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ABSTRACT

The standing stock of phytoplankton carbon is a fundamental property of oceanic ecosystems, and of
critical importance to the development of Earth System models for assessing global carbon pools and
cycles. Some methods to estimate phytoplankton carbon at large scales from ocean colour data rely on
the parameterisation of carbon-to-chlorophyll ratio, which is known to depend on factors such as the
phytoplankton community structure, whereas other methods are based on the estimation of total par-
ticulate organic carbon (POC), and rely on the assumption that a known fraction of POC is made up of
phytoplankton carbon. The carbon-to-chlorophyll ratio is also used in marine ecosystem models to convert
between carbon and chlorophyll, a common requirement. In this paper we present a novel bio-optical
algorithm to estimate the carbon-to-chlorophyll ratio, and the standing stocks of phytoplankton carbon
partitioned into various size classes, from ocean colour. The approach combines empirical allometric rela-
tionships of phytoplankton size structure with an absorption-based algorithm for estimating phytoplankton
size spectra developed earlier. Applying the new algorithm to satellite ocean colour data from September
1997 to December 2013, the spatio-temporal variations of carbon-to-chlorophyll ratio and phytoplankton
carbon across various size classes are computed on a global scale. The average annual stock of phyto-
plankton carbon, integrated over the oceanic mixed-layer depth, is estimated to be ~0.26 gigatonnes, with
the size-partitioned stocks of 0.14 gigatonnes for picoplankton, 0.08 gigatonnes for nanoplankton and
0.04 gigatonnes for microplankton. The root-mean-square error and the bias in the satellite-derived
estimates of picoplankton carbon, when compared with corresponding in situ data, are found to be
36.23 mgC m~3 and —13.53 mgC m~3, respectively, on individual pixels. The regional uncertainties in the
estimates of phytoplankton carbon are calculated to be less than the relative uncertainties in other satellite-
derived products, for most parts of the global ocean, and can amplify only for certain oceanographic regions.
Although the new estimates of phytoplankton are of the same order of magnitude as those based on existing
models, our study suggests that a consensus is yet to be built on the accurate sizes of the phytoplankton
carbon pools; improved satellite chlorophyll products, and better estimates of inherent optical properties
would be essential pre-requisites to minimising the uncertainties.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

important to be able to make accurate measurements of the stand-
ing stocks of phytoplankton carbon. However, major complexities

Although the standing stock of the autotrophic biomass
(phytoplankton) in the ocean is only a small fraction (less than
1%) of the Earth’s photosynthetic biomass, approximately half
(~50 gigatonnes C) of the global annual carbon-fixation is
accounted for by the oceanic autotrophs through primary production
(Falkowski, 2012; Field et al., 1998). Therefore, for understanding,
estimating and monitoring the carbon dynamics in the ocean, it is
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in carbon estimation arise from phytoplankton community com-
position; for example, the carbon content of a phytoplank-
ton cell varies with species and its morphological charac-
teristics (e.g., large vs small cell size); it also depends on
the ambient light and nutrient conditions (Marafién, 2008;
Marafién et al., 2013; Menden-Deuer and Lessard, 2000). Another
level of complexity in estimating phytoplankton carbon accu-
rately arises from uncertainties in parameterising the carbon-
to-chlorophyll ratio (y), which is used to convert phytoplankton-
carbon biomass to chlorophyll biomass in ecosystem models for
comparison with satellite-derived chlorophyll data, and also in
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satellite algorithms for estimating phytoplankton carbon from
chlorophyll data (Sathyendranath et al., 2009). A standard prod-
uct from ocean colour remote sensing is chlorophyll concentration
(e.g., http://oceandata.sci.gsfc.nasa.gov/; https://www.oceancolour.
org/). Marine biogeochemical and ecosystem models (e.g., http://
pft.ees.hokudai.ac.jp/maremip/index.shtml), on the other hand, deal
with phytoplankton biomass in carbon units and use a carbon-
to-chlorophyll ratio. The magnitude of carbon-to-chlorophyll ratio
can vary over two orders of magnitude depending on phytoplank-
ton community composition and environmental conditions (Geider,
1987; Geider et al., 1998; Sathyendranath et al., 2009), and hence
it may lead to significant uncertainties in the conversions between
the two measures. Furthermore, the retrieval of phytoplankton
carbon from remote sensing of ocean colour is also affected by
the presence of particulates, other than phytoplankton that con-
tribute to the water-leaving radiance captured by the sensors. Dis-
solved constituents such as coloured dissolved organic materials
(CDOM) that absorbs strongly in the blue wavelengths can also affect
the remotely-sensed ocean colour and interfere with chlorophyll-a
retrievals, particularly in coastal and high latitudes. Owing to these
complexities, the estimation of phytoplankton carbon from remote
sensing is recognised as a non-trivial task, and it is essential to
improve satellite-based algorithms for use in carbon-cycle research
(Behrenfeld et al., 2005; Kostadinov et al., 2016; Sathyendranath et
al., 2009).

Nevertheless, algorithms have been developed to compute par-
ticulate organic carbon (POC) in the ocean from remotely-sensed
ocean colour. For example, Stramski et al. (2008) derived a band-ratio
algorithm that uses the blue-to-green band ratio of remote-sensing
reflectance to calculate the concentration of POC. This algorithm can
then be used to compute phytoplankton carbon by assuming a con-
stant ratio of phytoplankton carbon to POC in the ocean (Stramski et
al., 2008). Behrenfeld et al. (2005) derived an empirical relationship
to compute phytoplankton carbon from particulate backscattering
coefficients by assuming a fixed ratio of 30% between phytoplankton
carbon and POC. More recently, Kostadinov et al. (2016) developed
an algorithm to compute phytoplankton carbon from particulate
backscattering coefficient using allometric relationships for the POC
particle size distribution and assuming that the fraction of carbon in
the living phytoplankton relative to that of POC is 1/3. Kostadinov
et al. (2016) also computed the absolute and the fractional carbon
biomass in three size classes of phytoplankton, i.e., picoplankton
(with diameter 0.5 -2 um), nanoplankton (with diameter 2-20 pm)
and microplankton (with diameter 20-50 pwm), under these assump-
tions. Although the existing algorithms may provide a mutually
comparable estimate (in order of magnitude) of total phytoplankton
carbon in the global ocean, the underlying assumption of a constant
ratio of phytoplankton carbon and POC imposes significant uncer-
tainties in regional estimates of phytoplankton carbon and its spatial
distributions. This is important because the ratio of phytoplankton
carbon to POC varies over a wide range, from 14% to 85%, across a
variety of oceanographic regions (Behrenfeld et al., 2005; DuRand
et al., 2001; Eppley et al., 1992; Gundersen et al., 2001; Kostadi-
nov et al., 2016; Oubelkheir et al., 2005; Redalje and Laws, 1981;
Stramski et al., 2008). Furthermore, with the exception of Kostadinov
etal. (2016), current algorithms are limited in their ability to retrieve
the carbon-based classification of phytoplankton functional types
(PFT) or phytoplankton size classes (PSC), though many methods are

3. Development of the bio-optical algorithm

available to estimate the fractional chlorophyll distribution across
PFTs and PSCs (e.g., IOCCG, 2014). Given the importance and wide
applications of satellite-based PFTs, it is important to improve our
understanding on phytoplankton carbon stocks in various PSCs and
PFTs, through developing new algorithms based on complementary

bio-optical variables. . . .
lnptlhls paper, we present a new bio-optical algorithm to

estimate phytoplankton carbon from remotely-sensed ocean colour
data, designed by targeting the photosynthetic phytoplankton cells
directly. The algorithm builds on Roy et al. (2013), where we
developed a semi-analytical method to compute the exponent of
the phytoplankton size spectrum from the specific-absorption coeffi-
cient of phytoplankton (which depends on chlorophyll concentration
and total absorption by phytoplankton), and derived the equiva-
lent spherical diameter of phytoplankton cells and the fractions of
chlorophyll in any size class of phytoplankton, in particular, those for
picoplankton, nanoplankton and microplankton. Here, the method
is extended for computing carbon-to-chlorophyll ratio from ocean
colour applicable to any size class of phytoplankton, by combining
analytically the allometric relationships between phytoplankton cell
size and carbon content with the size-spectrum algorithm of Roy et
al. (2011, 2013), and implementing them to estimate phytoplank-
ton carbon in any size class. The method is applied to ocean colour
data for the period 1997-2013, and is validated using the available
in situ data. Results are discussed in relation to the applicability of
this method to obtain independent remote-sensing-based measure-
ments of phytoplankton carbon, and the carbon budget, according
to phytoplankton size. The results pave the way to improved imple-
mentation of carbon-based growth models using satellite data for
computation of primary production in various PSCs.

2. Data

We used a continuous time series of ocean colour data on global
scale produced by the European Space Agency’s Ocean Colour Climate
Change Initiative (OC-CCI) project (http://www.esa-oceancolour-cci.
org) through systematically merging the available satellite data
from three major sensors: NASA-SeaWiFS, NASA-MODIS-Aqua and
ESA-MERIS. For temporal consistency of OC-CCI products, and for
algorithms selected for processing them, please see Belo Couto et
al. (2016), Brewin et al. (2015), Miiller et al. (2015). We used the
global 4-km, level-3 mapped products from OC-CCI, the details of
which can be found in http://www.esa-oceancolour-cci.org (also in,
Sathyendranath et al., unpublished manuscript). Further, to validate
the new algorithm we used a global dataset on pico-phytoplankton
carbon compiled by Buitenhuis et al. (2012) that included flow
cytometry data obtained since the late 1980s during cruises through-
out most of the world ocean, as a contribution to the MAREDAT World
Ocean Atlas of Plankton Functional Types database. The details of
the database can be found in Buitenhuis et al. (2012) and in http://
doi.pangaea.de/10.1594/PANGAEA. We extracted a subset of this
database to cover the time period from September 1997 to December
2013, over which the satellite-based ocean colour data were avail-
able. We further obtained mixed-layer depths from Monthly Isopy-
cnal & Mixed-layer Ocean Climatology (MIMOC, Schmidtko et al.,
2013, http://www.pmel.noaa.gov/mimoc/), and remapped those to
OC-CCI 4-km grids using nearest-neighbour interpolation (using
MATLAB2015b interpolation routine).

3.1. Exponent of phytoplankton size spectra (§) from their absorption coefficients a,,(A) following Roy et al. (2013)

The exponent of the phytoplankton size spectrum (§) can be computed from the absorption coefficient of phytoplankton at 676 nm,
apr(676), using a method developed by Roy et al. (2013). For the completeness of the methodology of this paper, we briefly describe below the
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principal steps for retrieval of § without fully reproducing it from Roy et al. (2013). In this method, it was assumed that the particle size
distribution of phytoplankton cells follows the power law, so the number of phytoplankton cells per unit volume of seawater with a particle
diameter of D was expressed as N(D) = kD, with ¢ as the exponent of the phytoplankton size spectrum, and k a constant related to the
abundance of the total population. A relationship was then derived between the concentration of chlorophyll-a (B in mg Chl m—3) within a
diameter range [Din, Dmax | of phytoplankton cells and the exponent of the phytoplankton size spectrum, by considering that the concentration
of chlorophyll-a within the size interval (diameter range [Dpin, Dmax]) would be a product of the number of phytoplankton cells within that
size class, the volume of each cell, and the intracellular concentration of chlorophyll-a (c;). The quantity ¢; (mg Chl-a m~3) was parameterised
as: ¢; = cgD™™, with the parameters ¢o = 3.9 x 10 (mg Chl-a m~294) and m = 0.06 (dimensionless), which were estimated earlier by Roy
et al. (2011) using the in situ measurements published by Maranon et al. (2007). The concentration of chlorophyll-a (B in mg Chl m~3) within
the set diameter range was then expressed as a function of § as follows:

D 4—E—m 4—E—m
— me (s -m - _ (T Dimax ™ — Dmin
B_/Dmm [(GD)(COD ) (kD )]dD_(Bkco) T (1)

with the parameters k, ¢, and m described as above.

Next, the specific absorption coefficient of chlorophyll-a (a;,, as distinct from the specific absorption of phytoplankton a;h) was expressed
as a function of the cell diameter (D). To do so, phytoplankton absorption coefficient (a,,) at 676 nm was considered with the assumption that
at this wavelength the contribution from auxiliary pigments, and substances other than chlorophyll-a would be negligible (Roy et al., 2011). At
this wavelength, the specific absorption coefficient of the cell material of phytoplankton was assumed to be equal to a?;, the specific-absorption
coefficient of chlorophyll-a inside the cell, with units of m? (mg Chl-a)~! (Roy et al., 2011); and following Duyens (1956), the theoretical value
of the chlorophyll-specific absorption of phytoplankton cells of diameter D was expressed as: aZ;,(676,D) = [3a};Qa(pc)]/2pc, with Q, as the
dimensionless absorption efficiency of a cell given by Qq (0¢) = 1+ [2exp (—pc)]/pe +2[exp (—pc) —1]/p2, and p, as the dimensionless optical
thickness of the cell given by p. = p.(676,D) = a;.(676)c0D1—m. The observed absorption coefficient of chlorophyll-a at 676 nm due to the
phytoplankton cells in the prescribed diameter range was then expressed as:

D

a0u(676) = /

Din

[(gm) (coD™™) (kD6) x a;hl(676,D)] dD. 2)

Using Egs. (1) and (2), the specific absorption of chlorophyll-a at 676 nm, due to phytoplankton cells in the diameter range [Dpin, Dmax], Was
obtained as:

a:, (676) = n876) _ 1. /D D’" [(ED3)(COD"")(kD‘§) agh,(676,D)] dD

B B E min 6

= 4- g —m "Dmax 3—E—m *
= e /D " [P x a2,(676,D) d.
max min min

Note that, a},(676,D) on the right-hand side of the above equation is the theoretical value of the specific-absorption coefficient of
chlorophyll-a at 676 nm, expressed as a function of the equivalent spherical diameter D of phytoplankton, as described above based on Roy
et al. (2011). For remote-sensing applications, a;h(676) is obtained from ocean colour by an algorithm for inherent-optical properties (IOP),
for example, the Carder et al. (1999) algorithm as implemented in Roy et al. (2013). Further, from a;h(676), the quantity a?,,(676) is calculated
using the method of Roy et al. (2011). The quantity § is then estimated from Eq. (4) numerically, by using a non-linear optimization algorithm.
For further details on the methodology, parameterisation and optimization algorithm associated with the retrieval of §, the reader is referred

to Roy et al. (2011, 2013).

3.2. Relating § to phytoplankton carbon and carbon-to-chlorophyll ratio ( y) using allometric relationships

Allometric relationships appear to hold for phytoplankton communities, as well as for other organisms (Marafién, 2008; Marafién et
al., 2013; Menden-Deuer and Lessard, 2000; Peters, 1983; Strathmann, 1967). Menden-Deuer and Lessard (2000) have reported allometric
relationships between the cellular content of phytoplankton carbon (Cey) and cell volume (V) for morphologically different dinoflagellates,
diatoms and other protist groups. The allometric relationships take the following canonical form:

Ceen = ClV?e”, (4)

where Vg is the volume of a phytoplankton cell expressed in um?3, C.y is expressed in pg C cell=!, and the quantities a and b are constants,
which should ideally remain unchanged for a given ecological community. The concentration of phytoplankton carbon (Cyosg, in mgC m~—3)
contained in the cells within a diameter range [Dp;,, Dmax] can then be expressed as:

Dmax
Crotal = / [number of cells] x [carbon content within a cell]dD,

'min

'Dmax T b
= / (k07¢) [10—%(101803) }dD,
b 6

'min

b ( p3b—t+1 _ p3b—6+1
—10-9 181 max min
=10 ka(lO 6) (3b—§~|—1 ) (5)
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We note that the values 10~2 and 108 are associated with the conversions of units from picogram to mg, and m3 to um3, respectively.
In the special case when § — (3b + 1), the denominator in Eq. (5) goes to zero; so, to avoid division by zero, a limit of
Crotal = [10‘9ka(1018 %)bloge (g:j‘: )] is used. Eqgs. (1) and (5) relate £ to the concentration of total phytoplankton chlorophyll (B, mg m~3) and
the total phytoplankton carbon (Cyorq, mg m~3), respectively, from which the carbon-to-chlorophyll ratio ( y) of the mixed population can be
calculated as

_ Coowl _ 10-%a(10'87/6)" [ DIE*! — p2b—t+1 (4_§_m)
B /6)co 3b—E£+1)

(6)

Drnas " = D "
We note that the only unknown parameter k appearing in both Egs. (1) and (5) cancels out within the expression of carbon-to-chlorophyll

ratio (6). Once the exponent § is computed from Eq. (4) following the description in the previous section, y can be computed directly from Eq.
(6). Therefore, the total phytoplankton carbon can be calculated simply as,

_ 10-%(10%71/6)" (D;",i’axg+1 —ph-ett )( 4—€-m ) s

Crotat = ¥B = (7)
tota (m/6)co D?n_a?(_m _Dﬁq_jé_m 3b-¢+1

It is clear that the estimates of phytoplankton carbon, using the above equations for y and Gy, would depend on accurate parameterisation
of the allometric relationship between phytoplankton cell volume and cellular carbon. However, the allometric parameters a and b are reported
to vary across phytoplankton groups (Menden-Deuer and Lessard, 2000). So, the estimates of mixed phytoplankton carbon would be biased if
the allometric parameters corresponding to any one phytoplankton group were used (Fig. 1a). More explicitly, according to Menden-Deuer and
Lessard (2000), if the allometric relationship for protists (green line in Fig. 1a) were used, phytoplankton carbon would be underestimated for
small cells and overestimated for large cells; if that for diatoms (blue line in Fig. 1a) were used, phytoplankton carbon would be underestimated
for large cells; and finally, if that for dinoflagellate (yellow line in Fig. 1a) were used, phytoplankton carbon would be overestimated for small
cells.

Therefore, for calculating cellular carbon of mixed phytoplankton operationally, the allometric parameters need to be established, which
is not straight-forward. In a recent study, Kostadinov et al. (2016) considered an approach in which four different allometric relationships
reported by Menden-Deuer and Lessard (2000) were used for two different parts of the phytoplankton size spectrum. However, the allo-
metric relationship is scale-free (as known from allometric studies based on other species, e.g., Peters, 1983), and therefore, the allometric
parameters should remain unchanged across the size range of the phytoplankton community. But deriving a new allometric relationship for
phytoplankton based on in situ data, applicable to all oceanographic regions and across all size ranges of mixed phytoplankton, is out of the
scope of this study, which aims at making a first estimate of phytoplankton carbon using reported allometric relationships, and the new
method. So, from an operational perspective, we considered the various estimates of ‘a’ and ‘b’ reported by Menden-Deuer and Lessard (2000)
as independent observations, and derived, as described below, a continuous allometric relationship with a view to applying them to mixed pop-
ulations, assuming that the populations are combinations of the phytoplankton groups for which the allometric relationships were reported
by Menden-Deuer and Lessard (2000). In this approach, we first computed phytoplankton carbon over a broad range of cell volumes using
the allometric relationships reported for protists, diatoms and dinoflagellates, respectively (shown by the green, blue and yellow dots, respec-
tively in Fig. 1a). We next computed the median, minimum and maximum of the three estimates of phytoplankton carbon, at each size, over
the same range of cell volumes (see, Fig. 1a). We then derived three allometric relationships between cell volume and the median, minimum
and maximum estimates of phytoplankton carbon, respectively, using linear regression (the median is shown by solid red line, and the mini-
mum and maximum by dotted back lines in Fig. 1a). As expected, the revised allometric parameters, corresponding to the regressed median
(a = 0.54,b = 0.85, > > 0.95), minimum (a = 0.25, b = 0.83, > > 0.95) and maximum (a = 0.76, b = 0.82, r*> > 0.95), differed from
the reported allometric parameters corresponding to any particular phytoplankton group. However, the regressed median line (red) in Fig. 1a
would represent an approximate allometric relationship for which the estimates of mixed-phytoplankton carbon would always be within the
range of estimates based on single phytoplankton groups. Furthermore, the minimum and maximum estimates of the phytoplankton carbon
at any size would be represented by the lower and upper bounds for the allometric relationships (the dotted black lines in Fig. 1a) derived this
way from the group-specific allometric relationships.

The allometric parameters ‘a’ and ‘b’, derived by regression as above, can be incorporated into the expression for carbon-to-chlorophyll
ratio y (Eq. (6)) to describe the variations of y with phytoplankton size structure. For phytoplankton populations consisting of homogeneous
cells of the same size, the variation of y as a function of the cell size of the population is shown in Fig. 1b. When the population deviates from
homogeneity and consists of cells of different sizes, y varies as a function of the exponent of size spectrum according to Fig. 1c. The magnitude
of y decreases with increase in cell size (Fig. 1b, the black curve). For mixed populations, y increases with the exponent of phytoplankton
size spectrum § (Fig. 1c, the black curve). The shaded areas in Fig. 1b and c represent the lower and upper levels of y corresponding to
the regressed-minimum and maximum of the allometric relationship. Fig. 1b-c show that the carbon-to-chlorophyll ratio of phytoplankton
will be at the higher end (e.g., ¥¢100) when the population is dominated by small cells, and would decrease to a significantly lower value
(e.g., xi20) if the population were dominated by large cells. These results are remarkably consistent, qualitatively, with empirically derived
carbon-to-chlorophyll ratios, e.g., those in Sathyendranath et al. (2009).

We next apply these relationships to derive analytical expressions for y and phytoplankton carbon for any given size class of phytoplankton
population. Although we have used the above allometric parameters for the rest of the calculations to obtain a first estimate of phytoplank-
ton carbon by our method, any improvement on the allometric relationships based on new in situ data would improve our estimates of
phytoplankton carbon, and it would be straight-forward to incorporate any new parameter estimates into our method.

3.3. Carbon-to-chlorophyll ratio ( y) and fractions of carbon for any size class of phytoplankton

Considering that the biomass of phytoplankton (in carbon units) is the sum of biomasses in n non-overlapping size classes, the carbon
biomass Cj of a size class defined by the size (diameter) range [D;,D;] with 0 < i < j < n, can be expressed as the product of the
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carbon-to-chlorophyll ratio y; and the chlorophyll concentration B; of that size class. Using Eq. (6) and the expression for B;; from Roy et al.
(2013), the carbon content of any size class Cj; can be expressed as,

D4 —§-m _ D4—§—m
Cj = XiBij = Xi | === | B 8)
Drnac ™ = Dt ™"
The total phytoplankton carbon can then be expressed as a sum of phytoplankton carbon from n size classes,
i=n-1j=n B i=n-1j=n
Coa = D, G= e piem > ©)
i=0j=i+1 max ~ “min i=0j=i+1
4—E— 4—¢—
<[ 51" -]
where the carbon-to-chlorophyll ratio y;; of the size class [D;, D;] follows directly from Eq. (6),
o 1078l 0'87/6)" { I D?b‘g“} [4—§—m} 10)
i 4 4 - :
(/6)co Dj m_Di m 3b-€E+1
Further, the fractional phytoplankton carbon F; within any size class [D;, D;] can be computed as follows:
4—E— 4—E—
Gj 4 (DS -
Fj = o = T e o (11)
> [a(pf -
i:OJ:H—l[ U( ' )]

In particular, if [Dg, D1], [D1, D2] and [D,, D3] represent the ranges of cell diameters corresponding to picoplankton, nanoplankton and
microplankton respectively, the carbon-to-chlorophyll ratio corresponding to the three size classes (), x, and y,,) can be respectively
computed using Eq. (10) as follows:

_ 10—9a(1018n/6)b D‘?b—§+1 _ ng—§+1 4—€-m . (12)
A= (m/6)co pi-E-m _ piEm [3b -6+ 1] ’
10-9(10'8 1/6)" [DP=¢*1 _p=8+1r4_e_m
an = (15/6)c o 24—§—m jl—g—m [31, £ ] g (13)
0 p4-sm _ p? -§+1
and
_ 10-%a(10%n/6)° [DF*" DY€7 r4—g—m (14)
Am = (m/6)co A& _ pA-t-m [3b —€+1 ] ‘

Moreover, using Eq. (11) and Egs. (12)-(14), the fractions of carbon for picoplankton (F,), nanoplankton (F,) and microplankton (Fy) can be
computed as follows:

Fp: P (D4 &~ m_D4 £— m) | (15)
[Zp(4£m 4Em)+}{n(4£m_ m+xm(4gm_Dg_g_m)}

Fp = X”(Hm 4§m) .

n [)(p (D?’g”"—Dg & m) (D4 &-m D4 e m)+)( (D4 &-m D4 = m)]

Fn = am (D57 - D) (17)

[)(p( 4§m_D4§m)+x ( 4§m—D4gm)+)(m( 4gm Dg_g_m)]-

Consistent with the previous studies (Roy et al., 2013; Sieburth et al., 1978; Vidussi et al., 2001), the diameter bounds of pico-, nano-, and
micro- size classes may be taken as Dy = 0.2um, D; = 2um, D, = 20pum, and D3 = 50um. Applying these limits to Eq. (10), the carbon-
to-chlorophyll ratios of picoplankton, nanoplankton, and microplankton can be plotted as functions of the exponent of the phytoplankton size
spectrum as in Fig. 2a. Compared with the carbon-to-chlorophyll ratio of the mixed population (black curve, Fig. 2a), carbon-to-chlorophyll
ratio of picoplankton (blue curve, Fig. 2a) is always higher, but that of microplankton (red curve, Fig. 2a) is always lower, over the range values
of &. On the other hand, the carbon-to-chlorophyll ratio of the nanoplankton (green curve, Fig. 2a) is less than that of the mixed population for
low values of €, and is greater than that of the mixed population for the high values of § (Fig. 2a). The range of variation of carbon-to-chlorophyll
ratio is the minimum for micro-size class, and maximum for pico-size group (Fig. 2a).
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The proportions of phytoplankton carbon corresponding to the three size classes, when plotted as functions of § (the solid blue, green and
red lines corresponding to pico-, nano- and micro classes, respectively in Fig. 2b), have shapes similar to those obtained for the chlorophyll-
proportions (the dotted lines, Fig. 2b, based on Roy et al., 2013). However, over the range of § relevant for phytoplankton, the fraction
of microplankton based on carbon is lower than that based on chlorophyll (the solid and dotted red lines, Fig. 2b); and the fraction of
picoplankton based on carbon is higher than that based on chlorophyll (the solid and dotted blue lines, Fig. 2b). On the other hand, the frac-
tion of nanoplankton based on carbon is higher than that based on chlorophyll for low values of &, but the relationship is reversed for higher
values of § (the solid and dotted green lines, Fig. 2b). We also note that the uncertainties in allometric parameters result in relatively low
uncertainties in the estimates of carbon-based fractions of pico, nano and micro size classes (the blue, green and red shaded areas associated
with the corresponding solid lines in Fig. 2b indicate these uncertainties).

4. Results and discussion
4.1. Algorithm validation using in situ data

Ideally, it would require a large global dataset of in situ phy-
toplankton carbon to validate the bio-optical method presented
here. However, constraints on the availability of in situ data on
phytoplankton carbon limit the possibilities for algorithm valida-
tion. Nevertheless, we have attempted a validation exercise using
the available flow cytometry data on phytoplankton compiled and
reported by Buitenhuis et al. (2012) as contribution to the MAREDAT
World Ocean Atlas of Plankton Functional Types database. However,
this database reported phytoplankton carbon for the pico-size group
only, from 1980 onwards, over the world ocean. Therefore, the vali-
dation exercise presented here is limited to in situ data on pico-size
class, and the statistics may not apply to phytoplankton carbon in
other size classes or to the total phytoplankton carbon, which would
be a sum of carbon in all size classes. To maximise the number of
data points for validation, we have used the reported pico-carbon
data over the entire period of satellite coverage i.e., from September
1997 to December 2013, consistent with the OC-CCI v2 satellite data.
Given the short time-scale of phytoplankton turn over, the satel-
lite and in situ match-up would be most optimal on a daily scale.
Compared with the weekly or monthly products, the choice of daily
products would minimise the possible uncertainties that might arise
due to time differences between the in situ and satellite observa-
tions. We thus computed pico-plankton carbon using our method on
the daily maps, and retrieved the spatially matched-up data points,
which provided ~900 data points for validation of pico-carbon.

The locations of the in situ measurements from the MAREDAT
database taken for this study are shown in Fig. 3a, and the valida-
tion results are shown in Fig. 3 b-d. On a linear scale, the Spearman’s
correlation (p) between the in situ picoplankton carbon and the
satellite-derived estimates of pico-carbon (in mgC m~—3) computed
by our method is 0.57,p < 0.0001, where the root-mean squared
error (RMSE) of the satellite-based estimates is 36.23 mgC m~3.
The data-density plot shows high density (red colour) of sample
points below the 1:1 line (black line in Fig. 3b) suggesting that the
satellite-derived picoplankton carbon values are lower than the cor-
responding in situ estimates, and on a linear scale the bias is —13.53
mgCm—3,

The apparent underestimation of picoplankton carbon by the
method presented here may be due to uncertainties in satellite input,
the allometric parameterisation or the uncertainties in the in situ
estimates. In particular, the in situ pico-carbon values in MAREDAT
were calculated assuming a set of fixed values of carbon per cell
for the three picoplankton species considered, and so the overall
pico-carbon estimates from the in situ data are subject to uncertain-
ties related to the cell-to-carbon conversion factors. Buitenhuis et al.
(2012) acknowledged that “there is considerable uncertainty in the
conversion factors” (see Table 2 in Buitenhuis et al. (2012) for the
ranges of conversion factors) in the reported MAREDAT pico-carbon
data, and further suggested that this factor may lead to significant
overestimation of in situ picoplankton carbon, which on a global

scale could contribute to “a 2-3 fold difference in the estimated
picophytoplankton biomass ” (Buitenhuis et al., 2012).

Taking these uncertainties in the in situ estimates into consider-
ation, we have investigated the uncertainty bounds for the satellite-
based estimates: Fig. 3c shows three scenarios of the percentages
of error in the satellite-derived estimates relative to the in situ val-
ues over the data quantiles. Corresponding to the default (reported)
in situ estimates, the magnitude of the relative errors in satellite-
derived estimates are < 34% for a quartile of the data, and < 72% for
the three quartiles of the data (black line, in Fig. 3c). This scenario
changes significantly if the possible uncertainties in the in situ val-
ues are taken into account: for example, corresponding to an overall
2-fold (or 3-fold) overestimation in the in situ data, satellite-derived
estimates are < 18% (or < 35%) for a quartile of the data, and < 70%
(or > 100%) for the three quartiles of the data (the blue and red lines,
respectively, in Fig. 3c). Also, the box plots (Fig. 3d) show that the
median values and the spread and distributions of the estimated and
in situ picoplankton values differ between the default in situ values
and the alternative two scenarios: the median value of the estimated
pico-carbon is lower than that for the default in situ estimates, but
the difference reduces considerably if we take into account the possi-
bilities of a 2-fold or 3-fold overestimation of the in situ pico-carbon,
and in fact, corresponding to a 3-fold in situ overestimation, the
median of the satellite estimates is higher than those for the in situ
estimates (Fig. 3d).

Therefore, our satellite-based estimates show underestimation of
picoplankton carbon with respect to the reported in situ estimates,
but the level of bias of the current estimates is also subject to the
uncertainties in the carbon-per-cell conversion factors applied to the
in situ data. The validation might also have been affected by the
properties of the statistical distribution of the quantities under com-
parison; for example, the in situ picoplankton-carbon data were com-
puted in MAREDAT under the assumption of mean cell-to-carbon
conversion factors, whereas the algorithm, by design, considered the
median of a number of allometric relationships drawn from the lit-
erature for different taxa. So, the possibility of non-normality in the
in situ picoplankton-carbon distribution would impose a systematic
bias, when considering the mean over the median. However, re-
calculation of the in situ pico-carbon from MAREDAT database to
explore the unknown error characteristics is beyond the scope of our
study. The other sources of uncertainties in pico-carbon may also
be associated with the uncertainties in the satellite input, e.g., here
we have used OC-CCI-version-2 data, which have been re-processed
with a view to reducing uncertainties. However, a new version of
the data (OC-CCI-version-3) has been released only recently, but we
are yet to apply our method to the updated version of the data. We
further note that the RMSE and bias values presented are based on
picoplankton carbon data only, and uncertainties in phytoplankton
carbon for other classes would require further investigation.

4.2. C:Chl( y)and phytoplankton carbon over global ocean

The average carbon-to-chlorophyll ratios (y) computed over the
global ocean using composite monthly images from September 1997
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Fig. 1. Reported and derived allometric relationships between phytoplankton carbon
and their cell size. (a) Allometric carbon of diatoms (blue), dinoflagellates (yellow) and
protists (green) reported by Menden-Deuer and Lessard (2000); and the allometric
carbon for mixed phytoplankton a function of their cell volume derived by regression;
the regressed median (@ = 0.54, b = 0.85), and the lower (@ = 0.25, b = 0.83)
and upper (a = 0.76, b = 0.82) bounds are shown by red solid line, and two black-
dotted lines respectively. (b)-(c) Derived relationship between carbon-to-chlorophyll
ratio y and phytoplankton size: (b) y as a function of phytoplankton cell diameter
for a homogenous population, calculated from Eq. (6) and the relationship between
€ to average cell diameter derived in Roy et al. (2013); and (c) y as a function of the
exponent of phytoplankton size spectrum § calculated from Eq. (6). In (b) and (c), the
red lines represent the median of the allometric relationship shown in (a); and the
grey areas represent the ranges of y corresponding to the regressed minimum and
maximum shown as black-dotted lines in (a). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

to December 2013 vary over a wide range, from <20 in the coastal or
case-2 waters to >90 in the open ocean and case-1 waters (Fig. 4a).
These results are consistent with our understanding that the low and
high values of y represent, respectively, the areas dominated by large
and small phytoplankton. The annually-averaged standing stocks of
phytoplankton carbon over the mixed layer vary from less than 1 mg
m~3 in the gyres to more than 500 mg m~3 in the case-2 and coastal
waters (Fig. 4b). The stock of phytoplankton carbon integrated over
the mixed layer and globe is found to be ~0.26 GtC (Fig. 4b), with
some monthly variation in the stock ranging from 0.24 to 0.29 GtC.
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Fig. 2. Carbon-to-chlorophyll ratio y and phytoplankton carbon derived for various
size classes of phytoplankton. (a) y of mixed phytoplankton (black line, using Eq. (6)),
picoplankton (blue line, using Eq. (12)), nanoplankton (green line, using Eq. (13)) and
microplankton (red line, using Eq. (14)) plotted as functions of the exponent of phyto-
plankton size spectrum §&. (b) Size-fractionated phytoplankton carbon and chlorophyll
plotted as functions of €. The solid blue, green and red lines represent the fractions of
phytoplankton carbon corresponding to picoplankton (using Eq. (15)), nanoplankton
(using Eq. (16)) and microplankton (using Eq. (17)); and the shaded area represents
the corresponding ranges of carbon fraction. The dotted blue, green and red lines
represent fractions of chlorophyll corresponding to picoplankton, nanoplankton and
microplankton, as derived in Roy et al. (2013). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)



184 S. Roy et al. / Remote Sensing of Environment 193 (2017) 177-189

(@)

Latitude

-150

-100 -50 0 50 100 150
Longitude

—
(¢
~—"
—y
-
o

—e— Default in situ picoC estimates
s in situ picoC estimates assuming 2-fold error
s i situ picoC estimates assuming 3-fold error

—_

o

o
T

N0r 1

80r 1

70F 1

60 1

50 1

40} ;

30 1

20+ 1

% error relative to in situ pico-C values

10} 1

20 30 40 50 60 70 80 90
Quantile %

0 1
0o 10

(b)

500 Depth<= MLD, n= 900

250 |- Spearman p= 0.57, p= 0.0000
RMSE= 36,23 mgCm~?
bias=-13.53 mgC m

100

o
o

n
o

Algorithm Pico-C (mg m?)
L

1 5 20 50 100 250 500
in situ Pico-C (mg m)

(d)

102 3 i i | i E

PicoC mg m™
50

102 . ; L

In-situ default

Algorithm estimate  In-situ 2-fold error In-situ 3-fold error

Fig. 3. Validation of the computed phytoplankton carbon using in situ data. (a) Locations of the in situ data, which is a part of in situ samples from MAREDAT within the range
of satellite coverage, i.e, 1997-2013. The compiled dataset represents in situ measurements of carbon for small-phytoplankton, < 2 um in diameter. Phytoplankton carbon for
the corresponding size range was computed using Eqs. (8) and (10). (b) Comparison plot for the observed and computed picoplankton carbon. The increased densities of the
data points around the 1:1 line are evident in the high density (red colour) close to the 1:1 line. Lower densities are shown in blue. (c) Magnitudes of the relative error (in %)
in estimation of pico-carbon with respect to the reported in situ values presented for data quantiles. The black line indicates the error percentages for the default in situ values,
whereas the blue and red lines show those for assumed 2 and 3 fold overestimation in the in situ calculations (these possibilities in MAREDAT are discussed by Buitenhuis et al.
(2012)). (d) Box plots of the observed and satellite-derived values of picoplankton carbon corresponding to the default in situ values, and in situ values with possibilities of 2 and
3 fold overestimations. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

The smallest stock is observed in June with ~0.24 GtC and a max-
imum in September ~0.29 GtC, with the autumn months having
stocks of carbon greater than the annual average.

In a recent study, Kostadinov et al. (2016) have shown that
the estimates of annual stock of phytoplankton carbon depend on
the estimation method, and can vary from 0.2 to 0.32 GtC, with
the minimum due to Stramski et al. (2008): ~0.2 GtC, followed
by the average of some CMIP5 models (Taylor et al, 2012):
~0.22 GtC, Kostadinov et al. (2016): ~0.24 GtC (with a range of
0.2 to 0.3 GtC) and Behrenfeld et al. (2005): ~0.32 GtC. Our estimate
of ~0.26 GtC (with a range of monthly variations between 0.24 and
0.29 GtC) is slightly higher than those of Stramski et al. (2008), the
average result for CMIP5 models reported by Kostadinov et al. (2016),
and the back-scattering-based method of Kostadinov et al. (2016),
but is lower than that reported by Behrenfeld et al. (2005).

4.3. Size-partitioned phytoplankton carbon over the global ocean

Using the equations derived in Section 3.3, phytoplankton carbon
can be partitioned into any number of size classes, and in particu-
lar, into the three broad size classes, e.g., pico, nano, and micro. The
annual average of phytoplankton carbon in the three size classes
expressed both as the percentages of total phytoplankton and in the
units of mgC m~—3 are shown in Fig. 5.

The global distributions of the carbon-based phytoplankton size
classes (i.e., the percentages of carbon in three size classes in Fig. 5a-c),
are generally similar to the corresponding chlorophyll-based distri-
butions reported in Roy et al. (2013). Pico-carbon stocks generally
dominate over those of nano- and micro-carbon for most of the open
oceans, including the gyres and the equatorial regions, with contri-
butions ranging from ~70% to more than 90% of total phytoplankton
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carbon (Fig. 5a). Converting the percentages into units of carbon,
the concentration of picoplankton carbon in these areas is generally
within the range of 1-10 mgC m~3 (Fig. 5d). In most of the coastal
waters and generally in the northern hemisphere, the pico-carbon
stocks are around 10-20 % of the total phytoplankton carbon (Fig. 5a);
however, the range of pico-carbon may vary from2 mgC m~3 to more
than 100 mgC m~—3 (Fig. 5d). The stocks of nano-plankton carbon
are 10-15 % of total phytoplankton carbon in equatorial gyres, and
go up to 40-45 % in the southern ocean, northern hemisphere and
coastal oceans (Fig. 5b). These percentages account for ~2-3 mg m~3
of nano-carbon in the equatorial gyres, and ~10-30 mgC m~3 in the
northern and southern oceans (Fig. 5e). The stocks of micro-carbon,
on the other hand, are estimated to be less than 20% in most of the
equatorial and southern ocean, except the coastal regions, and in the
northern hemisphere, where its percentage contribution goes up to
70-80 % (Fig. 5¢). In the coastal oceans and northern hemisphere,
the concentration of micro-plankton carbon is estimated to be in the
range 20-30 mgC m~—3, whereas in the equatorial gyres it is below
0.5 mgC m~3 (Fig. 5f).

The global distributions of the size-partitioned phytoplankton
carbon can be spatially integrated over the mixed-layer depth
to estimate their annual-mean stocks, which are ~0.14 GtC for
picoplankton (with a monthly range of 0.13-0.16 GtC), ~0.08 GtC
for nanoplankton (with a monthly range of 0.07-0.09 GtC) and
~0.04 GtC for microplankton (with a monthly range of 0.03
-0.041 GtC) (Fig. 4c). These stocks of carbon in the three size classes
constitute approximately 54% (with a monthly range of 53-62 %), 31%
(with a monthly range of 27-32 %) and 15% (with a monthly range of
10-16 %) of the global stock of phytoplankton carbon, respectively.

4.4. Sources and estimates of uncertainty

The estimates of phytoplankton carbon from the bio-optical
algorithm presented here would be subject to uncertainties from two
sources: uncertainties associated with the remote sensing products
(chlorophyll-a and phytoplankton absorption, and hence satellite-
derived values of §); and the uncertainties in allometric parameteri-
sation in the bio-optical model; but the two uncertainty sources are
independent of each other. We consider an overall uncertainty in §
arising from the uncertainties in satellite chlorophyll-a and phyto-
plankton absorption (based on the uncertainty calculations by Roy et
al.,, 2013). We then compute from Eq. (7) the total relative sensitiv-
ity of the estimated phytoplankton carbon (i.e, % ), as a combined
function of the individual relative sensitivities 25, %, and %”. In the
following, we apply the above sensitivity analysis to understand the
uncertainties in the estimation. The uncertainties presented below
should be interpreted as model-based uncertainties; and not as those
based on the in situ observations (which was not possible due to lack
of the size-partitioned data on phytoplankton carbon).

The overall uncertainties in the estimates of phytoplankton
carbon due to 0-25 % uncertainties in § (chosen based on Roy et al.,
2013) and 20% uncertainties in the allometric parameters a and b are
presented on a contour map in Fig. 6a.

The uncertainty level in phytoplankton carbon is typically < 30%
over the range of § typically encountered at sea, except for § val-
ues between 3.5 and 4, where the uncertainties can amplify up to
80-90 % corresponding to > 20% uncertainty in satellite-derived §
values (Fig. 6a). In other words, for phytoplankton populations that
are clearly dominated by either small cells (higher end of §) or large
cells (lower end of §), the uncertainties in estimating phytoplankton
carbon will be low ( 20-30 %), but, for populations with no obvi-
ous dominance by large or small cells, the uncertainties can be high
(> 30%).

On the global map, the propagation of uncertainties in phyto-
plankton carbon corresponding to the higher ends of uncertainties in
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carbon in the surface in mg m—3.

€ (say, 25%), a and b (say, 20%) is presented for 1997-2013(Fig. 6b).
In most of the Northern hemisphere, in the subtropical gyres and in
the coasts, the uncertainties in phytoplankton carbon are within a
range of 20-40 % (Fig. 6b). However, uncertainties in the Southern
Ocean, and parts of Atlantic Ocean can go up to 50-70 % (Fig. 6b).
The lower and upper levels of the annual stocks of phytoplankton
carbon arising from regional-level uncertainties may vary between
0.12 GtCand 0.35 GtC; and those for pico-, nano- and micro- carbon
may vary in the ranges of [0.07, 0.2], [0.03, 0.09] and [0.01 0.04] GtC,
respectively (Fig. 7).

The monthly variations of the stocks are also remarkable: the pos-
sibility exists of pico-carbon stock being larger or smaller than the

default estimates, whereas for microplankton-carbon, the uncertain-
ties tend to lower the estimates, as evident when taking into account
regional uncertainties in phytoplankton carbon (Fig. 7).

5. Concluding remarks

Estimates of total concentration of carbon in phytoplankton and
its fractions in various phytoplankton size classes from satellite-
remote sensing can provide valuable information for ocean bio-
geochemical and carbon-cycle research. However, the work in this
direction has been hampered by the absence of a remote-sensing sig-
nal that can be related directly to phytoplankton carbon. Only a small
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Fig. 6. Level of uncertainties in phytoplankton carbon computed by the method pro-
posed here. (a) Uncertainty in phytoplankton carbon estimates due to possible errors
in estimating § (the exponent of phytoplankton size spectrum) and b (the exponent
of allometric carbon relationship). The overall uncertainties in the estimates of phy-
toplankton carbon are shown over a possible uncertainty range 0-25% for § and an
uncertainty level 20% for b. (b) Propagated uncertainties in the estimates of phyto-
plankton carbon corresponding to 25% uncertainty in § and 20% uncertainty in b over
the global ocean for the period of 1997-2013.

number of studies have addressed this problem, and all the meth-
ods proposed so far (Behrenfeld et al., 2005; Kostadinov et al., 2016;
Stramski et al., 2008) have relied on relating POC to back-scattering
or to remote-sensing reflectance, and then ascribing a fixed frac-
tion of POC to phytoplankton. Though these approaches have met
with reasonable success, their weakness lies in the natural variabil-
ity in the ratio of phytoplankton carbon to POC, which the algorithms
cannot account for.

Here we present a novel bio-optical algorithm that uses the
absorption coefficient of phytoplankton from remote sensing along
with the allometric relationship of cellular carbon content to com-
pute carbon-to-chlorophyll ratio, the standing stocks of phytoplank-
ton carbon, and the carbon-based proportions of phytoplankton size
classes, in the global ocean. The basis of the method is the bio-optical
algorithm developed by Roy et al. (2013) to compute the exponent
of the phytoplankton size spectrum and the chlorophyll proportions

at various size classes from the absorption coefficient of phytoplank-
ton in the red part of the absorption spectrum. Extending the method
of Roy et al. (2013), we have derived analytical expressions for
combining phytoplankton absorption from remote sensing with the
allometric relationship between cell size and phytoplankton carbon.
The new expressions enable computation of phytoplankton carbon
from satellite remote sensing based on the bio-optical fingerprints
of the living phytoplankton alone. By design, this absorption-based
method does not rely on a systematic relationship between phy-
toplankton carbon and POC (such as a constant ratio), as required
by the other methods that are available at present (Behrenfeld
et al., 2005; Kostadinov et al., 2016). Instead, by combining the
estimates of phytoplankton carbon, based on the absorption coef-
ficient of pigment-containing phytoplankton cells (presented here),
with the estimates of POC from back-scattering or remote-sensing
reflectances (Behrenfeld et al., 2005), we can arrive at independent
estimates of the ratio of phytoplankton carbon to POC. Such esti-
mates would be an immediate application of the method proposed
here.

We have used the new method to compute phytoplankton car-
bon in the global ocean on a monthly basis for the 1997-2013 period
using OC-CCI time series data, and computed monthly climatologies
of the standing stock of phytoplankton carbon in the mixed layer,
and their annual averages. The new results are of the same order of
magnitude, and comparable with, those reported earlier (Behrenfeld
et al., 2005; Kostadinov et al., 2016; Stramski et al., 2008), though
there are regional and seasonal differences. We have provided the
RMSE and bias of the estimates with respect to the in situ measure-
ments of the picoplankton carbon, but due to the unavailability of in
situ data, we have been unable to estimate the uncertainties, RMSE
or bias for other phytoplankton size classes (e.g., micro- or nano-
phytoplannkton). We also recognise that, as additional data become
available, it would be interesting and useful to carry out exten-
sive inter-comparisons among the various methods for estimating
phytoplankton carbon.

With the availability of a variety of satellite-derived products,
it has become increasingly important to understand and quantify
uncertainties associated with these products. For example, the
Global Climate Observing System (GCOS) has provided requirements
for accuracy in ocean colour data that can be used for climate studies
(GCOS, 2011). Because our method for estimation of carbon is semi-
analytical, it is possible, as shown here, to quantify analytically
the uncertainties in carbon estimates, provided that the uncertain-
ties in satellite-derived chlorophyll and absorption coefficient are
known. For illustration, we have provided estimates of the uncertain-
ties corresponding to 30% overall uncertainty (GCOS requirement)
in the satellite input, and we have identified the oceanographic
regions where the carbon estimates will be less (or more) sensi-
tive to uncertainties in the inputs. These calculations also provide
insight into the error characteristics of phytoplankton carbon esti-
mated by our method, and suggest that the errors do not generally
amplify, and that they become less for more accurate retrievals of
the satellite-based inherent optical properties. Another source of
uncertainty is the allometric parametrisation, and any change in the
allometric parameters would alter our estimates of phytoplankton
carbon (as shown in the sensitivity results). However, implementa-
tion of any improved allometric parametrisation within this method
would be straight forward. Finally, we note that the uncertainties in
the estimates of carbon in the coastal oceans and at high latitudes
may be high due to several reasons, e.g., high concentration of CDOM,
solar zenith angles, clouds or ice; and so this method, like many
other ocean colour algorithms, will be generally applicable to
open oceans. Further investigations should address its applicabil-
ity to optically complex waters, and oceanic regions with complex
phytoplankton community structure, e.g., blooms of large chain-
forming diatoms.
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(a) Climatology 1997-2013: Picoplankton carbon

T T T T
0.2 o
0.1 o
6: O 1 1 1 1 1 1 1 1 1 1 1 1 1
S Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual
s (b) Climatology 1997-2013: Nanoplankton carbon
-8 T T T T T T T T T T T T T
8 o1l
c
S
el T T T PR Pttt
C
5]
6_ O 1 1 1 1 1 1 1 1 1 1 1 1 1
*2 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual
s (c) Climatology 1997-2013: Microplankton carbon
‘5 T T T T T T T T
30.04 -
x
]
D
C
'-5 O 1 1 1 1 1 1 1 1 1 1 1 1 1
S Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual
177 04 (d) Climatology 1997-2013: Total phytoplankton carbon
- T T T
0.2 { o
O 1 1 1 1 1 1 1 1 1 1 1 1 1
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual

Fig. 7. Estimates of uncertainties in the monthly and annual standing stocks of phytoplankton carbon. Monthly and annual climatologies of the standing stocks of (a) picoplankton
carbon, (b) nanoplankton carbon, (c) microplankton carbon and (d) total phytoplankton carbon, plotted along with their corresponding uncertainty ranges (represented by vertical
error bars) estimated assuming possible uncertainties in § and b parameterisation as in Fig. 6.
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