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A B S T R A C T

Launched in January 2015, the National Aeronautics and Space Administration (NASA) Soil Moisture Active
Passive (SMAP) observatory was designed to provide frequent global mapping of high-resolution soil moisture
and freeze-thaw state every two to three days using a radar and a radiometer operating at L-band frequencies.
Despite a hardware mishap that rendered the radar inoperable shortly after launch, the radiometer continues to
operate nominally, returning more than two years of science data that have helped to improve existing hy-
drological applications and foster new ones.

Beginning in late 2016 the SMAP project launched a suite of new data products with the objective of re-
covering some high-resolution observation capability loss resulting from the radar malfunction. Among these
new data products are the SMAP Enhanced Passive Soil Moisture Product that was released in December 2016,
followed by the SMAP/Sentinel-1 Active-Passive Soil Moisture Product in April 2017.

This article covers the development and assessment of the SMAP Level 2 Enhanced Passive Soil Moisture
Product (L2_SM_P_E). The product distinguishes itself from the current SMAP Level 2 Passive Soil Moisture
Product (L2_SM_P) in that the soil moisture retrieval is posted on a 9 km grid instead of a 36 km grid. This is
made possible by first applying the Backus-Gilbert optimal interpolation technique to the antenna temperature
(TA) data in the original SMAP Level 1B Brightness Temperature Product to take advantage of the overlapped
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radiometer footprints on orbit. The resulting interpolated TA data then go through various correction/calibration
procedures to become the SMAP Level 1C Enhanced Brightness Temperature Product (L1C_TB_E). The L1C_TB_E
product, posted on a 9 km grid, is then used as the primary input to the current operational SMAP baseline soil
moisture retrieval algorithm to produce L2_SM_P_E as the final output. Images of the new product reveal en-
hanced visual features that are not apparent in the standard product. Based on in situ data from core validation
sites and sparse networks representing different seasons and biomes all over the world, comparisons between
L2_SM_P_E and in situ data were performed for the duration of April 1, 2015–October 30, 2016. It was found that
the performance of the enhanced 9 km L2_SM_P_E is equivalent to that of the standard 36 km L2_SM_P, attaining
a retrieval uncertainty below 0.040 m3/m3 unbiased root-mean-square error (ubRMSE) and a correlation coef-
ficient above 0.800. This assessment also affirmed that the Single Channel Algorithm using the V-polarized TB

channel (SCA-V) delivered the best retrieval performance among the various algorithms implemented for
L2_SM_P_E, a result similar to a previous assessment for L2_SM_P.

1. Introduction

The synergy of active (radar) and passive (radiometer) technologies
at L-band microwave frequencies in the National Aeronautics and Space
Administration (NASA) Soil Moisture Active Passive (SMAP) mission
provides a unique remote sensing opportunity to measure soil moisture
with unprecedented accuracy, resolution, and coverage (Entekhabi
et al., 2014). Driven by the needs in hydroclimatological and hydro-
meteorological applications, the SMAP observatory was designed to
meet a soil moisture retrieval accuracy requirement of 0.040 m3/m3

unbiased root-mean-square error (ubRMSE) or better at a spatial re-
solution of 10 km over non-frozen land surfaces that are free of ex-
cessive snow, ice, and dense vegetation coverage (Entekhabi et al.,
2014).

In July 2015, SMAP's radar stopped working due to an irrecoverable
hardware failure, leaving the radiometer as the only operational in-
strument onboard the observatory. Since the beginning of science data
acquisition in April 2015, the radiometer has been collecting L-band
(1.41 GHz) brightness temperature (TB) data at a spatial resolution of
36 km, providing global coverage every two to three days. The rela-
tively high fidelity of the data provided by the radiometer's radio-fre-
quency-interference (RFI) mitigation hardware (Piepmeier et al.,
2015b; Mohammed, et al., 2016), along with the observatory's full 360-
degree view that offers both fore- and aft-looking observations, presents
unique advantages for SMAP data to advance established hydrological
applications (Koster et al., 2016) and foster new ones (Yueh et al.,
2016).

Despite the loss of the radar, SMAP is committed to providing high-
resolution observations to the extent that is possible. This initiative of
acquiring high-resolution information proceeds in two distinct ap-
proaches. The first approach involves combining the current SMAP
coarse-resolution passive observations with high-resolution radar ob-
servations from other satellites in space to produce an operational soil
moisture product similar to the now discontinued SMAP Level 2 Active-
Passive Soil Moisture Product (L2_SM_AP). To attain this objective, the
high-resolution synthetic aperture radar (SAR) data from the European
Space Agency (ESA) Sentinel-1 C-band radar constellation (Torres et al.,
2012) represent the most optimal candidate data source that would
provide partial fulfillment of the original science benefits of L2_SM_AP.
Although there are technical challenges due to data latency, global
coverage, revisit frequency, and retrieval performance from such a
combined L/C-band SMAP/Sentinel-1 soil moisture product, these
challenges are expected to be mitigated over time under the close col-
laboration between the two mission teams. The resulting SMAP/Sen-
tinel-1 Level 2 Active-Passive Product (L2_SM_SP) will be available to
the public in April 2017.

The second approach is based on the application of the Backus-
Gilbert (BG) optimal interpolation technique (Poe, 1990; Stogryn,
1978) to the antenna temperature (TA) measurements in the original
SMAP Level 1B Brightness Temperature Product (L1B_TB) (Piepmeier
et al., 2015a, 2015b). The resulting interpolated TA data then go

through the standard correction/calibration procedures to produce the
SMAP Level 1C Enhanced Brightness Temperature Product (L1C_TB_E)
on a set of 9 km grids (Chaubell et al., 2016). The objective of the BG
interpolation as implemented by SMAP is to achieve optimal brightness
temperature (TB) estimates at arbitrary locations as if original ob-
servations were available at the same locations (Poe, 1990). This esti-
mation is achieved by linearly combining optimally weighted radio-
metric measurements overlapped in both along- and across-scan
directions. The BG procedure is an improvement over what the current
SMAP Level 1C Brightness Temperature Product (L1C_TB) (Chan et al.,
2014, 2015) offers, in that it makes explicit use of antenna pattern
information and finer grid posting to more fully capture the high spatial
frequency information in the original oversampled radiometer mea-
surements in the along-scan direction (Chaubell, 2016). It is important
to note that this recovery of high spatial frequency information as im-
plemented in this approach primarily comes from interpolation instead
of beam sharpening. As such, the native resolution of the interpolated
data remains to be about the same as the spatial extent projected on
earth surface by the 3-dB beamwidth of the radiometer. For SMAP, this
spatial extent is roughly an ellipse with 36 km as its minor axis and
47 km as its major axis (Entekhabi et al., 2014). As the SMAP project
adopted the square root of footprint area as the definition of native
resolution of the radiometer, the corresponding native resolution is
estimated to be (π / 4 × 36 × 47)1/2 ~ 36 km. The resulting L1C_TB_E
data are posted on the EASE Grid 2.0 projection (Brodzik et al., 2012,
2014) at a grid spacing of 9 km, even though the data actually exhibit a
native resolution of ~36 km. The L1C_TB_E product is then used as the
primary input in subsequent passive geophysical inversion to produce
the SMAP Level 2 Enhanced Passive Soil Moisture Product (L2_SM_P_E)
(O'Neill et al., 2016), which is the focus of this paper.

The retrieval performance of L2_SM_P_E was assessed and reported
in this paper using> 1.5 years (April 1, 2015–October 30, 2016) of in
situ data from core validation sites (CVSs) and sparse networks re-
presenting different seasons and biomes all over the world. The as-
sessment findings presented in this paper represent a significant ex-
tension of the work reported in (Chan et al., 2016). Additional metric
statistics from this assessment can be found in a separate report that
covers the standard and enhanced passive soil moisture products
(Jackson et al., 2016).

2. Product development

The SMAP observatory was to present a unique opportunity to de-
monstrate the synergy of radar and radiometer observations at L-band
frequencies in the remote sensing of soil moisture and freeze/thaw state
detection from space. Unfortunately, this demonstration was shortened
due to a hardware failure that eventually halted the operation of the
radar after about three months of operation. While the loss necessarily
ended the operational production of several key soil moisture and
freeze/thaw data products that rely on the high-resolution radar data, it
also spurred the development of several new data products designed to
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recover as much high-resolution information as possible.
Table 1 shows a list of SMAP data products that are or will be in

routine operational production. There are two main groups of data
products in the table: enhanced products (with asterisks) and standard
products (without asterisks). The standard products are those that have
been available since the beginning of the mission and will continue to
be available operationally. The enhanced products, on the other hand,
represent new products developed after the loss of the SMAP radar;
these products contain enhanced information derived from the existing
radiometer observations or new external data from other satellites. For
example, the L2_SM_SP product is a product derived from the SMAP's L-
band radiometer observations and the Sentinel-1's C-band SAR data
(Torres et al., 2012). This product will be available to the public in April
2017. Other enhanced products (L1C_TB_E L2_SM_P_E, L3_SM_P_E,
L3_FT_P, and L3_FT_P_E) are derived primarily from the existing
radiometer observations. These products have been available to the
public since December 2016. Of these radiometer-only enhanced pro-
ducts, L1C_TB_E and L2_SM_P_E will be covered in greater detail in
Sections 2.1 and 2.2, respectively. A more comprehensive list of SMAP
data products, including those that have been discontinued, can be
found in Entekhabi et al. (2014).

2.1. Enhanced brightness temperature

Passive soil moisture inversion begins with TB observations. For
SMAP, to more fully capture the information in the oversampled along-
scan TB observations, the BG interpolation technique is applied to the
TA measurements in the standard L1B_TB product in the SMAP's Science
Data System (SDS). The resulting interpolated TA data then go through
the standard correction/calibration procedures to produce the
L1C_TB_E product. The BG implementation in SDS follows the same
approach described in (Poe, 1990) that makes use of antenna pattern
information to produce TB estimates at arbitrary sampling locations.
The procedure is considered optimal in the sense that its estimates are
supposed to minimize differences relative to what would have been
measured had the instrument actually sampled at the same locations.
For immediate application to soil moisture and freeze/thaw state de-
tection in SMAP product production, the TB values in L1C_TB_E are
posted on the 9 km EASE Grid 2.0 in global cylindrical projection, north
polar projection, and south polar projection. Only the TB values on
global projection are used in passive soil moisture inversion. A more in-
depth account of the theory behind the BG implementation in SDS can
be found in the Algorithm Theoretical Basis Document (ATBD)
(Chaubell, 2016) and Assessment Report (Piepmeier et al., 2016) that
accompany the product. Besides the ATBD, the Product Specification
Document (PSD) (Chan and Dunbar, 2016) is also available on the
NASA Distributed Active Archive Center (DAAC) at the National Snow
and Ice Data Center (NSIDC) for informed applications of the product.

Fig. 1 illustrates the horizontally polarized TB observations obtained
by SMAP between December 15–17, 2016 over the Amazon basin be-
fore and after the application of BG interpolation. This area was se-
lected because the domain features well-defined river tracks punctuated
with highly visible fine-scale spatial structures in the midst of a rela-
tively homogeneous background. It is clear from the comparison that
the enhanced L1C_TB_E (Fig. 1a) is able to reveal spatial features that
are concealed or not immediately obvious in the standard L1C_TB
(Fig. 1b). Overall, the L1C_TB_E image also presents a less pixelated
representation of the original TB data due to its posting on a finer grid.

It is important to note that the improvement in L1C_TB_E image
quality primarily comes from an interpolation scheme that is an im-
provement over what is used in the standard product. The interpolation
in L1C_TB_E more fully captures the information from the oversampled
along-scan TB observations without degrading the native resolution of
the radiometer. This aspect regarding the native resolution of the pro-
duct had been extensively vetted during product development in a
series of matchup analyses using the original time-ordered L1B_TB TB

data points as the benchmark data set. The matchup analyses began
with collocating pairs of L1C_TB_E TB data points and L1B_TB TB data
points that are within a small distance from each other (< 2 km, which
is less than the L1B_TB geolocation error allocation (Piepmeier et al.,
2015b)). The collocated pairs were stored separately for ascending and
descending passes, and also for fore- and aft-looking observations to
minimize azimuthal mismatch. The collocated data pairs from these
four matchup collections (i.e., ascending/fore, ascending/aft, des-
cending/fore, and descending/aft) were then averaged over all orbits
between April 1, 2015 and October 30, 2016 for all grid cells in the
9 km global EASE Grid 2.0 projection. Even though the L1C_TB_E data
values are posted on a grid, they are expected to be almost identical to
the corresponding L1B_TB data values at the same grid locations due to
the close proximity between the two.

Given their impulse-like radiometric responses, small and isolated
islands in the ocean provide ideal locations to compare the native re-
solution of L1C_TB_E against the known native resolution of L1B_TB
using the collocated data pairs described above. This approach of using
discrete islands to evaluate data native resolution has been extensively
explored in the study of resolution-enhanced scatterometer data
(Bradley and Long, 2014). Fig. 2 describes one such comparison per-
formed over Ascension Island (7.93°S,14.417°W) located approximately
midway between the coasts of Brazil and Africa in the South Atlantic
Ocean. The island is about 10.07 km across and exhibits near azimuthal
symmetry. Based on the peak values of L1C_TB_E (Fig. 2a) and L1B_TB
(Fig. 2b), contours that correspond to one half of their respective peak
values were estimated around the island. These 3-dB contours, which
are indicative of the native resolution of the underlying data, are de-
picted by the blue lines in the figures. The magenta lines in both figures
are identical; they correspond to the 3-dB contours estimated based on
the geometry of the projected instantaneous field-of-view (IFOV) of the
radiometer. The good agreement in 3-dB contour estimation between
radiometric estimation (blue lines) and geometric calculation (magenta
lines) confirms that small and isolated islands such as Ascension Island
can indeed provide a good approximation for the impulse response from
a point target.

The comparison shows that after BG interpolation the 3-dB contour
of L1C_TB_E in Fig. 2a is about the same size as the 3-dB contour of
L1B_TB in Fig. 2b, confirming that the enhanced product preserves the
native resolution and noise characteristics of the radiometer while
providing an optimal interpolation approach that more fully utilizes the
oversampled along-scan TB measurements in the original data. Further

Table 1
SMAP data products that are or will be in routine operational production.

Product Description Grid
resolution

Latency

L1A_Radiometer Radiometer telemetry in time
order

N\A 12 h

L1B_TB Radiometer time-ordered TB N\A 12 h
L1C_TB Radiometer gridded TB 36 km 12 h
L1C_TB_E* Radiometer gridded TB

(enhanced)
9 km 12 h

L2_SM_P Soil moisture (radiometer) 36 km 24 h
L2_SM_P_E* Soil moisture (radiometer,

enhanced)
9 km 24 h

L2_SM_SP* Soil moisture (radiometer
+ Sentinel-1 radar)

3 km Best effort

L3_FT_P* Freeze/thaw state (radiometer) 36 km 50 h
L3_FT_P_E* Freeze/thaw state (radiometer,

enhanced)
9 km 50 h

L3_SM_P Soil moisture (radiometer) 36 km 50 h
L3_SM_P_E* Soil moisture (radiometer,

enhanced)
9 km 50 h

L4_SM Soil moisture (surface and root
zone)

9 km 7 days

L4_C Carbon net ecosystem exchange
(NEE)

9 km 14 days
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analyses on other small and isolated islands yielded the same conclu-
sions. The TB signatures between L1C_TB_E in Fig. 2a and L1B_TB in
Fig. 2b are similar, suggesting that the current BG implementation in-
deed preserves the original data at locations where L1B_TB measure-
ments are available.

The native resolution of L1C_TB_E determines the spatial scale by
which the subsequent L2_SM_P_E should be developed and assessed. It
was found that when 3 km ancillary data (Table 2) are aggregated as
inputs to L2_SM_P_E that is posted on a 9 km grid, a contributing do-
main of 33 km × 33 km (Section 3.1) is necessary to cover a spatial
extent similar to the native resolution of the radiometer, as shown in
Fig. 3. This contributing domain was thus adopted in L2_SM_P_E pro-
duct development (Section 2.2) and assessment (Section 3).

It is anticipated that future SDS BG implementations could improve
the current L1C_TB_E native resolution beyond the radiometer IFOV.
Such an improvement will require an alternate contributing domain
that approximates the new native resolution in revised L2_SM_P_E

development and assessment.

2.2. Enhanced passive soil moisture

The development of L2_SM_P_E follows a close parallel with that of
L2_SM_P (Chan et al., 2016; O'Neill et al., 2015). Both products share
the same basic implementation elements, ranging from processing flow,
ancillary data, and retrieval algorithms. Fig. 4 illustrates the flow of the
L2_SM_P_E processor. The fore- and aft-look TB observations in
L1C_TB_E are first combined to provide the primary input to the pro-
cessor. Static and dynamic ancillary data (Table 2) preprocessed on
finer grid resolutions are then brought into the processing to evaluate
the feasibility of the retrieval. If retrieval is deemed feasible at a given
location, the processor will further evaluate the quality of the retrieval.
When surface conditions favorable to soil moisture retrieval are iden-
tified, corrections for surface roughness, effective soil temperature,
vegetation water content, and radiometric contribution by water bodies

Fig. 1. SMAP horizontally polarized TB observations obtained between December 15–17, 2016 over the Amazon basin: (a) L1C_TB_E and (b) L1C_TB.

Fig. 2. Comparison of data native resolution between
L1C_TB_E and L1B_TB based on radiometric estimation
(blue lines) and geometric calculation (magenta lines): (a)
L1C_TB_E and (b) L1B_TB. (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred
to the web version of this article.)

Table 2
Ancillary data used in L2_SM_P_E and L2_SM_P processing.

Ancillary data Grid resolution Time resolution Primary data source

Water fraction 3 km Static MODIS MOD44W (Chan et al., 2013)
Urban fraction 3 km Static Global Rural Urban Mapping Project (GRUMP) (Das, 2013a, 2013b)
DEM slope variability 3 km Static USGS GMTED 2010 (Podest and Crow, 2013)
Soil texture 3 km Static FAO Harmonized World Soil Database (HWSD) (Das, 2013a, 2013b)
Land cover 3 km Static MODIS MCD12Q1 (V051) (Kim, 2013)
NDVI 3 km 2000–2013 MODIS MOD13A2 (V005) (Chan, 2013)
Snow fraction 9 km Daily NOAA IMS (Kim and Molotch, 2011)
Freeze/thaw fraction 9 km 1 hourly GMAO GEOS-5 (SMAP, 2015)
Soil temperatures 9 km 1 hourly GMAO GEOS-5 (SMAP, 2015)
Precipitation 9 km 3 hourly GMAO GEOS-5 (Dunbar, 2013)
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are applied. The baseline soil moisture retrieval algorithm is then in-
voked with TB observations and ancillary data as inputs to produce
L2_SM_P_E on the same 9 km EASE Grid 2.0 global projection as the
input L1C_TB_E. A full description of L2_SM_P_E data contents can be
found in the Product Specification Document (Chan, 2016).

Because of its improved representation of the original TB data, the
enhanced 9 km L1C_TB_E product contains additional spatial informa-
tion that is not available in the standard 36 km L1C_TB product, as
exemplified in a series of spectral analysis on small and isolated islands

in the ocean (Piepmeier et al., 2016). When used as the primary input to
the enhanced 9 km L2_SM_P_E product, the additional spatial informa-
tion results in enhanced visual details that are also not available in the
standard 36 km L2_SM_P product. Fig. 5 contrasts the amount of visual
details between L2_SM_P_E (Fig. 5a) and L2_SM_P (Fig. 5b) over the
vegetation transition region in Africa. After the application of the
baseline soil moisture retrieval algorithm to L1C_TB_E, the resulting
L2_SM_P_E on a 9 km grid shows a higher acuity compared with
L2_SM_P on a 36 km grid. This enhancement in spatial details is further
illustrated in Fig. 5c in which the soil moisture variability of L2_SM_P_E
(black line) and L2_SM_P (red line) along the two identical magenta
lines in Fig. 5a and b is plotted together. The enhanced and standard
products mostly track each other and follow the same macroscopic
spatial patterns along the transect without obvious bias or unusual ar-
tifacts. In addition, there are locations (e.g. between column indices 512
and 515 in Fig. 5c) where L2_SM_P_E appears to capture fine-scale soil
moisture variability that is not available in L2_SM_P. It is important to
note that throughout the L2_SM_P_E processing, no new or additional
ancillary datasets other than those listed in Table 2 are brought into the
processing. The observed enhanced spatial details revealed in
L2_SM_P_E are thus primarily contributed by the additional spatial in-
formation in L1C_TB_E.

On a global scale, the enhanced product exhibits the expected
geographical patterns of soil moisture. Fig. 6 represents a three-day
composite of 6:00 am descending L2_SM_P_E between September
20–22, 2016. The expected patterns of L2_SM_P_E soil moisture esti-
mates in m3/m3 qualitatively affirm the soundness of the underlying
baseline soil moisture retrieval algorithm. Section 3 covers the quan-
titative aspect of the assessment for the product based on comparison
with in situ soil moisture observations.

Fig. 3. With L2_SM_P_E (black) and ancillary data (gray) posted at 9 km and 3 km, re-
spectively, a contributing domain of 33 km × 33 km (red) is necessary to cover a spatial
extent similar to the native resolution (blue) of the radiometer. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this
article.)

Fig. 4. L2_SM_P_E processor design. The processor uses L1C_TB_E and ancillary data as primary inputs to perform geophysical inversion under favorable surface conditions. The resulting
L2_SM_P_E soil moisture estimates are posted on the same 9 km EASE Grid 2.0 global projection as the input L1C_TB_E.

S.K. Chan et al. Remote Sensing of Environment 204 (2018) 931–941

935



3. Product assessment

The retrieval accuracy of L2_SM_P_E was assessed using the same
validation methodologies for L2_SM_P as reported in (Chan et al., 2016;
Colliander et al., 2017). Nineteen months (April 2015 through October
2016) of in situ soil moisture observations were used as ground truth to
evaluate the performance of the product. Much deliberation had been

made before the SMAP launch in the selection of these in situ data
sources based on criteria that would ensure data quality, sensor main-
tenance and calibration stability, biome diversity, and geographical
representativeness. The in situ data consist of scaled aggregations of in
situ soil moisture observations at a nominal soil depth of 5 cm to mimic
L2_SM_P_E soil moisture estimates at satellite footprint scale. All in situ
data were provided through a collaboration with domestic and

Fig. 5. Soil moisture estimates in m3/m3 of (a) L2_SM_P_E,
(b) L2_SM_P, and (c) L2_SM_P_E and L2_SM_P along the two
identical magenta lines in (a) and (b). (For interpretation of
the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 6. Global pattern of soil moisture estimates in m3/m3

of L2_SM_P_E based on 6:00 am descending TB data be-
tween September 20–22, 2016.
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international calibration/validation (cal/val) partners who operate and
maintain calibrated soil moisture measuring sensors in their core vali-
dation sites (CVSs) (Colliander et al., 2017; Smith et al., 2012; Yee
et al., 2016) or sparse networks (Chen et al., 2017).

Agreement between the L2_SM_P_E soil moisture estimates and in
situ data over space and time are reported in four metrics: 1) unbiased
root-mean-square error (ubRMSE), 2) bias (defined as L2_SM_P_E minus
in situ data), 3) root-mean-square error (RMSE), and 4) correlation (R).

Together, these metrics provide a more complete description of product
performance than any one alone (Entekhabi et al., 2010). Among these
metrics, however, the ubRMSE computed from in situ data comparison
at CVSs is adopted for reporting the product accuracy of L2_SM_P_E,
with an accuracy target of 0.040 m3/m3 that mimics the SMAP Level 1
mission accuracy requirement for the now discontinued SMAP Level 2
Active-Passive Soil Moisture Product (L2_SM_AP) (Entekhabi et al.,
2010).

In addition to L2_SM_P_E, the retrieval performance of L2_SM_P and
soil moisture estimates by the Soil Moisture and Ocean Salinity (SMOS)
mission (Kerr et al., 2016) was also provided for comparison. In this
assessment, both L2_SM_P_E and L2_SM_P were based on version
R13080 of the standard L1B_TB product, whereas versions 551 and 621
of the SMOS Level 2 soil moisture product were used for April 1–May 4,
2015 and May 5, 2015–October 31, 2016, respectively. For both SMAP
and SMOS soil moisture data products, only those soil moisture esti-
mates whose retrieval quality fields indicated good retrieval quality
were considered and used in metric calculations. The selection involved
data of recommended quality as indicated in the retrieval quality flag
for the SMAP product, and data with unset FL_NO_PROD and retrieval
DQX < 0.07 for the SMOS product.

Compared with L2_SM_P, L2_SM_P_E is expected to exhibit a higher
serial correlation of retrieval uncertainty over space. This higher cor-
relation is a direct result of the original L1B_TB interpolated on a finer
grid posting (9 km) for L2_SM_P_E than the original grid posting
(36 km) for L2_SM_P. A full investigation into the spatial correlation
characteristics between the standard and enhanced products is beyond
the scope of this assessment.

3.1. Core validation sites

Although in general limited in quantity and spatial extent, CVSs
provide in situ soil moisture observations that, when properly scaled
and aggregated, provide a representative spatial average of soil
moisture at the spatial scale of L2_SM_P_E (Section 2.1). In this assess-
ment, CVS in situ data between April 2015 and October 2016 from a
total of 15 global sites were aggregated over a contributing domain of
33 km× 33 km (Fig. 3 in Section 2.1) around the sites. This area was
chosen so that on a 9 km grid the resulting aggregated ancillary data

Table 3
CVSs used in L2_SM_P_E assessment.

CVS (latitude, longitude) Location Climate regime Land cover type

Walnut Gulch
(31.75°, −110.03°)

Arizona, USA Arid Shrub open

Reynolds Creek
(43.19°, −116.75°)

Idaho, USA Arid Grasslands

TxSON
(30.35°, −98.73°)

Texas, USA Temperate Grasslands

Fort Cobb
(35.38°, −98.64°)

Oklahoma, USA Temperate Grasslands/
croplands

Little Washita
(34.86°, −98.08°)

Oklahoma, USA Temperate Grasslands

South Fork
(42.42°, −93.41°)

Iowa, USA Cold Croplands

Little River
(31.67°, −83.60°)

Georgia, USA Temperate Cropland/natural
mosaic

Kenaston
(51.47°, −106.48°)

Canada Cold Croplands

Carman
(49.60°, −97.98°)

Canada Cold Croplands

Monte Buey
(−32.91°, −62.51°)

Argentina Arid Croplands

REMEDHUS
(41.29°, −5.46°)

Spain Temperate Croplands

Twente
(52.26°, 6.77°)

Netherlands Temperate Cropland/natural
mosaic

HOBE
(55.97°, 9.10°)

Denmark Temperate Croplands

Mongolia
(46.05°, 106.76°)

Mongolia Cold Grasslands

Yanco
(−34.86°, 146.16°)

Australia Arid Croplands

Table 4
Comparison between the 6:00 am descending L2_SM_P_E soil moisture estimates and CVS in situ soil moisture observations between April 2015 and October 2016.

CVS ubRMSE (m3/m3) Bias (m3/m3) RMSE (m3/m3) Correlation (R) N

SCA-H SCA-V DCA SCA-H SCA-V DCA SCA-H SCA-V DCA SCA-H SCA-V DCA SCA-H SCA-V DCA

Reynolds Creek 0.039 0.040 0.057 −0.059 −0.023 0.007 0.071 0.046 0.058 0.572 0.598 0.558 86 97 96
Walnut Gulch 0.021 0.024 0.038 −0.011 0.011 0.035 0.024 0.026 0.052 0.759 0.813 0.800 93 118 115
TxSON 0.031 0.032 0.041 −0.064 −0.015 0.056 0.071 0.036 0.069 0.935 0.921 0.827 153 153 152
Fort Cobb 0.032 0.028 0.045 −0.086 −0.056 −0.017 0.091 0.062 0.048 0.858 0.883 0.817 244 247 247
Little Washita 0.023 0.022 0.042 −0.062 −0.027 0.026 0.066 0.035 0.050 0.911 0.920 0.837 246 246 245
South Fork 0.062 0.054 0.054 −0.071 −0.062 −0.050 0.094 0.082 0.074 0.597 0.646 0.637 159 162 162
Little River 0.034 0.028 0.041 0.048 0.087 0.144 0.059 0.092 0.150 0.871 0.887 0.755 229 229 229
Kenaston 0.034 0.022 0.040 −0.064 −0.040 −0.001 0.072 0.046 0.040 0.808 0.854 0.515 145 145 145
Carman 0.094 0.056 0.053 −0.087 −0.088 −0.077 0.128 0.104 0.093 0.463 0.611 0.535 157 158 158
Monte Buey 0.075 0.051 0.042 −0.022 −0.020 −0.025 0.078 0.055 0.049 0.754 0.840 0.724 126 135 137
REMEDHUS 0.037 0.042 0.054 −0.024 −0.007 0.010 0.044 0.042 0.055 0.897 0.872 0.837 197 196 189
Twente 0.072 0.056 0.056 0.003 0.013 0.028 0.072 0.057 0.063 0.888 0.885 0.784 238 242 241
HOBE 0.048 0.036 0.063 0.004 −0.009 −0.012 0.048 0.037 0.064 0.700 0.863 0.789 104 104 104
Mongolia 0.032 0.036 0.036 −0.009 −0.006 −0.006 0.033 0.037 0.037 0.736 0.728 0.730 139 102 116
Yanco 0.051 0.043 0.045 0.000 0.020 0.035 0.051 0.048 0.057 0.960 0.964 0.943 170 172 170
L2_SM_P_E over a 33 km × 33 km

contributing domain
0.046 0.038 0.047 −0.034 −0.015 0.010 0.067 0.054 0.064 0.781 0.819 0.739

L2 SMOS averaged over a 33 km × 33 km
contributing domain

0.051 −0.023 0.071 0.698

L2_SM_P over a 36 km× 36 km contributing
domain

0.044 0.037 0.043 −0.033 −0.014 0.010 0.065 0.052 0.063 0.796 0.822 0.738

L2 SMOS averaged over a 36 km × 36 km
contributing domain

0.051 −0.024 0.072 0.713
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cover a spatial extent similar to the native resolution of the radiometer
(Section 2.1). Within this domain, CVS in situ data were scaled and
aggregated to provide the reference soil moisture for comparison.
L2_SM_P_E soil moisture estimates from 6:00 am descending and
6:00 pm ascending overpasses were then extracted to match up in space
and time with the corresponding CVS in situ data. Table 3 lists the CVSs
used in the assessment, along with their geographical locations, climate
regimes, and land cover types.

Tables 4 and 5 summarize the performance metrics that characterize

the retrieval performance of the 6:00 am descending and 6:00 pm as-
cending L2_SM_P_E soil moisture estimates at CVSs for the baseline and
two other candidate soil moisture retrieval algorithms (SCA-H: Single
Channel Algorithm using the H-polarized TB channel and DCA: Dual
Channel Algorithm) (O'Neill et al., 2015). Compared with the other two
candidate algorithms, the SCA-V baseline algorithm was able to deliver
the best overall retrieval performance, achieving an average ubRMSE of
0.038 m3/m3 (6:00 am descending) and 0.039 m3/m3 (6:00 pm as-
cending) as well as correlation of 0.819 (6:00 am descending) and

Table 5
Comparison between the 6:00 pm ascending L2_SM_P_E soil moisture estimates and CVS in situ soil moisture observations between April 2015 and October 2016.

CVS ubRMSE (m3/m3) Bias (m3/m3) RMSE (m3/m3) Correlation (R) N

SCA-H SCA-V DCA SCA-H SCA-V DCA SCA-H SCA-V DCA SCA-H SCA-V DCA SCA-H SCA-V DCA

Reynolds Creek 0.046 0.042 0.060 −0.075 −0.042 −0.005 0.088 0.059 0.060 0.452 0.651 0.630 79 106 96
Walnut Gulch 0.027 0.029 0.042 −0.031 −0.019 −0.000 0.041 0.034 0.042 0.622 0.676 0.631 102 165 141
TxSON 0.028 0.028 0.033 −0.058 −0.018 0.031 0.065 0.034 0.045 0.930 0.929 0.893 178 178 178
Fort Cobb 0.039 0.035 0.046 −0.087 −0.069 −0.046 0.096 0.077 0.065 0.811 0.846 0.778 240 251 245
Little Washita 0.027 0.026 0.042 −0.057 −0.032 0.000 0.063 0.041 0.042 0.909 0.910 0.835 259 259 258
South Fork 0.053 0.045 0.061 −0.084 −0.087 −0.074 0.099 0.098 0.095 0.710 0.764 0.668 172 171 171
Little River 0.036 0.029 0.041 0.050 0.078 0.115 0.062 0.083 0.122 0.885 0.872 0.683 193 193 193
Kenaston 0.033 0.027 0.052 −0.065 −0.051 −0.024 0.073 0.057 0.057 0.833 0.828 0.515 186 186 186
Carman 0.087 0.049 0.051 −0.102 −0.109 −0.101 0.134 0.120 0.113 0.406 0.594 0.505 161 162 162
Monte Buey 0.075 0.052 0.046 0.007 −0.019 −0.050 0.075 0.056 0.067 0.848 0.874 0.722 107 113 113
REMEDHUS 0.041 0.045 0.055 −0.029 −0.018 0.006 0.050 0.048 0.056 0.856 0.857 0.781 168 184 156
Twente 0.068 0.052 0.051 0.006 0.001 −0.001 0.069 0.052 0.051 0.897 0.903 0.834 272 274 274
HOBE 0.046 0.042 0.069 0.003 −0.013 −0.019 0.046 0.044 0.071 0.711 0.844 0.811 106 106 106
Mongolia 0.032 0.038 0.037 −0.017 −0.018 −0.017 0.036 0.042 0.041 0.747 0.700 0.706 110 79 82
Yanco 0.060 0.053 0.052 0.004 0.011 0.013 0.060 0.054 0.054 0.966 0.966 0.940 201 203 199
L2_SM_P_E over a 33 km × 33 km

contributing domain
0.047 0.039 0.049 −0.036 −0.027 −0.011 0.070 0.060 0.066 0.772 0.814 0.729

L2 SMOS averaged over a 33 km × 33 km
contributing domain

0.052 −0.029 0.071 0.721

L2_SM_P over a 36 km× 36 km contributing
domain

0.046 0.039 0.047 −0.037 −0.028 −0.015 0.071 0.061 0.066 0.772 0.795 0.700

L2 SMOS averaged over a 36 km × 36 km
contributing domain

0.053 −0.028 0.072 0.710

(a) Descending L2_SM_P_E at Little Washita, OK : ubRMSE = 0.022 m3/m 3, bias =

−0.027 m3/m 3, R = 0.920

(b) Descending L2_SM_P_E at Walnut Gulch, AZ: ubRMSE = 0.024 m3/m 3, bias =

0.011m3/m 3, R = 0.813
Fig. 7. Soil moisture time series at (a) Little Washita, OK; and (b) Walnut Gulch, AZ between April 2015 and October 2016. In situ soil moisture data are in magenta, and precipitation data
are in blue. Legends: SCA-V (black ♢), SCA-H (blue ×) DCA (green +), and SMOS (orange □), unattempted retrievals (cyan), and failed retrievals (bright green). (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)

S.K. Chan et al. Remote Sensing of Environment 204 (2018) 931–941

938



0.814 (6:00 pm ascending). In addition, the 6:00 am estimates were
shown to be in closer agreement with the CVS in situ soil moisture
observations than the 6:00 pm estimates. This asymmetry in perfor-
mance is particularly noticeable from the bias metric: −0.015 m3/m3

(6:00 am descending) vs. −0.027 m3/m3 (6:00 pm ascending). The
overall dry bias is likely due to the inadequate depth correction for the
GMAO ancillary surface temperatures (Table 2) used to account for the
difference between the model soil depth and the actual physical sensing
soil depth at L-band frequency, although other algorithm assumptions
which are more likely to be true at 6:00 am than at 6:00 pm could also
contribute to the overall asymmetry in performance. Further refine-
ments in the correction procedure for the effective soil temperature
described in (Chan et al., 2016; Choudhury et al., 1982) are expected to
improve the observed biases and reduce the performance gap between
the 6:00 am and 6:00 pm soil moisture estimates in future updates of
the product. Both L2_SM_P_E and L2_SM_P displayed similar retrieval
performance when assessed at effectively the same spatial scale.

As an alternate way to present a subset of the tabulated data in
Table 4, Fig. 7 shows the time series of L2_SM_P_E at two sample CVSs
with low-to-moderate amounts of vegetation. In both sites the soil
moisture estimates of L2_SM_P_E tracked the observed dry-down soil
moisture trends very well.

3.2. Sparse networks

The sparse networks represent another valuable in situ data source
contributing to SMAP soil moisture assessment. The defining feature of
these networks is that their measurement density is low, usually re-
sulting in (at most) one point within a SMAP radiometer footprint.
Although the resulting data alone cannot always provide a re-
presentative spatial average of soil moisture at the spatial scale of
L2_SM_P_E (Section 2.1) the way the CVS in situ data do, they often
cover a much larger spatial extent and land cover diversity with very
predictable data latency.

Table 6 lists the set of sparse networks used in this assessment study.
Compared with (Chan et al., 2016), two additional sparse networks (the
Oklahoma Mesonet and the MAHASRI network) were available. The
additional data should improve the statistical representativeness of the
assessment. Tables 7 and 8 summarize the retrieval performance of the
6:00 am descending and 6:00 pm ascending L2_SM_P_E between April
2015 and October 2016 for the baseline and the other two candidate
soil moisture retrieval algorithms. In addition to L2_SM_P_E, the re-
trieval performance of L2_SM_P and SMOS soil moisture estimates was
also provided for comparison. Metrics over land cover classes not re-
presented by any of the sparse networks in Table 6 were not available
and hence not reported.

According to Tables 7 and 8, the agreement between L2_SM_P_E and
sparse network in situ data was not as good as that reported in Tables 4
and 5 with CVS in situ data. This is expected because with sparse net-
work in situ data there is an additional uncertainty when comparing a
footprint-scale soil moisture estimate by the satellite with in situ data
that are available at only one sensor location within the networks.
Overall the performance metrics in Tables 7 and 8 displayed the same
trends observed in Tables 4 and 5 with CVS in situ data. For example,
the SCA-V baseline soil moisture retrieval algorithm was shown to de-
liver the best overall performance when compared with the other two
candidate algorithms. In addition, the 6:00 am descending L2_SM_P_E
was shown to be in better agreement with the sparse network in situ
data than the 6:00 pm ascending L2_SM_P_E – a trend also observed in
the previous assessment with CVS in situ data. This independent con-
vergence of metric patterns in both CVS and sparse network assess-
ments provides additional confidence in the statistical consistency be-
tween these two validation methodologies that differ greatly in the
spatial scales that they represent.

4. Conclusion

Following SMOS and Aquarius, SMAP became the third mission in
less than a decade utilizing an L-band radiometer to estimate soil
moisture from space. The sophisticated RFI mitigation hardware on-
board the observatory has enabled acquisition of TB observations that
are relatively well filtered against interferences.

The application of the Backus-Gilbert interpolation technique re-
sults in a more optimal capture of spatial information when the original
SMAP Level 1B observations are represented on a grid. The resulting
gridded TB data – the SMAP Level 1C Enhanced Brightness Temperature
Product (L1C_TB_E) serves as the primary input to the SMAP Level 2
Enhanced Passive Soil Moisture Product (L2_SM_P_E), resulting in soil
moisture estimates posted on a 9 km grid.

Based on comparison with in situ soil moisture observations from

Table 6
Sparse networks used in L2_SM_P_E assessment.

Sparse network Region

NOAA Climate Reference Network (CRN) USA
USDA NRCS Soil Climate Analysis Network (SCAN) USA
GPS Western USA
COSMOS Mostly USA
SMOSMania Southern France
Pampas Argentina
Oklahoma Mesonet Oklahoma, USA
MAHASRI Mongolia

Table 7
Comparison between the 6:00 am descending L2_SM_P_E and in situ soil moisture observations over sparse networks between April 2015 and October 2016.

IGBP Land Cover Class ubRMSE (m3/m3) Bias (m3/m3) RMSE (m3/m3) Correlation (R) N

SCA-H SCA-V DCA SMOS SCA-H SCA-V DCA SMOS SCA-H SCA-V DCA SMOS SCA-H SCA-V DCA SMOS

Evergreen Needleleaf Forest 0.040 0.039 0.052 0.062 −0.033 0.033 0.166 −0.127 0.052 0.051 0.174 0.141 0.498 0.530 0.515 0.430 1
Mixed Forest 0.059 0.060 0.068 0.055 −0.037 −0.003 0.045 −0.054 0.070 0.060 0.081 0.077 0.609 0.591 0.541 0.752 1
Open Shrublands 0.038 0.039 0.050 0.056 −0.041 −0.008 0.032 −0.010 0.063 0.055 0.075 0.068 0.516 0.523 0.513 0.460 38
Woody Savannas 0.054 0.049 0.061 0.081 −0.017 0.021 0.078 −0.063 0.088 0.080 0.112 0.134 0.709 0.717 0.596 0.541 16
Savannas 0.032 0.032 0.040 0.044 −0.043 −0.026 −0.016 −0.031 0.063 0.055 0.056 0.059 0.877 0.875 0.869 0.866 3
Grasslands 0.051 0.051 0.059 0.062 −0.076 −0.042 0.003 −0.049 0.098 0.079 0.080 0.091 0.667 0.675 0.637 0.596 224
Croplands 0.077 0.066 0.071 0.078 −0.047 −0.033 −0.009 −0.050 0.117 0.101 0.097 0.117 0.569 0.602 0.541 0.553 54
Cropland/Natural Vegetation

Mosaic
0.063 0.056 0.066 0.079 −0.044 −0.015 0.033 −0.124 0.095 0.084 0.101 0.176 0.722 0.761 0.643 0.536 20

Barren or Sparsely Vegetated 0.018 0.021 0.030 0.032 −0.015 0.006 0.035 0.002 0.034 0.033 0.051 0.040 0.648 0.596 0.522 0.620 6
L2_SM_P_E averaged over

IGBP classes
0.054 0.051 0.060 0.065 −0.062 −0.032 0.010 −0.049 0.095 0.079 0.084 0.098 0.642 0.654 0.608 0.572 363

L2_SM_P averaged over IGBP
classes

0.053 0.050 0.057 0.066 −0.061 −0.031 0.010 −0.049 0.093 0.077 0.081 0.099 0.643 0.663 0.633 0.576 393
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CVSs, it was found that the SCA-V baseline soil moisture algorithm
resulted in the best retrieval performance compared with the other two
candidate algorithms considered in this assessment. The ubRMSE, bias,
and correlation of the 6:00 am descending baseline soil moisture esti-
mates were found to be 0.038 m3/m3, −0.015 m3/m3, and 0.819, re-
spectively. The metrics for the 6:00 pm ascending baseline soil moisture
estimates were slightly worse in comparison but nonetheless similar
overall. It is expected that further refinements in the correction pro-
cedure for the effective soil temperature will improve the observed
biases and reduce the performance gap between the 6:00 am and
6:00 pm soil moisture estimates in future updates of the product.
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Table 8
Comparison between the 6:00 pm ascending L2_SM_P_E and in situ soil moisture observations over sparse networks between April 2015 and October 2016.

ubRMSE (m3/m3) Bias (m3/m3) RMSE (m3/m3) Correlation (R) N

SCA-H SCA-V DCA SMOS SCA-H SCA-V DCA SMOS SCA-H SCA-V DCA SMOS SCA-H SCA-V DCA SMOS

Evergreen Needleleaf Forest 0.047 0.046 0.067 0.050 −0.057 0.006 0.115 −0.095 0.074 0.047 0.133 0.107 0.442 0.461 0.429 0.585 1
Mixed Forest 0.057 0.053 0.051 0.056 −0.040 −0.011 0.029 −0.047 0.070 0.054 0.059 0.073 0.687 0.740 0.771 0.753 1
Open Shrublands 0.040 0.042 0.053 0.057 −0.051 −0.022 0.009 −0.005 0.070 0.058 0.067 0.071 0.485 0.468 0.441 0.421 39
Woody Savannas 0.051 0.047 0.058 0.080 −0.012 0.015 0.053 −0.045 0.086 0.079 0.098 0.114 0.745 0.750 0.625 0.584 16
Savannas 0.033 0.035 0.040 0.047 −0.043 −0.034 −0.029 −0.023 0.063 0.058 0.058 0.073 0.890 0.871 0.861 0.841 3
Grasslands 0.051 0.051 0.059 0.062 −0.079 −0.053 −0.020 −0.043 0.101 0.085 0.082 0.088 0.663 0.667 0.632 0.609 224
Croplands 0.075 0.065 0.070 0.076 −0.037 −0.037 −0.030 −0.047 0.117 0.103 0.100 0.111 0.579 0.610 0.560 0.547 54
Cropland/Natural Vegetation

Mosaic
0.061 0.055 0.065 0.079 −0.033 −0.017 0.009 −0.112 0.089 0.083 0.093 0.160 0.723 0.761 0.659 0.544 20

Barren or Sparsely Vegetated 0.019 0.022 0.031 0.036 −0.022 −0.005 0.018 0.004 0.038 0.035 0.045 0.045 0.577 0.516 0.443 0.453 6
L2_SM_P_E averaged over

IGBP classes
0.053 0.051 0.059 0.065 −0.063 −0.041 −0.012 −0.043 0.097 0.083 0.084 0.094 0.639 0.645 0.601 0.575 364

L2_SM_P averaged over IGBP
classes

0.053 0.051 0.059 0.065 −0.063 −0.043 −0.016 −0.043 0.097 0.083 0.084 0.095 0.618 0.629 0.595 0.578 394
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