions of CONUS.

Land-cover class Version Area
burned
(%)

Omission
error (%)

Commission
error (%)

Relative
bias (%)

Cultivated crops BAECV 6 90 88 −15
Cultivated crops BA 26 73 88 121
Pasture/hay BAECV 3 51 70 63
Pasture/hay BA 3 54 80 126
Grasslands/

herbaceous
BAECV 21 40 32 −11

Grasslands/
herbaceous

BA 14 44 26 −24

Shrub/scrub BAECV 32 32 23 −12
Shrub/scrub BA 26 30 21 −12
Deciduous forest BAECV 3 33 34 2
Deciduous forest BA 2 29 35 8
Mixed forest BAECV 6 20 20 0
Mixed forest BA 6 17 24 10
Evergreen forest BAECV 24 40 33 −11
Evergreen forest BA 19 41 34 −11
Emergent

wetlands
BAECV 4 76 33 −63

Emergent
wetlands

BA 3 78 31 −68

Woody wetlands BAECV 2 39 31 −12
Woody wetlands BA 2 51 31 −30

Fig. 6. Example of Landsat-based BAMS reference data with Landsat burned area products, including (A) location of figures; (B) Landsat 5 Thematic Mapper imagery
collected on October 20, 1988, (C) burned areas in the BAMS reference data; (D) Monitoring Trends in Burn Severity perimeters; (E) Landsat Burned Area Essential
Climate Variable (BAECV) classification for October 20, 1988; and (F) Landsat Burned Area (BA) classification for October 20, 1988. Omission error (OE) and
commission error (CE) are shown in subfigure E and F for the BAECV and BA products, respectively.
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0.5% of all ARD scenes processed. Sometimes the excluded scenes
contained legitimate burned areas, but those burned areas were usually
captured in other scenes that did not have excessive commission errors.
After this step, we mapped 1,219,000 km2 in burned area from 1984
through 2018 (Fig. 9). Most places burned only once; the few places
that experienced repeated burning included the Southeast, the Flint
Hills in eastern Kansas, and parts of the Great Basin.

There is variability in the number of Landsat scenes collected over
time (Egorov et al., 2019) and used by the BA algorithm (Fig. 10a), and
care should be taken to account for this variability when assessing

temporal trends in burned area. From 1984 to 1998, the TM4 and TM5
sensors were operational and collected an average of 5600 path/row
scenes per year. Approximately 1% of those scenes were collected by
TM4. From 2000 to 2011, when both TM5 and ETM+ were fully op-
erational, the mean annual scene count increased to 6400 for TM, 7100
for ETM+, and 13,400 combined. After OLI/TIRS became fully op-
erational in 2014, annual scene collection rates averaged 6600 for ETM
+ and 7600 for OLI/TIRS, or 14,200 combined.

In the 1984–1998 time period, burned area averaged 25,500 km2

per year in the Landsat products (Fig. 10b). This increased in the
2000–2011 time period to 31,000 km2/year and 31,500 km2/year for
TM and ETM+, respectively. The combined TM and ETM+ burned
area averaged 41,700 km2/year and was significantly greater than that
from each sensor individually (2-sided t-test p-value < 0.05). In
2014–2018, OLI/TIRS mapped more burned area than ETM+
(30,400 km2/year vs. 36,700 km2/year; Fig. 10b) but the differences
were not significant (2-sided t-test p-value = 0.15). As in the previous
time period, the combined burned area (45,300 km2/year; Fig. 10b)
was significantly greater than that detected by ETM+ individually (2-
sided t-test p-value < 0.01) but marginally insignificant for OLI/TIRS
(2-sided t-test p-value = 0.06).

These results suggest care should be taken when using multi-sensor
products to estimate rates of change or trends in burned area over time.
Therefore, we assessed the temporal trends in burned area using linear
regression with the TM burned area products from 1984 to 2011, ETM
+ products for 2012, and OLI/TIRS products for 2013–2018 (dashed
grey line in Fig. 10b; Table S5). Using these data, the annual burned
area averaged 30,000 km2/year and ranged between 14,000 km2 in

Fig. 7. Example of Landsat-based BAMS reference data with Landsat burned area products, including (A) location of figures; (B) Landsat 5 Thematic Mapper imagery
collected on March 9, 2003; (C) burned areas in the BAMS reference data; (D) Monitoring Trends in Burn Severity perimeters; (E) Landsat Burned Area Essential
Climate Variable (BAECV) classification for March 9, 2003; and (F) Landsat Burned Area (BA) classification for March 9, 2003. Note that the MTBS data did not
contain any fires for this region. Omission error (OE) and commission error (CE) are shown in subfigure E and F for the BAECV and BA products, respectively.

Table 6
Validation statistics for the Landsat Burned Area products based on comparison
with reference data derived from Landsat imagery from 1988 to 2013 for the
conterminous US (CONUS) and regions of CONUS. Burned areas in cultivated
crops and pasture/hay cover classes were excluded, as were burned areas
mapped in prior years. Standard errors are provided in parentheses. Values
show the mean of each accuracy statistic across all of the Theissen scene area
polygons in CONUS used for validation (n = 28).

Exclusions Region Omission
error (%)

Commission
error (%)

Relative
bias (%)

Cultivated crops,
pasture/hay,
prior years
fires

CONUS 40 (5) 28 (2) −17 (7.6)
Arid West 30 (6) 27 (4) −4 (10)
East 61 (5) 41 (4) −34 (9)
Great Plains 66 (12) 33 (6) −49 (18)
Mountain
West

41 (6) 25 (2) −22 (8)
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1991 and 46,500 km2 in 2012. The regression fit was significant (p-
value < 0.01) and showed a significant increase in burned area over
time (year coefficient value = 356 km2/year, p-value = 0.01).

3.5. Differences in burned area among datasets

The BA products mapped more burned area than existing burned
area datasets. Compared to the BAECV products, the BA products
identified 29% more burned area per year on average from 1984
through 2015 (Fig. 11A). The greatest difference between the BAECV
and BA products was in 1984 where the BA products mapped
22,800 km2 more than the BAECV products, and 2013–2015 where the
BA products mapped on average 15,000 km2 more each year. Despite
the differences in annual burned area between the BAECV and BA
products, they showed similar year-to-year variability, and the linear
regression relating annual burned area between the two datasets had an
R2 of 0.73 (Fig. 11B).

Annual differences between the BA products and the MTBS/
GeoMAC products were more pronounced. The BA products found
183% more annual burned area than MTBS/GeoMAC products on
average from 1984 through 2018 (Fig. 11C). Differences were most
pronounced in 1997 when the BA products mapped nearly 18,000 km2

more burned area than MTBS. In spite of the large differences in the
amount of burned area mapped between the BA and MTBS/GeoMAC
products, they also tend to show similar year-to-year variability, and
the linear regression between them had an R2 value of 0.74 (Fig. 11D).

The BA products mapped 71% more burned area annually than the
MODIS MCD64A1.006 products from 2001 through 2018 (Fig. 11E).
Differences between these two products were greatest in 2001 and 2002
where the BA products found 28,500 and 26,400 km2 more burned
area, respectively. The linear regression between the BA and MODIS
burned area products was not as strong as it was for the BA and MTBS/
GeoMAC products, with an R2 value of 0.47 (Fig. 11F). In 2000 and
2001 only the MODIS Terra sensor was operational and not con-
tinuously, potentially influencing the results. Without those years, the
relationship improved (R2 = 0.66), and the BA product mapped 56%
more annual burned area than the MODIS MCD64A1.006 products.

Spatial patterns were evident when the mean annual differences
among the burned area datasets were summarized by quarter-degree
quadrangles (Fig. 12). Comparing the burned area products (Fig. 12A),
78% of quarter-degree quadrangles had burned area within±1 km2 of
each other and 94% were within± 3 km2 of each other. Notable dif-
ferences where the BA products mapped more burned area than the
BAECV products were visible south of Lake Okeechobee in Florida,
southeastern Kansas, western Minnesota, western Texas, eastern New
Mexico, and scattered areas in the West. Areas where the BA products
mapped less burned area than the BAECV products were in northern
Florida, southern Georgia, South Dakota, northern Idaho, and northern
California.

Differences at the quarter-degree scale were more pronounced for
the MTBS/GeoMAC and MODIS MCD64A1.006 products (Fig. 12B and
C). The BA products tended to map more burned area than the MTBS/

Fig. 8. Examples of imagery collected by the Landsat Operational Land Imager, corresponding BAMS reference data, and Landsat burned area (BA) burn classifi-
cations for different regions of the conterminous U.S. AW: Arid West, MW: Mountain West, GP: Great Plains, EA: East. Omission error (OE) and commission error (CE)
are shown in subfigures C, F, I, and L for the BA products.

Fig. 9. All burned areas mapped at 30-m resolution across the conterminous United States from 1984 through 2018.
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Fig. 10. Mean annual usable path/row scene count collected by each Landsat sensor and combined from 1984 to 2018 (A) and mean annual burned area in annual
composites of the scene-level burned area products for each Landsat sensor and multiple sensors combined from 1984 to 2018 (B). TM: Landsat Thematic Mapper 4
and 5, ETM+: Landsat Enhanced Thematic Mapper Plus, OLI/TIRS: Landsat Operational Land Imager/Thermal Infrared Sensor. All: indicates combined results from
multiple sensors (TM and ETM+ or ETM+ and OLI/TIRS). Grey dashed line shows trends in annual burned area from 1984 to 2018 fit using TM from 1984 to 2011,
ETM+ for 2012, and OLI/TIRS from 2013 to 2018.

Fig. 11. Annual trends in burned area among different burned area products (BA: Landsat Burned Area products; BAECV: Landsat Burned Area Essential Climate
Variable products; MTBS/GeoMAC: Monitoring Trends in Burn Severity raster layers and rasterized GeoMAC perimeters; and MCD64A1.006: MODIS burned area
product, collection 6). Comparisons and correlations are made for only years where data were available for both products. Solid lines in subfigures B, D, and F
represent a linear regression fit between two products; dotted line in subfigure F shows linear regression fit with 2001 and 2002 excluded in the comparison of
Landsat BA and MCD64A1.006 products. 1:1 shown by dashed lines.
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GeoMAC datasets, but the differences were within 1 km2 for 56% of
quarter-degree quadrangles and within 3 km2 for 84% of quadrangles
(Fig. 12B). Differences in burned area between the BA products and
MTBS/GeoMAC products were especially large across much of the Great
Plains and the Southeast, California, and the Northwest, and also in the
Appalachians where the BA products mapped less burned area than the
MTBS/GeoMAC data (Fig. 12B).

When the BA products were compared to the MODIS MCD64A1.006
products, burned area was within±1 km2 of the BA products for 57%
of quarter-degree quadrangles and within 3 km2 for 84% of the quad-
rangles (Fig. 12C). The MODIS data showed more burned area in the
Mississippi River Valley and southern Florida. However, the BA pro-
ducts tended to map more burned area across much of the country,
following similar patterns as the MTBS data but with more pronounced
differences in the western US.

The Flint Hills of eastern Kansas offer an example of where differ-
ences in burned area among the datasets were especially large. Closeups
of the differences and original data showed that all three datasets
mapped similar patterns of burned area in grassland land-cover types
(Fig. 13); however, the BA products mapped more burned area with
finer detail. Additional differences were visible in cultivated crop cover
types where the MCD64A1.006 product mapped greater amounts of
burned area and the MTBS products mapped no burned area.

3.6. Differences in date of detection among datasets

We calculated the mean annual reported date of burn detection for
each product (Landsat BA, FPA-FOD, and MCD14ML.006) by quarter-
degree quadrangles. We assumed that burned areas mapped by the BA

algorithm before the FPA-FOD fires and MCD14ML.006 active fire de-
tections were FPA-FOD or MCD14ML omission errors or BA commission
errors and excluded them from the date comparison. In quarter-degree
quadrangles where the BA products mapped burned areas after the FPA-
FOD fires and MCD14ML.006 active fire detections, we calculated the
annual difference in the mean of detection dates among datasets. The
annual differences were then averaged for each quarter-degree quad-
rangle. The differences were grouped into 16-day intervals, corre-
sponding to the interval between overpass dates for each Landsat sensor
(Fig. 14). We then compared datasets in terms of the cumulative per-
centage of quarter-degree quadrangles that had date differences less
than or equal to each 16-day interval.

Differences in detection dates were similar among the Landsat BA,
FPA-FOD, and MCD14ML.006 products. The percentage of quarter-de-
gree quadrangles with mean date difference of 16 days was 15% for the
FPA-FOD data and 18% for the MCD14ML.006 data. However, as the
temporal interval increased, so did the percentage of quarter-degree
quadrangles with date differences within the interval. For instance, the
percentage of quarter-degree quadrangles increased to 70% and 76%
for the FPA-FOD and MCD14ML.006 data, respectively, for 64-day or
less date differences; 96% and 97% of quadrangles had 128-day or less
date differences for the FPA-FOD and MCD14ML.006 data, respectively
(Fig. S2). The difference in detection date represents both the lag in
detection of burned areas because of the 16-day time span between
Landsat overpass interval and cloud cover, and in the case of the FPA-
FOD, the differences between the reported ignition date and the rates of
fire spread. Spatial agreement in detection dates appeared to be greater
in the western US and lower in the eastern US where cloud-cover could
influence image availability (Fig. 14).

Fig. 12. Mean difference in annual burned area calculated for 1-quarter degree quadrangles between Landsat Burned Area (BA) products and (A) the Landsat Burned
Area Essential Climate Variable (BAECV) products, (B) the Monitoring Trends in Burn Severity (MTBS)/GeoMAC products (1984–2018), and (C) MODIS collection six
burned area products (MCD64A1.006) for 2001–2018.
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4. Discussion

We developed the Landsat BA algorithm to map burned areas across
the CONUS and produce new 30-m burned area products from 1984
through 2018. The BA products supersede the BAECV products and are
unique in that they are the longest-running record of burned area for
the CONUS collected over the length of the Landsat archive, whereas
other existing data sources have a more limited time span (e.g.
MCD64A1) or rely on agencies' records which have spatiotemporal
variability in reporting effort (Brown et al., 2002; Eidenshink et al.,
2007; Fusco et al., 2019; Short, 2015). Consequently, the BA products
identified 1,219,000 km2 of burned area from 1984 through 2018 and
tend to map more burned area than existing products: 29% more than
BAECV (1984–2015), 183% more than MTBS/GeoMAC (1984–2018),
and 56% more than MODIS MCD64A1.006 (2003–2018). The differ-
ences are because the BA products include burned areas in agricultural
areas (23% of all burned areas) and map small fires and fires not pre-
sent in the other data sources. The BA products also map fires with

greater spatial detail than other burned area products. In spite of the
differences among products, they tend to map similar patterns of year-
to-year variability in burned area, especially between the BA and
BAECV products, and MTBS/GeoMAC products, and to a lesser extent
with the MCD64A1.006 products.

The amount of burned area detected by the Landsat burned area
algorithm varies in relation to the number of Landsat images collected
in different time periods. Less than half as many images are available in
the archive prior to 1999 when only the TM sensors were operational
(Egorov et al., 2019). After 2002, the Landsat 7's scan-line corrector
(SLC) error introduces gaps in images collected (Kovalskyy and Roy,
2013) which could also reduce the amount of burned area detected.
Because burned areas are persistently visible in many regions, the in-
creased collection effort did not result in an equivalent increase in
detected burned area. From 2000 through 2011, the addition of ETM+
increased the annual count of scenes collected by 139% over those
collected by TM from 1984 through 1998. However, mean annual
burned area increased by 64% between the same time periods. Some,

Fig. 13. Closeups showing differences between data products. Labels in subfigure A indicate difference between the Landsat Burned Area (BA) and MCD64A1.006 in
km2 for 2001–2018 (subfigures A–D) and differences between the BA products and the combined Monitoring Trends in Burn Severity (MTBS) and GeoMAC products
for 1984–2018 (subfigures E–H). Counts of the number of years a pixel was mapped as burned are shown in subfigures B, C, and F, and G for the different datasets.
The 2011 National Land Cover Database layer is shown in subfigures D and H for reference.
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but not all, of this change was attributable to the increase in scene
collection effort. For example, from 2000 to 2011 the burned area de-
tected by ETM+ and TM combined was 35% greater than TM alone.
From 2014 through 2018, burned area detected by OLI/TIRS alone was
21% greater than ETM+ alone, in part documenting the influence of
the SLC error but also possibly documenting the higher radiometric
resolution and more narrow spectral bands of OLI/TIRS (Roy et al.,
2016). In that same time period, 49% more burned area was detected
by ETM+ and OLI/TIRS combined than ETM+ alone. Investigating the
influence of collection effort on burned area detection suggests that the
Landsat burned area products provide conservative estimates of burned
area prior to 2000 when most of the scenes were collected by TM. The
limitations of reduced collection effort, whether from having only TM
imagery or from the SLC error may be especially pronounced in areas
where cloud cover and rapid vegetation regrowth reduce the duration
over which burned areas remain visible such as the Southeast and Great
Plains and less important in other regions like the West and upper Great
Lakes where burned areas remain visible for months to years.

Given the influence of collection effort on the amount of burned
area mapped, use of the burned area products combined across Landsat
sensors would be appropriate when users require the best estimate of
total burned area for an individual fire or region. For analyzing trends
in burned area, combining data from multiple sensors may be appro-
priate after 2000 when all years except 2012 had 2 operational Landsat
sensors. However, analyzing trends in burned area over the length of
the archive (1984–2018) requires controlling for variability in collec-
tion effort. One option is to use burned area products from individual
sensors instead of the combined products. Our results using this ap-
proach document significant increases in annual burned area over time.
This finding is supported by previous studies that also document in-
creases in burned area over the time period of this study using both
remote sensing products and agency fire records (Westerling, 2011;
Dennison et al., 2014; Picotte et al., 2016; Abatzoglou and Williams,
2016; Balch et al., 2017).

Based on extensive visual analysis of the Landsat burned area pro-
ducts, regression analysis of trends in burned area over time, high
correlations in annual burned area with the MTBS/GeoMAC and
MCD64A1.006 products, and reasonable error estimates based on va-
lidation with reference data derived from both Landsat and high-re-
solution imagery, we have confidence that the BA data are representing
realistic patterns of burning. Thus, the new BA products provide a
unique data source to monitor and assess spatial and temporal patterns
of burning with 30-m resolution and will continue to do so into the
future as they are routinely updated as new Landsat data are collected.

Latency for the burned area products is approximately 25–27 days for
ETM+ data and 15–17 days for OLI/TIRS data.

4.1. Validation

The preferred approach to validating remote sensing data products
has been to use reference data derived from imagery with higher spatial
resolution than the data products (Boschetti et al., 2016; Padilla et al.,
2015; Roy et al., 2005; Vanderhoof et al., 2017a); however, this is
difficult to accomplish when validating Landsat products (Vanderhoof
et al., 2017b). High-resolution images have not been routinely collected
over the entire temporal extent of the Landsat archive and that limits
the use of statistical sampling designs for validation. Consequently, our
validation results from high-resolution imagery may not be re-
presentative of the entire spatial and temporal extent covered by our
data products. For instance, a different sampling strategy focused on
more heavily sampling low-frequency fire areas could have modified
our estimates of commission error. In spite of these limitations, vali-
dation with high-resolution reference data can be used to compare
product versions and we found that the changes we made to the BA
algorithm resulted in the BA products having lower omission and
commission error rates than the BAECV products.

Because of the limitations of validating Landsat products with high-
resolution commercial satellite imagery, we also validated the products
with reference data derived from Landsat imagery. This showed
minimal increases in omission error (2% increase) and substantial in-
creases in commission error (11% increase) over the BAECV products
(Table 4; Vanderhoof et al., 2017b). However, the increase in com-
mission error was almost entirely attributable to an increase in the
amount of area the BA products identified as burned in cultivated crops
and pasture/hay land-cover classes. In contrast, the Landsat-based re-
ference dataset is acknowledged to underestimate burned area in these
cover types. When burned areas in cultivated crops and pasture/hay
land-cover classes were excluded, the BA products showed a 2% decline
in commission error relative to the BAECV products across the re-
maining cover types. This is comparable to the 7% decline in com-
mission error observed using the high-resolution reference dataset
across all cover types. Successfully separating burned areas in agri-
cultural land-cover classes is a problem common to many burned area
products (Giglio et al., 2016; Long et al., 2019) and this problem affects
both the BA and BAECV products, as well as the validation data derived
from Landsat imagery. We suspect the greater commission error in
these classes is a result of reducing the number of predictor variables
used in the BA algorithm to 8 instead of the 43 predictors used by the

Fig. 14. Mean of annual differences in date of detection for each quarter-degree quadrangle between (A) the Landsat Burned Area (BA) products and the Fire Program
Analysis (FPA) fire occurrence database (FOD) from 1992 through 2015 and (B) the Landsat Burned Area products and the MODIS MCD14ML active fire detections
from 2001 through 2018.
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BAECV algorithm. In spite of the increased error rates in cultivated
crops and pasture/hay land-cover classes, we were impressed that the
reduction in predictors had minimal impact on algorithm performance
in wildland vegetation types (forest, shrub, grassland, wetlands). Con-
sidering the processing performance gains made by reducing the
number of predictors, sacrificing accuracy in these land-cover classes
seemed a reasonable tradeoff.

Commission error was further reduced by 2% by adding a proces-
sing step to remove burned areas that overlapped burned areas mapped
in previous years. This is unique to our algorithm because other ap-
proaches to mapping burned areas with Landsat data have relied on
short-term summaries for reference conditions that likely included
changes from previous fires. For instance, Boschetti et al. (2015) used
weekly differences between Landsat images, Roy et al. (2019) used
scene-to-scene differences, and Long et al. (2019) used 1-year summa-
ries of reference conditions. Methods using other sensors have also
made use of short intervals between images to circumvent this problem
(Giglio et al., 2018; Roteta et al., 2019). For our approach, the 3-year
reference window was important for early years in the Landsat archive
when fewer images were available and also to limit year-to-year
variability in vegetation conditions (e.g. drought) that might cause
confusion when detecting burned areas. Other burned area mapping
algorithms that span the entire Landsat archive have made use of both
short- and long-term historical summaries. For example, Goodwin and
Collett (2014) used the preceding seven images dates and seasonal
medians from images collected within 5 years as predictors in their
algorithm.

Overall, our validation results indicated that performance of the BA
algorithm is quite good, and commission and omission error rates were
28% and 40%, respectively, when validated with Landsat-derived re-
ference data and 19% and 41%, respectively, when validated with high-
resolution commercial satellite imagery. The nearest comparable
burned area product for CONUS is the MTBS data. The primary lim-
itation is that MTBS doesn't map all fires, only large fires that are re-
ported in federal databases (Eidenshink et al., 2007) and because they
focus on large fires reported by agencies, the MTBS data are likely
biased (Brown et al., 2002; Fusco et al., 2019; Hawbaker et al., 2008;
Short, 2015). Therefore, we compare the accuracy of the BA products to
other global burned area products. As with the BAECV products, our
error rates were lower than many global, coarse-resolution products
which have commission errors ranging between 42 and 94% and
omission errors ranging between 68 and 93% (Padilla et al., 2015).
Global Landsat burned area products recently produced for 2015 in
Google Earth Engine (Long et al., 2019) had lower commission and
omission error rates (13% and 30%, respectively) than our products.
However, actual error rates are uncertain because Long et al. (2019)
appear to have validated their products over the US with MTBS data
and the MTBS data do not include all burned areas.

4.2. Lessons learned

The BA algorithm is an extensive update from the BAECV algorithm,
and there were some important lessons learned during the process.
Compared to the BAECV algorithm which used Landsat data in the
native path/row format, the BA algorithm was designed to accom-
modate the new ARD format. This format was intended to reduce pre-
processing and make it easier for users to produce derived products by
consistently tiling, georegistering, atmospherically correcting, and as-
sessing the quality of Landsat data (Dwyer et al., 2018). Similar efforts
have been made in other countries to standardize Landsat data delivery
such as the Australian Earth Observation Data Cube (Lewis et al., 2015).
Refining our approach to accommodate the ARD format was also ne-
cessary to incorporate OLI/TIRS data. Including these data allowed us
to bring our burned area products up to date (through 2018) and also
positioned the USGS for forward processing of burned area products
beyond 2018 as both ETM+ and OLI/TIRS data are collected into the

future. The L1TP ARD data are considered to have the highest available
quality and are most suitable for time-series analysis (Dwyer et al.,
2018). Early adopters of the Landsat ARD data have documented
greater change-detection accuracies when using ARD data compared to
path/row data (Zhu et al., 2019). Although we did not assess whether
or not the ARD format improved our results over the path/row format,
we did find that the tiled imagery in the ARD format reduced pre-
processing time and facilitated generation of historical reference and
change predictors, as well as, annual composites of the BA products. In
spite of the reduced preprocessing requirements and other processing
efficiencies provided by the ARD format, the increased data volume
required us to eliminate other processing bottlenecks in our algorithm
to make processing burned area products from the Landsat archive for
CONUS feasible. For example, across CONUS from 1984 through 2018,
there were an average of 475 images per path/row. For the same region
and time period, the ARD tiles include an average of 2094 images per
tile, a 340% increase. Furthermore, the rate of image collection is in-
creasing for both ETM+ and OLI/TIRS (Wulder et al., 2019). Changes
were needed to reduce the time our algorithm required to process the
greater volume of imagery.

Initial testing found that the GBRM used to generate the burn
probability surfaces was a significant bottleneck in processing.
Reducing the number of trees, splits per tree, and predictor variables
used are potential approaches to reducing GBRM processing time. Thus,
we initially optimized the number of trees and splits per tree, and then
sought to improve processing performance by implementing a forward
selection procedure to reduce the number of predictor variables. We
tested a large suite of 68 potential predictor variables during the pro-
cess of developing the BA algorithm. The spectral indices were designed
to monitor vegetation vigor and water content (EVI, NBR, NBR2, NDMI,
NDWI, NDVI, SAVI, VI43, VI45, and VI57), enhance the charcoal and
ash signal (BAI, CSI, and MIRBI), or to incorporate the thermal band
(NBRT1, VI6T, and VI46); and previous studies have shown them to be
effective at mapping both burned area and burn severity (Table 2).

Past studies using remote sensing to map burned area over large
spatial extents selected spectral indices and predictors based on findings
in previous publications or the authors' understanding of which pre-
dictors work well in their region of interest (Alonso-Canas and
Chuvieco, 2015; Boschetti et al., 2015; Giglio et al., 2018; Goodwin and
Collett, 2014; Hawbaker et al., 2017; Long et al., 2019; Roteta et al.,
2019). Many of these past efforts have included multiple spectral in-
dices to utilize the unique characteristics of each index. Also, the ability
of any single spectral index to separate burned from unburned areas
varies among ecosystem type and burn severity (Tran et al., 2018) and
change-detection methods are generally more successful when using
multiple spectral indices (Cohen et al., 2018; Zhu et al., 2019). Whether
past studies have selected the most effective predictors is unclear,
especially when their interactions are considered. Thus, variable or
feature selection can be a critical step to identify the most relevant
predictors while at the same time reducing the computational demand
of calculating all potential predictors. This was what Ramo et al. (2018)
found when they used random forest, entropy-based filtering, and lo-
gistic regression models to reduce a set of 52 potential predictors down
to 8 for mapping burned areas with MODIS spectral and hotspot data.
Our forward selection procedure also selected 8 predictors but from a
larger set of 68 potential predictors, greatly reducing the amount of
time required to calculate spectral indices, historical summaries, and
change metrics used by the GBRM.

Our results and those of Ramo et al. (2018) suggest that at some
point there may be a limit to the accuracy gains that additional pixel-
level predictors provide. To move beyond that limit, other types of
information might be required. Such information could be provided by
hybrid algorithms incorporating both burned area detection and hot-
spots (Alonso-Canas and Chuvieco, 2015; Fraser et al., 2000; Giglio
et al., 2009). The hybrid approach has been demonstrated using
Landsat and MODIS hotspots by Boschetti et al. (2015). However,
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differences in temporal and spatial resolution make use of MODIS
hotspots with Landsat burned area detection challenging. Furthermore,
the revisit intervals of the Landsat satellites will likely prevent effective
use of Landsat hotspots (Schroeder et al., 2016) for improving burned
area detection. Alternative approaches include combining imagery from
multiple sensors (Roy et al., 2019), adopting regionally sensitive ap-
proaches (Roteta et al., 2019) or more sophisticated time-series analysis
(Huang et al., 2010; Kennedy et al., 2010; Verbesselt et al., 2010; Zhu
and Woodcock, 2014a), or use of change-detection methods that in-
corporate both spatial patterns as well as temporal trends and may be
less sensitive to temporal noise (Boschetti et al., 2015; Giglio et al.,
2018; Goodwin and Collett, 2014; Ludwig et al., 2017).

The predictor variables selected for use in the GBRM included the
scene-level NBRT1, VI6T, VI45, NDVI, the 3-year lagged mean of
NBRT1, VI45, and NDVI, and the 3-year standard deviation of NBRT1
(Fig. 3). These predictors make use of the red, NIR, SWIR1, SWIR2, and
thermal bands; predictors relying on these bands have repeatedly been
shown to be effective for mapping burned area and severity (Chuvieco
et al., 2002; Chuvieco and Congalton, 1988; García and Caselles, 1991;
Holden et al., 2005; Huang et al., 2016; Key and Benson, 2006; Ramo
et al., 2018; Tran et al., 2018; Trigg and Flasse, 2000; van Wagtendonk
et al., 2004). Selection of predictors using the thermal band (NBRT1
and VI6T) was not surprising given that the thermal band was the most
important predictor in the BAECV algorithm (Hawbaker et al., 2017)
and past studies have found that spectral indices incorporating thermal
information often have higher separability for burned areas than in-
dices that do not (Harris et al., 2011; Holden et al., 2005). However,
indices based entirely on spectral data are more widely used than in-
dices incorporating thermal data. The more typical approach is to use
thermal hotspots to separate burned areas from other types of land
change (Alonso-Canas and Chuvieco, 2015; Boschetti et al., 2015;
Giglio et al., 2018; Roteta et al., 2019). Until recently, there was not a
standard method to generate consistent land-surface temperature va-
lues and consequently the Landsat thermal bands have been under-
utilized in large-scale mapping efforts (Malakar et al., 2018; Wulder
et al., 2019). Reliance of the BA algorithm on the TOA brightness
temperature values may be problematic and could have contributed to
the classification artifacts that remained. However, the demonstrated
importance of the thermal band in the BAECV algorithm and the BA
algorithm highlight the potential utility of standardized surface tem-
perature products (Malakar et al., 2018) for identifying burned areas in
future products.

Scene-level and reference predictors were chosen over change pre-
dictors by our selection process. This was by design as we tested scene-
level spectral indices for inclusion first and tested the reference vari-
ables (3-year lagged mean and standard deviation) and the change
predictor for a given spectral index for inclusion only after the scene-
level predictor was selected. This decision was designed to favor scene-
level predictors, which are more computationally inexpensive to cal-
culate compared to the reference and change predictors. The initial
favoring of scene-level predictors is justified because past approaches
for mapping burned area and severity have found that they can work
quite well (Eidenshink et al., 2007; Koutsias and Karteris, 2000; Long
et al., 2019). However, we were surprised that no change predictors
were selected given their extensive use in other approaches to map
burned area (Alonso-Canas and Chuvieco, 2015; Boschetti et al., 2015;
Giglio et al., 2018; Goodwin and Collett, 2014; Key and Benson, 2006;
Koutsias and Karteris, 1998; Ramo et al., 2018; Roteta et al., 2019; Roy
et al., 2019). Many of those same studies also use predictors char-
acterizing pre-fire reference conditions which can be important to se-
parate burnable land-cover types from unburnable land-cover types. We
do not suggest that change predictors are not useful, but our findings do
suggest that identifying burned areas can be successful when both pre-
fire and post-fire conditions are characterized individually as an alter-
native to relying on change metrics.

Spectral differences between Landsat TM, ETM+, and OLI data

have been previously documented (Roy et al., 2016; Steven et al.,
2003). One might expect that such differences would influence the
success of change and disturbance detection algorithms. We did not find
that to be the case for detecting burned areas; initial testing of our
GBRM model included a variable indicating from which sensor an
image was collected, but it did not improve our GBRM fit enough to be
included by our forward selection procedure. A sensor predictor was
included in the BAECV algorithm, but had low relative importance
compared to other predictors (Hawbaker et al., 2017). Based on those
results, we suggest that the spectral variability among sensors is
minimal compared to the spectral changes induced by fires.

In spite of the increased performance of the BA algorithm, visually
assessing the results was necessary to identify and remove images with
excessive commission errors. As part of our processing pipeline, gra-
phics were generated for each individual Landsat scene and the asso-
ciated burned area products. These graphics were instrumental in ef-
ficiently visualizing the thousands of scene-level products our algorithm
generated and quickly identifying troublesome scenes. However, they
also highlighted one tradeoff that comes with the ARD format–it can be
challenging to track specific areas within the ARD tile when there are
gaps in overlap between ARD scenes. This step emphasizes that in ad-
dition to generating quantitative validation metrics, data visualization
remains an essential step to remote sensing product development but
has become increasingly challenging given the volume of data that is
now available and can be quickly processed using cloud computing
(Gorelick et al., 2017).

Documenting fire activity at national scales is difficult and in spite
of improvements in databases used for reporting fires, they are still
prone to human error and inconsistent reporting effort. Additionally,
even when fire information is correctly entered into databases, it may
not fully represent fire impacts. For instance, fire perimeters may not
include unburned areas within a fire perimeter (Kolden and Weisberg,
2007; Meddens et al., 2016). Remote sensing offers promise here;
however, critical differences remain between agency records and re-
motely sensed burned area products. A good example is the MTBS data
which combine perimeters and severity information derived from re-
motely sensed data with attributes from agency records. Those attri-
butes are often critical for understanding and modeling patterns of fire
occurrence and fire impacts (Abatzoglou et al., 2017; Abatzoglou and
Williams, 2016; Balch et al., 2017; French et al., 2014; Picotte et al.,
2016; Urbanski et al., 2018). Recent developments offer promise to
improve these shortcomings using remote sensing. For example, the
recently produced fire atlas identifies individual fires in the
MCD64A1.006 burned area data and attributes them with information
about timing, duration, fire speed, and direction (Andela et al., 2018).
Improving attribution of burned area products could also be accom-
plished by joining agency fire incident reports with remotely sensed
burned area products; however, mismatches in the spatial locations and
timing of the different fire data may make such an effort challenging
(Fusco et al., 2019; Hawbaker et al., 2008), especially in areas where
prescribed fire is common (Nowell et al., 2018). We are optimistic that
these challenges will eventually be overcome in the future as more and
more sensors, such as Sentinel-2 that are capable of mapping active
fires and burned areas become operational and provide records of fire
activity with greater temporal frequency and spatial resolution than we
currently have (Frantz, 2019; Moran et al., 2019; Roteta et al., 2019;
Roy et al., 2019; Verhegghen et al., 2016; Wulder et al., 2019). How-
ever, attribution of historical burned area products will likely remain
limited to manual efforts to reconcile the spatial and temporal differ-
ences among the datasets available.

5. Conclusions

Changes made to the Landsat BA algorithm from the BAECV algo-
rithm to handle the increased data volume of the ARD stacks and to
incorporate OLI/TIRS data improved the error rates of the resulting
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products. These products excel at consistently mapping burned areas
2 ha and larger over time and across CONUS while capturing within-fire
heterogeneity. Such characteristics are critical for understanding long-
term impacts of fire on human and natural systems. The differences
between the Landsat BA, BAECV, MTBS/GeoMAC, and MCD64 products
highlight the unique information that Landsat-derived burned area
products can add, especially in terms of spatial detail and the time span
of fire history they offer. The differences in burned area we found have
implications for understanding patterns of fire occurrence and fire im-
pacts (Abatzoglou and Williams, 2016; French et al., 2014; Ghimire
et al., 2012; Picotte et al., 2016; Radeloff et al., 2018; Sankey et al.,
2017; Shakesby and Doerr, 2006; Urbanski et al., 2018). Our BA pro-
ducts and the suite of remotely sensed fire products being produced by
others (Chuvieco et al., 2019) demonstrate the utility remote sensing
offers for continuous earth surface monitoring.

6. Data and source code access

The Landsat BA products are part of the suite of Level-3 Science
Products now being produced for the Landsat archive. Currently,
Dynamic Surface Water Extent (Jones, 2015, 2019) and Fractional
Snow-Covered Area (Selkowitz and Forster, 2016) are produced in
addition to the burned area products. All Level-3 Science Products are
available for download from USGS's EarthExplorer (https://
earthexplorer.usgs.gov). Scene-level BA products are described in de-
tail at https://doi.org/10.5066/F77W6BDJ; BA data are available
through EarthExplorer and will be processed periodically as new
Landsat data are collected. The burned area validation data are avail-
able for download from Vanderhoof et al. (2020; doi.org/10.5066/
P9QKHKTQ). Annual composites, generated from the scene-level BA
products, are available for download from Hawbaker et al. (2020; doi.
org/10.5066/P9QKHKTQ) and https://gec.cr.usgs.gov/outgoing/
baecv/LBA/LBA_CU_C01_V01 Source code for the Landsat Burned
Area algorithm can be found at https://github.com/USGS-EROS/espa-
burned-area/tree/burned_area_v1.2.0
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