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ARTICLE INFO ABSTRACT

Spatio-temporal fusion is a technique used to produce images with both fine spatial and temporal resolution.
Generally, the principle of existing spatio-temporal fusion methods can be characterized by a unified framework
of prediction based on two parts: (i) the known fine spatial resolution images (e.g., Landsat images), and (ii) the
fine spatial resolution increment predicted from the available coarse spatial resolution increment (i.e., a
downscaling process), that is, the difference between the coarse spatial resolution images (e.g., MODIS images)
acquired at the known and prediction times. Owing to seasonal changes and land cover changes, there always
exist large differences between images acquired at different times, resulting in a large increment and, further,
great uncertainty in downscaling. In this paper, a virtual image pair-based spatio-temporal fusion (VIPSTF)
approach was proposed to deal with this problem. VIPSTF is based on the concept of a virtual image pair (VIP),
which is produced based on the available, known MODIS-Landsat image pairs. We demonstrate theoretically that
compared to the known image pairs, the VIP is closer to the data at the prediction time. The VIP can capture
more fine spatial resolution information directly from known images and reduce the challenge in downscaling.
VIPSTF is a flexible framework suitable for existing spatial weighting- and spatial unmixing-based methods, and
two versions VIPSTF-SW and VIPSTF-SU are, thus, developed. Experimental results on a heterogeneous site and a
site experiencing land cover type changes show that both spatial weighting- and spatial unmixing-based methods
can be enhanced by VIPSTF, and the advantage is particularly noticeable when the observed image pairs are
temporally far from the prediction time. Moreover, VIPSTF is free of the need for image pair selection and robust
to the use of multiple image pairs. VIPSTF is also computationally faster than the original methods when using
multiple image pairs. The concept of VIP provides a new insight to enhance spatio-temporal fusion by making
fuller use of the observed image pairs and reducing the uncertainty of estimating the fine spatial resolution
increment.
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1. Introduction

Remote sensing satellite sensor data for the globe have been applied
in many areas, such as land cover change monitoring (Dyer, 2012),
vegetation monitoring (Shen et al., 2011) and ecological evaluation
(Pisek et al., 2015). Among the satellite sensors, the Landsat series (e.g.,
Thematic Mapper (TM), Enhanced Thematic Mapper (ETM + ), Opera-
tional Land Imager (OLI)) and the Terra/Aqua MODerate resolution
Imaging Spectroradiometer (MODIS) are perhaps the most commonly
used due to their regular revisit capabilities, wide swath and free
availability. Normally, there is a trade-off between spatial and temporal
resolutions. The Landsat sensors can acquire images at a fine spatial
resolution of 30 m, but they have a revisit period of up to 16 days.
Moreover, due to cloud contamination, the effective temporal
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resolution is much coarser (e.g., only a few useable Landsat images are
available per year). On the contrary, MODIS can acquire images for the
same scene at least once per day, but the images are at a coarse spatial
resolution of 500 m. To meet the demand of timely, fine spatial re-
solution monitoring, spatio-temporal fusion methods have been devel-
oped to blend the available temporally sparse fine spatial resolution
images and temporally dense coarse spatial resolution images to create
time-series with both fine spatial and temporal resolutions (Belgiu and
Stein, 2019; Chen et al., 2015; Gao et al., 2015; Zhang et al., 2015; Zhu
et al., 2018a). Generally, three main categories of spatio-temporal fu-
sion methods can be identified: spatial weighting-based, spatial un-
mixing-based and hybrid methods.

The spatial and temporal adaptive reflectance fusion model
(STARFM) (Gao et al., 2006) is one of the earliest and the most
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commonly applied spatial weighting-based methods. STARFM predicts
the reflectance of fine spatial resolution pixels based on a linear
weighting of the reflectances of spatially surrounding similar pixels.
The similar pixels in the neighborhood are selected according to their
spectral similarity with the center pixel. STARFM is more effective for
homogeneous landscapes and areas with stable land cover during the
period of interest. The spatial temporal adaptive algorithm for mapping
reflectance change (STAARCH) increased the accuracy of spatio-tem-
poral fusion for areas experiencing land cover change (i.e., forest dis-
turbance) by introducing a disturbance factor to quantify the re-
flectance change in Landsat images (Hilker and Wulder, 2009). To
increase the accuracy for heterogeneous regions, an enhanced spatial
and temporal adaptive reflectance fusion model (ESTARFM) was pro-
posed by introducing a conversion coefficient to characterize the linear
relationship between the changes in MODIS and Landsat reflectances
(Zhu et al., 2010). ESTARFM was advantageous for reproducing small
and linear targets. Wang and Atkinson (2018) introduced a Fit-FC
method to deal with strong seasonal changes in spatio-temporal fusion.
These spatial weighting-based methods have been applied widely to
predict land surface temperature (LST) (Huang et al., 2013; Shen et al.,
2016; Weng et al., 2014; Wu et al., 2015), leaf area index (Zhang et al.,
2014; Houborg et al., 2016), and normalized difference vegetation
index (NDVI) (Meng et al., 2013; Tewes et al., 2015) at both fine spatial
and temporal resolutions.

Spatial unmixing-based methods are generally performed based on a
coarse image at the prediction time and a land cover classification map
produced from the known fine spatial resolution data (e.g., multi-
spectral images at the target fine spatial resolution (Amorés-Lopez
et al., 2013; Gevaert and Garcia-Haro, 2015; Zurita-Milla et al., 2008),
and aerial image (Mustafa et al., 2014) or land-use database (Zurita-
Milla et al., 2009) at the finer spatial resolution). Based on the as-
sumption that the land cover does not change during a given period, the
fine spatial resolution land cover map at known time is upscaled to
characterize the coarse proportions of land cover classes at the pre-
diction time. The representative reflectance of each land cover class
within a coarse pixel can be predicted inversely from the coarse pro-
portions and observed coarse reflectance. The multisensor multi-
resolution technique (MMT) proposed by Zhukov et al. (1999) is one of
the first spatial unmixing-based methods. MMT assigns the predicted
land cover class reflectance directly to a fine spatial resolution pixel
according to its corresponding class. Busetto et al. (2008) considered
both spatial and spectral differences for weighting the contributions of
neighboring coarse pixels in the spatial unmixing model. To avoid large
deviations of the predicted reflectance of each class, Amorés-Lopez
et al. (2013) introduced a new regularization term to the objective
function in the spatial unmixing model, where the difference between
the class reflectances at target fine and observed coarse spatial resolu-
tions is minimized. The spatial-temporal data fusion approach (STDFA)
calculated the temporal change in reflectance for each class by un-
mixing the coarse difference images. The predicted temporal change at
fine spatial resolution is then added to the known fine spatial resolution
image (Wu et al., 2012). Gevaert and Garcia-Haro (2015) applied a
Bayesian solution to constrain the fine spatial resolution reflectance in
the unmixing model.

Hybrid methods combining the mechanisms of the above two ca-
tegories of methods have also been developed. The Flexible
Spatiotemporal DAta Fusion (FSDAF) method estimates the temporal
change of each class by spatially unmixing the coarse difference images,
and then distributing the residuals estimated from thin plate spline
(TPS) interpolation based on spatial weighting of neighboring similar
pixels (Zhu et al., 2016). Liu et al. (2019) proposed an improved FSDAF
(IFSDAF) for producing NDVI time-series with both fine spatial and
temporal resolutions. Instead of distributing the residuals entirely based
on the TPS interpolation result (i.e., space-dependent increment),
IFSDAF also considers temporally-dependent increment by spatial un-
mixing. To enhance the performance for restoration of land cover
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change, an enhanced FSDAF that incorporates sub-pixel class fraction
change information (SFSDAF) was proposed by Li et al. (2020a).
SFSDAF accounts for the changes in class reflectance and proportions
jointly in the spatial unmixing model. Xu et al. (2015) performed spatial
weighting based on STARFM before spatial unmixing, where the
STARFM prediction is used to construct a regularization term to avoid
large deviations of predicted class reflectances. Apart from the methods
mentioned above, Bayesian-based methods (Li et al., 2013) and
learning-based methods (Huang and Song, 2012; Das and Ghosh, 2016;
Liu et al., 2016) have also been developed.

Although the specific mechanisms of the spatio-temporal fusion
methods vary, the methods can be summarized by a unified framework

f(t_predict) = L(t_known) + AL (@D)]
AL = f(AM) (2

Eq. (1) indicates that the prediction of the Landsat image at the
prediction time is divided into two parts; the known Landsat image L
(t_known) and the unknown Landsat level increment AL (Liu et al.,
2019). Note that multiple known Landsat images (i.e., multiple MODIS-
Landsat image pairs are available) can also be included in the term L
(t_known), which is then a combination of the multiple Landsat images
correspondingly. The first part makes use of available fine spatial re-
solution information directly, while the second part predicts fine spatial
resolution information from the available coarse spatial resolution data.
As seen from Eq. (2), the estimation of AL depends on MODIS level
increment AM, which is the difference between the MODIS images at
the known and prediction times. Obviously, the estimation of AL is the
most pivotal issue: this involves downscaling, the quality of which ex-
erts a direct influence on the accuracy of prediction. The function f (i.e.,
the downscaling operator) differs according to the specific spatio-tem-
poral fusion method. For spatial weighting-based methods, f is usually a
linear weighting function (Gao et al., 2006; Zhu et al., 2010), while for
spatial unmixing-based methods, f is a linear unmixing model (Zhukov
et al., 1999; Amorés-Lopez et al., 2013). No matter which method is
adopted, a smaller increment AM will definitely decrease the un-
certainty in estimating AL. To reduce the error produced by estimation
of AL and produce a greater accuracy for spatio-temporal fusion, it is
important to minimize AM. One possible solution is to acquire MODIS-
Landsat image pairs as temporally close to the prediction time as pos-
sible. Due to cloud and shadow contamination, however, the number of
available high-quality Landsat images is always limited (Ju and Roy,
2008). Thus, it can be challenging to acquire image pairs that are suf-
ficiently close to the prediction time; that is, it is always difficult to
decrease AM just from the perspective of using data.

Alternatively, another possible solution to reduce AM is to perform
transformations to the known MODIS images based on an identified
model. As acknowledged widely, there exists a corresponding re-
lationship between the Landsat and MODIS images acquired at the same
time. Suppose the zoom factor between the MODIS and Landsat images
is s such that the reflectance of each MODIS pixel can be regarded as the
average of the reflectance of s> Landsat pixels covering the same area.
Preserving this relationship, the transformation applied to known
Landsat images can be linked to that of the MODIS images. Inspired by
this, in this paper we introduced the concept of the virtual image pair
(VIP), that is, the synthesization of a MODIS-Landsat image pair closer
to that at the prediction time (i.e., with a smaller AM) than the original
observed MODIS-Landsat image pairs. When the VIP is adopted, the
input of the function f in Eq. (2) will become smaller, thus, reducing the
burden of estimating AL. Actually, in this case, the final prediction is
dependent on the new ‘known’ Landsat image (i.e., the virtual Landsat
image) to a larger extent than existing methods, which is closer to the
Landsat image to be predicted and can capture more fine spatial re-
solution information directly from the observed Landsat images.

In this paper, based on the concept of VIP, a VIP-based spatio-
temporal fusion (VIPSTF) approach is proposed. VIPSTF produces the
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VIP based on the observed MODIS-Landsat image pairs that may have a
considerable temporal distance to the prediction time. The new MODIS
level increment is downscaled by the function f in Eq. (2) to predict the
new Landsat level increment. As mentioned above, f varies when dif-
ferent methods are used. For the proposed VIPSTF approach, both
spatial weighting- and spatial unmxing-based methods can be in-
corporated into it. Specifically, the popular STARFM (Gao et al., 2006)
and STDFA (Wu et al., 2012) methods are adopted to characterize the
function f in VIPSTF in this paper. VIPSTF can reduce the difference
between MODIS images at the known and prediction times effectively,
reducing the burden in estimation of the Landsat level increment and
finally leading to greater prediction accuracy.

The remainder of this paper is organized into four sections. In
Section 2, the relation between the MODIS and Landsat images in the
VIP is first deduced in Section 2.1. Section 2.2 introduces the method to
produce the VIP and demonstrates mathematically its validity in re-
ducing AM. Furthermore, the proposed VIPSTF approach including
both spatial weighting and spatial unmixing-based versions is in-
troduced explicitly in Section 2.3. Section 3 presents the experimental
results of VIPSTF and compares it with other spatio-temporal fusion
methods. Section 4 discusses the main findings and the problems to be
investigated further. Section 5 concludes the paper.

2. Methods

Similarly to most of existing spatio-temporal fusion methods, the
proposed method is performed for each band separately. In this paper,
for simplicity of mathematical expression, the principle is illustrated
based on a single band of Landsat and MODIS images. The im-
plementation can be applied to each band similarly.

2.1. Relation between Landsat and MODIS images in the virtual image pair
(VIP)

In this paper, the VIP is proposed to decrease the difference between
images acquired at the known time and prediction time, and further, to
increase the accuracy of spatio-temporal fusion. The VIP is generated by
combining the original known time-series images through a certain
mathematical transformation. Suppose that we have N known MODIS-
Landsat image pairs acquired at tj, ..., ty. The Landsat images are de-
noted as Ly, ..., Ly, while the MODIS images are denoted as My, ..., My.
The functions g; and g, are applied to Landsat and MODIS time-series
images to produce the VIP

Ly = g (Ly,..., Ly) 3

My = g,(My,..., My) @

where Lyp and Myp are the virtual Landsat image and virtual MODIS
image, respectively.

Suppose the zoom factor between the Landsat and MODIS images is
s. The value (i.e., reflectance in this paper) of each MODIS pixel can
generally be treated as the average of every s> Landsat pixel covering
the same area at the same time (Li et al., 2020a; Zhu et al., 2010). Based
on this assumption, an intrinsic relation can be built between the cor-
responding Landsat and MODIS pixels for any MODIS-Landsat image
pair

18

M (xq, = — L (X0, Yyi)-

(k0,30) = Zl (Xoi> Yoi) ©
In Eq.(5), M(xo,Yo) is the value of the MODIS pixel located at (xo,Yo),
and L(xo;, Yoy is the value of the ith pixel of the s*> Landsat pixels cov-
ering the same area as M(x,Yo).-No matter which method is adopted to
determine the two functions g; and g, it is always important to ensure
consistency between the Landsat and MODIS images defined in Eq. (5).
Accordingly, the corresponding pixels in Lyp and Myp should satisfy
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the relationship as well, and the two functions can also be connected
correspondingly. Specifically, according to Egs. (3) and (5), we can
simply characterize Mypp using g;

2 2
1 1<
Muyip (X0,,) = e Z Lyip (Xoi, Vo) = 2 Z & [L1 Geoi, Yoi)seor Liv (%01, Y1) -
i=1 i=1

(6)

Suppose g is a linear transformation function, the fixed coefficient 1/s>
can be applied to each Landsat pixel directly, that is, Eq. (6) can be
rewritten as

2 2
1 1<
My (x0,¥) = & = z L1 (X015 Yoi)seees o z Ly (xoiyy;)
i=1 i=1 :

=8 [M; (Xo,yo),---,MN, (x()yO)] (2]

When each pixel in the virtual MODIS image undergoes the same
transformation in Eq. (7), the whole MODIS image can be represented
as follows

Mypp = g (My,..., My). (€)]

Comparing Eq. (8) with Eq. (4), it is clear that the function g, is the
same as g;. That is, the transformation applied to the MODIS time-series
is consistent with that for the Landsat time-series. Note that such con-
sistency exists based on the assumption of a linear transformation.

2.2. Production of the VIP

2.2.1. The specific form of the VIP

As mentioned in Section 2.1, the linear transformation is a feasible
solution to produce the VIP and can relate the virtual Landsat and
MODIS images effectively. Specifically, the transformation applied to
the Landsat time-series to produce Ly;p can be expressed explicitly as

N
Lyp = g Ly Ly) = ) L + b

k=1 (C)]
where ai is the transformation coefficient for the kth image in the
Landsat time-series and b is a constant. According to the consistency in
linear transformation demonstrated above, the virtual MODIS image
Myp can be expressed similarly

N
Mypp = g (M;,..., My) = z arM; + b
k=1 (10)

In the linear transformation function, different coefficient sets (i.e.,
composed of a; and b) will result in different VIPs. It is critical to de-
velop a reliable scheme to estimate the coefficients appropriately. In
this paper, the coefficient set is estimated based on the linear regression
model fitted between the MODIS data at the known and prediction
times

N
M, = aMg + b +r.
P an

In Eq. (11), r is the residual image, and M; and M, are the kth
known MODIS image and the MODIS at the prediction time, respec-
tively. The coefficients a; and b are obtained using the least squares
method.

2.2.2. The rationale of the specific form

As the ultimate purpose of any definition of VIP is to reduce AM
(i.e., the virtual MODIS image needs to be closer to the MODIS image at
the prediction time), the coefficient set should follow the key rule that
the new AM’ between the virtual MODIS image and the MODIS image at
the prediction time should be smaller than the original AM. To evaluate
whether the coefficient set estimated by the regression model satisfies
the rule, we need to quantify AM and AM’ beforehand. The root mean
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square error (RMSE) is one of the most widely used indices to measure
the statistical difference in the pixel values (i.e., reflectance in this
paper) between two images. It is used to quantify AM and AM’ in this
paper. RMSE is defined as

RMSE = \j% > UGy = VP = VEIU = V)7
i=1

(12)

where U and V represent two images composed of m pixels.
Mathematically, the RMSE between two images equals the square root
of the expectation of the square of the difference image U — V.
Therefore, we can calculate the expectation of the square of AM and
AM (i.e., E(AM?) and E(AM’?)) instead for their comparison.

For spatio-temporal fusion using multiple image pairs, the original
AM cannot be expressed simply as the difference between MODIS
images. According to the general framework of spatio-temporal fusion
summarized in the Introduction, prediction using multiple image pairs
can be written as

N
L= ZWi [L; + f(M, — My)]

i=1

N
wiL; + ) wif (M, — M)
; ! 13)
N

where w; is the weight for the ith prediction and satisfies >, w; = 1. In
i=1

Il
.MZ

Il
—

i

N
Eq. (13), the prediction is divided into two parts. The first part Y, w;L;

is known, while the second part, the weighted sum of f(M, — 1\;[;)1, can
be regarded as the increment term produced by multiple image pairs.
The function f differs according to the used spatio-temporal fusion
method, and usually a linear model can be adopted for its character-
ization (e.g., the linear weighting function in the spatial weighting-
based methods and the linear unmixing model for spatial unmixing-
based methods). In this case, the second part can be altered as

N N

D, wif (M, — M) =f[z wi (M, — Mi)}

i=1 i=1 :

=f(AM) (14)

N

That is, AM can be expressed as }; w;(M, — M) for fusion using mul-
i=1

tiple image pairs.

When the VIP is used, based on Egs. (10) and (11), AM’ can be
expressed as

AM, = Mp - MVIP' (15)
To compare E(AM?) and E(AM?), they are transformed individually, as

presented in Appendix A. After derivation, E(AM?) and E(AM’?) can be
expressed as

N N N
E(AM?) = Var[z wi Y ay, Mk) + Var(r) + E2 [Z w; (M, — Mi)]
i=1 k=1 i=1
(16)
E(AM?) = Var(r). a7)

Comparing Eq. (16) with Eq. (17), we can conclude that E(AM?) is
obviously smaller than E(AM?), suggesting that the produced VIP is
closer to the data at the prediction time than that for conventional
spatio-temporal fusion model. Furthermore, by setting the weight w; for
the ith known MODIS image in Eq. (16) as 1 (i.e., only the ith MODIS-
Landsat image pair is used for fusion), we have

N
E(AMP) = Var[z ay Mk) + Var(r) + B2 (M, — M)).

k=1 (18)

It is clear that E (AM}?) is still larger than E(AM?). This means the VIP is
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closer to the data at the prediction time than any known image pair,
thus, capturing more fine spatial resolution information directly from
the known images. Therefore, it is feasible to use the regression model
to estimate the coefficient set and produce the VIP.

2.3. VIP-based spatio-temporal fusion (VIPSTF)

According to the general framework in Eq. (13), the prediction of
the Landsat image includes two parts: the linear superposition of known
Landsat images and the increment computed by applying a function f to
AM. When the VIP is introduced for spatio-temporal fusion, the fra-
mework in Eq. (13) is replaced by the proposed VIPSTF model as fol-
lows

i:p = LVIP + AU
=Ly + f(AM)
=Ly + f (M, — Mypp) 19

The VIPSTF prediction is a combination of the produced Ly and the
Landsat level increment AL’. The increment AL’ is predicted by applying
the function f to the MODIS level increment AM’.As mentioned in the
Introduction, there are two main types of methods to characterize f: one
is spatial weighting (SW)-based and the other is spatial unmixing (SU)-
based. In this paper, the popular STARFM and STDFA methods are
considered as representative choices for SW and SU, respectively. We
name the corresponding VIPSTF-based versions as VIPSTF-SW and
VIPSTF-SU. The flowchart of the proposed VIPSTF approach (including
both VIPSTF-SW and VIPSTF-SU versions) is shown in Fig. 1.

2.3.1. Spatial weighting-based VIPSTF (VIPSTF-SW)

In the proposed VIPSTF-SW method, a spatial weighting strategy is
applied to predict the Landsat level increment AL’ from the MODIS level
increment AM’, as shown in Eq. (20)

AL (x0,3p) = D AAM' (x;,3)
i=1 (20)

where (x;,y;) is the spatial location of the similar pixels surrounding the
pixel centered at (xo,Yo), ns is the number of similar neighboring pixels
and ; is a weight assigned according to the distance between the center
and similar pixels. Note that to match the spatial resolution of Landsat
increment AL/, the MODIS increment AM’ needs to be interpolated (e.g.,
by bicubic interpolation) to the Landsat spatial resolution in advance.
The similar pixels are searched according to the spectral difference
between the center pixel and neighboring pixels in the virtual Landsat
image Lyyp: the first ng pixels with the smallest spectral difference are
chosen as similar pixels in each local window. Eq. (20) means that the
increment for the center Landsat pixel is determined as a linear com-
bination of AM’ of neighboring similar pixels. As seen in Eq. (19), by
combining the prediction in Eq. (20) with the virtual Landsat image
Lyp, the final prediction of VIPSTF-SW is obtained.

The main difference between the spatial weighting strategy in
VIPSTF-SW and the conventional strategy in STARFM lies in two as-
pects. First, in VIPSTF-SW, the difference (i.e., AM’) between the
MODIS image at the prediction time and the virtual MODIS image is
used as the basis for spatial weighting. This is distinguished from
STARFM where AM is larger, as demonstrated in Section 2.2. Second, in
VIPSTF-SW, the similar pixels for each center pixel are searched based
on the single image Lyp, rather than all known Landsat images in
STARFM where the search is performed for each Landsat image in turn.
Among the Landsat time-series images, some images are temporally far
from the prediction time, which will decrease the validity of the se-
lection of spectrally similar neighboring pixels. Therefore, the virtual
Landsat image Lyip, which combines Landsat time-series images with
adaptive coefficients, is more appropriate for searching similar neigh-
boring pixels.
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Fig. 1. Flowchart of VIPSTF, where both spatial weighting (SW)- and spatial unmixing (SU)-based solutions (i.e., VIPSTF-SW and VIPSTF-SU) are illustrated.

2.3.2. Spatial unmixing-based VIPSTF (VIPSTF-SU)

In the proposed VIPSTF-SU method, land cover classification is

AM’ to produce the increment at the Landsat level. By solving the fol-

performed on the virtual Landsat image Lypp to acquire the fine spatial
resolution land cover map. The map is upscaled to the MODIS spatial

resolution to produce the coarse proportions for each land cover class.
Based on the assumption that the distribution of land cover does not
change during the period of interest, the coarse proportions at different
times are the same. Thus, the proportion of each class for each MODIS
pixel derived from the classification map of Ly is applied to unmix

p1(a,yp) o
Py (i, 31) -

Dy Ky s V)

P (a, )
b (i, 3;)

Pe(ny s Yny) 7

Pc (xl’yl) AL(l)
Pe (i, ) AL(C) =

P (Xny, >V ) [LAL(©)

lowing linear SU model, the increment for each class can be obtained

AM' (xq 7y1)
AM' (x; ,yi)
AM' (Xnyy s )

2D
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In Eq. (21), C is the number of classes, n,, is the number of coarse
MODIS pixels in the moving window,AM’(x,y) is the MODIS level in-
crement AM’ of the coarse MODIS pixel located at (x,y) in the moving
window, p.(x,y) is the coarse proportion of class c for the coarse MODIS
pixel located at (x,y), and AL(c) is the increment for the cth class. For
each Landsat pixel, its increment AL’ is determined as

AL (x0,¥,) = AL(c(x0,)p)) (22)

where c(xo,Yo) is the land cover class of the Landsat pixel located at
(x0,Y0) (determined by the classification map of Lyp). The final VIPSTF-
SU prediction of a Landsat pixel can be obtained by combining the
increment in Eq. (22) with the corresponding pixel in Lyp.Similarly, the
SU model in the proposed VIPSTF-SU method differs from the original
SU-based model (i.e., STDFA) in two aspects. First, AM’ is used as the
basis for unmixing, rather than AM in STDFA. Second, in VIPSTF-SU,
the single image Lyyp is used to produce the land cover map, rather than
the composed Landsat image whose features are stacked by all known
Landsat images.

3. Experiments
3.1. Data and experimental setup

For validation of the proposed VIPSTF approach, MODIS and
Landsat time-series images for two sites were used in our experiments.
The first site is located in southern New South Wales, Australia
(145.0675°E, 34.0034°S) (called Site 1 hereafter) and presents a het-
erogeneous landscape, while the second site is located in southern New
South Wales, Australia (145.0675°E, 34.0034°S) (called Site 2 here-
after) with great land cover change caused by flood inundation. In Site
1, we used Landsat 7 ETM + time-series from 7 October 2001 to 3 May
2002 and the corresponding 15 MODIS Terra MODO9GA Collection 5
images acquired on almost the same days. In Site 2, 11 pairs of Landsat
and MODIS images from 16 April 2004 to 14 February 2005 were used.
For both sites the spatial extent is 20 km by 20 km. The detailed ac-
quisition dates of the images are presented in Table 1. Chronologically,
we numbered the Landsat images of Site 1 as L1 to L15, and the cor-
responding MODIS images as M1 to M15. A similar numbering system
was applied to Site 2. Partial Landsat and MODIS data for Sites 1 and 2
are shown in Figs. 2 and 3, respectively. It is noted that Site 2 is defined
as the site with land cover change. Except for visual inspection (e.g., the
flood inundation), the correlation coefficient (CC) between images ac-
quired on different dates for Site 2 is much smaller than that for Site 1,
even for two images acquired close in time (e.g., the CC between L8 and
L9 for Site 1 is 0.7312, while the CC between L8 and L9 for Site 2 is only
0.3963).

Sections 3.2 and 3.3 provide the results for Site 1 (the hetero-
geneous site) and Site 2 (the site with land cover change), respectively.
For Site 1, spatio-temporal fusion was performed to predict the Landsat
image on 12 February 2002 (i.e., L8), based on one MODIS-Landsat
image pair (Section 3.2.1) and multiple image pairs (Section 3.2.2). For
Site 2, the prediction date is 12 December 2004, and the results based
on one image pair are provided. The proposed VIPSTF approach (in-
cluding both VIPSTF-SW and VIPSTF-SU versions) is compared with
STARFM (Gao et al., 2006), STDFA (Wu et al., 2012), the unmixing-
based data fusion (UBDF) algorithm (Zurita-Milla et al., 2008) and
Flexible Spatiotemporal DAta Fusion (FSDAF) algorithm (Zhu et al.,
2016). For STDFA and VIPSTF-SU, the images were classified into five
classes with k-means-based unsupervised -classification, and for
STARFM and VIPSTF-SW, 30 similar pixels were selected within each
local window.

3.2. Test for the heterogeneous site (site 1)

3.2.1. Prediction by one image pair
Among the 15 MODIS-Landsat image pairs of Site 1, we chose one
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Table 1

Acquisition dates of the MODIS-Landsat data of the two sites.
Site 1 Site 2
Image ID Date Image ID Date
Mi1-L1 2001.10.07 M1-L1 2004.04.16
M2-L2 2001.10.16 M2-L2 2004.05.02
M3-L3 2001.11.01 M3-L3 2004.07.05
M4-14 2001.11.08 M4-L4 2004.08.06
M5-L5 2001.11.24 M5-L5 2004.08.22
M6-L6 2001.12.03 M6-L6 2004.10.25
M7-L7 2002.01.04 M7-L7 2004.11.26
MS8-18 2002.02.12 MS8-18 2004.12.12
M9-L9 2002.03.09 M9-L9 2005.01.13
M10-L10 2002.03.16 M10-L10 2005.01.29
M11-L11 2002.04.02 M11-L11 2005.02.14
M12-L12 2002.04.10
M13-L13 2002.04.17
M14-L14 2002.04.26
M15-L15 2002.05.03

MODIS-Landsat image pair from L1 to L15 (except L8) as the known
images, in turn, along with the MODIS image at the prediction time as
input. That is, the spatio-temporal fusion methods predict L8 with 14
different inputs. The predictions of the six methods when using M7-L7
as the input image pair are exhibited in Fig. 4 for visual comparison.
Obviously, vegetation in the reference image presents as vibrant red.
However, the predictions of the vegetation for FSDAF, STARFM and
STDFA have a noticeably different colour. When the VIP is used in fu-
sion by VIPSTF-SW and VIPSTF-SU, the predictions are visually closer
to the reference compared to the original STARFM and STDFA methods
as well as FSDAF. Although the colour in the UBDF prediction re-
sembles that in the reference image, the method fails to reproduce the
intra-class change (i.e., a reflectance value is assigned to the pixels of
the same class within the coarse pixel) and also the blocky artifacts is
noticeable.

Quantitative evaluation was conducted using the RMSE and CC, as
listed in Table 2. The UBDF and FSDAF methods produce mean CCs of
around 0.7220 and 0.8314, respectively. For VIPSTF-SW, the mean CC
is 0.8345, with an increase of 0.0392 compared to STARFM. For
VIPSTEF-SU, the mean CC is 0.0174 larger than for STDFA. STARFM and
STDFA produced mean RMSEs of 0.0454 and 0.0453, respectively. For
VIPSTF-SW and VIPSTF-SU, the corresponding mean RMSEs decrease
by 0.0090 and 0.0060, respectively. Among all six methods, VIPSTF-SW
produces the greatest accuracy, with the largest CC of 0.8435 and the
smallest RMSE of 0.0321. The scatter plots in Fig. 5 reveal the differ-
ence between the actual Landsat image and the predictions, where the
NIR band is used as an example. Clearly, the points in STARFM and
STDFA present greater dispersion. In VIPSTF-SW and VIPSTF-SU pre-
dictions, the points are more aggregated and closer to the y = x line.

Fig. 6 shows the RMSEs and CCs of the six methods based on the use
of different image pairs (i.e., M1-L1 to M7-L7 and M9-L9 to M15-L15,
14 cases in all). The accuracy increases closer to the prediction time and
decreases away from the prediction time, with the predictions using the
Landsat images temporally closest to M8-L8 having the greatest accu-
racy. Checking the results for each method, FSDAF is found to be a
competitive method that produces smaller RMSEs and larger CCs than
UBDF, STARFM and STDFA in most cases. Moreover, the proposed
VIPSTF-SW and VIPSTF-SU methods produce smaller RMSEs and larger
CCs than original STARFM and STDFA, and the two VIPSTF-based
methods are also more accurate than FSDAF and UBDF. Interestingly,
when different image pairs are used, the performances of VIPSTF-SW
and VIPSTF-SU are more robust than the original STARFM and STDFA
as well as FSDAF. More specifically, when temporally further image
pairs are used, the gain in accuracy for VIPSTF is more obvious. As a
result, the difference between VIPSTF and the original STARFM and
STDFA methods varies greatly according to the used image pairs. For
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Fig. 2. Partial data of Site 1. (a) L4. (b) L7. (c) L8. (d) L9. (e) L13. (f)-(j) are corresponding MODIS data.

example, when using M7-L7, the CCs of STARFM and VIPSTF-SW are
0.8043 and 0.8435, respectively, with a difference of 0.0392, but the
difference increases to 0.2552 when using M3-L3. Similarly, the dif-
ference between VIPSTF-SU and STDFA is 0.0174 when using M7-L7
but up to 0.1716 when using M3-L3.

3.2.2. Prediction by multiple image pairs

For prediction by multiple image pairs, we chose L8 as the Landsat
image to predict and the temporally closest M7-L7 and M9-L9 image
pairs were selected as the input. When using more image pairs for
prediction, the selection of input spreads along both sides one-by-one.
For the cases of using 2, 4, 6, 8, 10, 12 and 14 image pairs we compared
STARFM, STDFA, VIPSTF-SW and VIPSTF-SU. Fig. 7 shows the sub-area
for the predictions of the different methods using 2, 6, 10 and 14 image
pairs. When two image pairs are used for prediction, the prediction of

STARFM tends to be less accurate than the other three methods, as the
prediction shows unexpected dark blocks. As the number of image pairs
increases, the difference between the reference and the predictions of
STARFM and STDFA enlarges, while the predictions of VIPSTF-SW and
VIPSTF-SU are more accurate. It can be seen from the predictions using
14 image pairs that the restoration of the red and green patches in
STARFM and STDFA is not as satisfactory as those for VIPSTF-SW and
VIPSTF-SU, which are very close to the reference.

Fig. 8 shows the quantitative accuracy assessment of the predictions
using multiple image pairs. The accuracy of the prediction by one image
pair is also included for comparison. Obviously, no matter how the
number of image pairs changes, VIPSTF always provides a more accu-
rate prediction than the corresponding original method. Moreover,
from using one to multiple image pairs for prediction, the CCs of
VIPSTF increase greatly (e.g., by 0.1795 for STARFM and 0.1471 for

Fig. 3. Partial data of Site 2. (a) L2. (b) L7. (c) L8. (d) L9. (e) L11. (f)-(j) are corresponding MODIS data.
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(a) (b) (c)

(e) ¢ (2

Fig. 4. Results of different spatio-temporal fusion methods for Site 1 (M7-L7 as known image pair) (NIR, red, and green bands as RGB). (a) UBDF. (b) FSDAF. (c)
STARFM. (d) VIPSTF-SW. (e) STDFA. (f) VIPSTF-SU. (g) Reference. (For interpretation of the references to colour in this figure legend, the reader is referred to the

web version of this article.)

STDFA). When using more than two image pairs, the prediction accu-
racy of VIPSTF increases slowly. More precisely, the CC of VIPSTF-SW is
0.8973 for two image pairs, and increases to 0.9032 for 14 image pairs.
The increase of CC of VIPSTF-SW is about 0.0060 from using 2 to 14
image pairs. This is also the same case for VIPSTF-SU, where the cor-
responding increase in the CC is 0.0124. By contrast, the accuracies of
STARFM and STDFA present an apparent fluctuation, and the main
trend is that the accuracy can decrease as the number of image pairs
increases to a large value. The CCs of STARFM and STDFA decrease by
0.0741 and 0.0667, respectively, when changing from using 6 to 12
image pairs.

3.2.3. Reduction in the difference between the images at the known and
prediction times

As demonstrated theoretically in Section 2.3, the square root of the
expectation of AM, which equals the RMSE between the MODIS images
at the known and prediction times, will decrease when using the VIP.
Since the VIP includes both Landsat and MODIS images, we calculated
the mean RMSEs between the Landsat images and also the mean RMSEs
between the MODIS images when using the original image pair and the
VIP for comparison. Fig. 9 displays the results for using one image pair
(14 cases in all, as in Fig. 6). It can be noticed that the RMSEs between
the MODIS images range from 0.0192 to 0.0508 when using the original
image pair, and range from 0.0011 to 0.0302 when using the VIP. As for
the Landsat images, the RMSEs range from 0.0384 to 0.0869 and
0.0350 to 0.0574 when the original image pair and the VIP are used,
respectively. In each case, the RMSEs are obviously smaller when the
VIP is used.

The corresponding results for multiple image pairs were also cal-
culated, as shown in Fig. 10. The black triangles represent the mean
RMSEs between the different known images (MODIS or Landsat images)
and the image (MODIS or Landsat image) at the prediction time, while
the red circles are the mean RMSEs between the virtual MODIS or
Landsat image and the image (MODIS or Landsat image) at the pre-
diction time. It is seen clearly that the red circle is always less than the
black triangle for each prediction, indicating that the RMSE between
the VIP and the image at the prediction is always smaller, which is
consistent with Eq. (18). Therefore, the VIP can effectively reduce the
difference between images at the known and prediction times (i.e., the
increments at both the MODIS and Landsat levels).

STARFM and STDFA use the original image pairs for prediction,
which have a large MODIS level increment AM. In VIPSTF-SW and
VIPSTF-SU, however, the virtual MODIS image with a smaller AM’ is
used for prediction. To investigate how AM can influence the prediction
accuracy, we calculated the reduction in the increment (in terms of the
difference between the mean RMSEs of AM and AM’), and the corre-
sponding increase in accuracy achieved by using VIPSTF (in terms of
the difference between the prediction RMSEs of VIPSTF and the original
methods). Fig. 11 shows the scatter plots for VIPSTF-SW and VIPSTF-
SU. It can be seen that when the difference between AM and AM’ in-
creases, the difference between the prediction accuracy increases as
well. That is, the increase in accuracy is larger when the reduction in
the MODIS level increment AM is larger.

3.2.4. Computational cost
The computational costs for STARFM, STDFA, VIPSTF-SW and

Table 2
Accuracies of different spatio-temporal fusion methods for Site 1 (M7-L7 as known image pair).
Ideal UBDF FSDAF STARFM VIPSTF-SW STDFA VIPSTF-SU
RMSE Blue 0 0.0161 0.0148 0.0163 0.0127 0.0164 0.0134
Green 0 0.0220 0.0199 0.0243 0.0166 0.0230 0.0175
Red 0 0.0326 0.0311 0.0409 0.0235 0.0355 0.0251
NIR 0 0.0684 0.0664 0.0788 0.0667 0.0753 0.0668
SWR1 0 0.0601 0.0455 0.0500 0.0400 0.0513 0.0449
SWR2 0 0.0513 0.0363 0.0365 0.0332 0.0404 0.0380
Mean 0 0.0418 0.0357 0.0411 0.0321 0.0403 0.0343
CcC Blue 1 0.7260 0.8691 0.8643 0.8732 0.8470 0.8532
Green 1 0.7223 0.8452 0.8251 0.8506 0.8134 0.8303
Red 1 0.7619 0.8668 0.8562 0.8818 0.8484 0.8653
NIR 1 0.5788 0.6272 0.4899 0.6496 0.5531 0.6073
SWR1 1 0.7652 0.8768 0.8784 0.8906 0.8542 0.8632
SWR2 1 0.7778 0.9036 0.9122 0.9151 0.8881 0.8894
Mean 1 0.7220 0.8314 0.8043 0.8435 0.8007 0.8181
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Fig. 5. Scatter plots of the actual and predicted values of the NIR band for Site 1 (M7-L7 as known image pair). (a) UBDF. (b) FSDAF. (c) STARFM. (d) VIPSTF-SW. (e)

STDFA. (f) VIPSTF-SU.

VIPSTE-SU are shown in Fig. 12. It is obvious that the computational
costs of STARFM and STDFA increases linearly when more image pairs
are used, while those of VIPSTF-SW and VIPSTF-SU remain stable from
using 1 to 14 image pairs. This is because both the spatial weighting
procedure of STARFM and the spatial unmixing process of STDFA re-
quire time-consuming computation. When a new image pair is added,
an additional time-consuming spatial weighting or spatial unmixing
process is implemented. In VIPSTF, however, only a single VIP is con-
structed based on the simple linear transformation, and the time spent
on producing the VIP is negligible. Moreover, the spatial weighting or
spatial unmixing process is implemented only once, which saves com-
putational cost significantly.

3.3. Test for the site with land cover change (site 2)

For the site with land cover change, we chose the image numbered
L8 as the Landsat image to predict. The 10 Landsat images numbered L1
to L7 and L9 to L11 were selected as the inputs to prediction, respec-
tively. The predictions produced using M7-L7 as input are shown in
Fig. 13. Since the Landsat image to predict covers a large area in-
undated by floods which does not occur in the known Landsat images,
large uncertainties exist in the predictions. From the visual comparison,
all six methods can capture the flood information, but the boundary of
the flood for each prediction varies noticeably. It is apparent that
FSDAF, VIPSTF-SW and VIPSTF-SU can predict the boundary more
accurately; see the black zone below the flood area. Furthermore, when
comparing the sub-area, the predictions of VIPSTF-SW and VIPSTF-SU
have a more similar colour to the reference image than STARFM,
STDFA and FSDAF. Table 3 lists the accuracy of the six methods when
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using M7-L7 as the image pair. Overall, UBDF produces the smallest
mean CC of 0.5595, while VIPSTF-SW provides the largest mean CC of
0.7432. Compared to STARFM, the mean RMSE is decreased by 0.0048
and the mean CC is increased by 0.0324 using VIPSTF-SW. Similarly,
when using VIPSTF-SU, the mean RMSE is decreased by 0.0022 and the
mean CC is increased by 0.0101 compared to STDFA. FSDAF produces a
more accurate prediction than UBDF, STDFA and STARFM, but is less
accurate than VIPSTF-SW.

The prediction accuracies of the six methods based on the use of
multiple image pairs are shown in Fig. 14. The prediction accuracies do
not show an obvious trend as for Site 1, and the accuracies are smaller.
The reason is that spatio-temporal fusion becomes more challenging
when great land cover change exists. It is evident that either VIPSTF-SW
or VIPSTF-SU produces greater accuracy than the original STARFM or
STDFA. The CCs of VIPSTF-SW range from 0.6636 to 0.7432, while CCs
of STARFM range from 0.4684 to 0.7108. As for VIPSTF-SU, the RMSEs
are smaller than for STDFA, and the CCs are larger than for STDFA in
most cases. In addition, the accuracy of FSDAF lies between that of
STARFM and VIPSTF-SW, and the accuracy of UBDF fluctuates when
using different image pairs.

4. Discussion
4.1. The impact of image pairs

In the experiments for the heterogeneous site, predictions using
multiple image pairs were provided for different spatio-temporal fusion
methods. From Fig. 8, we find that as the number of image pairs in-
creases to a large value (e.g., larger than six), the accuracy increases

--m=-- UBDF

--®-- FSDAF
STARFM --v-- STDFA
—&— VIPSTF-SW —<— VIPSTF-SU

A -
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Fig. 6. The prediction accuracy based on different image pairs for Site 1. (a) RMSE. (b) CC.
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14

slowly for VIPSTF-SW and VIPSTF-SU, but decreases obviously for
STARFM and STDFA. For STARFM and STDFA, the final predictions are
the weighted sum of separate predictions based on different image
pairs. The weightings are mainly determined by the temporal difference

Fig. 7. The predictions based on different numbers of image pairs for Site 1.

between the known and prediction times in a local window. We cal-
culated the absolute mean CCs of all six bands between the Landsat
images at the known time (i.e., time of L1 to L15 except L8) and pre-
diction time (i.e., time of L8), as shown in Fig. 15. The absolute CCs for
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Fig. 8. The accuracy of prediction by multiple image pairs for Site 1. (a) RMSE. (b) CC.
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Fig. 9. The RMSE between images at the known and prediction times when using the original image pair and the VIP based on one image pair. (a) RMSE between

MODIS images. (b) RMSE between Landsat images.

the Landsat images of the eight image pairs are distributed between the
two blue dotted lines in Fig. 15. It can be noted that when L4 and L12
were added for fusion, the absolute CCs decrease obviously on both
sides, which corresponds to the dramatic decrease in the accuracy of
STARFM and STDFA in Fig. 8. This means STARFM and STDFA are
sensitive to the CC between the image at the known and prediction
times, but the existing scheme of combining multiple image pairs
cannot accurately account for this factor. As a result, the image pairs
with small correlation (e.g., the CC between L2 and L8 is 0.0649) can
affect greatly the final prediction accuracy. In contrast, for VIPSTF,
when constructing the VIP, different coefficients were assigned to
images at different known times, and the coefficients are closely related
to the CC between the image at the known and prediction times. For
clarification, the absolute coefficients |a| of the green, red and NIR
bands for L1 to L15 (except L8) in the case of using 14 image pairs are
depicted in Fig. 16(a), while the relation with the CC (the red band is
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used as an example) is depicted in Fig. 16(b). In general, the lines of |a|
in Fig. 16(a) show a similar trend to that of the |CC| in Fig. 15.
Moreover, as seen from Fig. 16(b), |a| is larger when |CC]| is larger. This
means the known image pairs with small correlation will be less in-
formative in VIPSTF. Therefore, VIPSTF can assign |a| to different
known images adaptively according to its correlation with the image at
the prediction time. In spatio-temporal fusion, several studies in-
vestigated how to determine the optimal input image pairs (Chen et al.,
2020; Tang et al., 2020), such as using the CC between coarse ob-
servations or even the CC between the coarse and fine images in each
image pair to find the optimal image pairs. However, this issue remains
open. For the VIPSTF proposed in this paper, the adaptive assignment of
weights to different image pairs is robust when using multiple image
pairs, and more importantly, releases the requirement for image pair
selection, which is a complicated task.

In practice, due to the influence of cloud contamination, it is
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Fig. 10. The RMSE between images at the known and prediction times when using the original image pair and the VIP based on multiple image pairs. (a) RMSE

between MODIS images. (b) RMSE between Landsat images.
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Fig. 11. Scatter plots of reduction in the MODIS level increment (in terms of the difference between AM and AM’) and the corresponding increase of prediction
accuracy (in terms of RMSE decrease) for Site 1. (a) STARFM and VIPSTF-SW. (b) STDFA and VIPSTF-SU.
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Fig. 12. Computational costs of the methods for Site 1.

difficult to acquire sufficient MODIS and Landsat time-series image
pairs with reliable quality. Also, image pre-processing, including geo-
metric registration between the MODIS and Landsat images, may re-
quire intensive effort. Intuitively, we expect the employment of more
image pairs to be beneficial and to increase accuracy. According the
experimental results, however, the inclusion of more image pairs does
not necessarily benefit obviously VIPSTF if the number of image pairs is
already large. Thus, there emerges an imbalance in the costs and ben-
efits. To avoid futile efforts in acquiring the MODIS and Landsat data in
practical applications, it is necessary to define an index based on the
idea of cost-benefit ratio to guide the determination of the number of
image pairs. It is expected that the optimal number may vary according
to the study area.

4.2. The relation between the Landsat and MODIS images

In the proposed VIPSTF approach, it is assumed that the reflectance
of each MODIS pixel is the average of the corresponding Landsat pixels
covering the same area (Li et al., 2020a; Zhu et al., 2010). However,
there always exists inconsistency between MODIS and Landsat images,
which produces a bias in the assumed relationship (Chen et al., 2020; Li
et al., 2020b; Xie et al., 2018). The reason for this phenomenon is that
the acquisition conditions (e.g., atmospheric effects, Sun-sensor geo-
metry, bidirectional reflectance distribution function (BRDF) effects,

(a)

Fig. 13. Results of different methods for Site 2 (M7-L7 as known image pair). (a) UBDF.
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(b) (©)

(d)
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(b) FSDAF. (c) STARFM. (d) VIPSTF-SW. (e) STDFA. (f) VIPSTF-SU. (g)
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Table 3
Accuracy of different spatio-temporal fusion methods for Site 2 (M7-L7 as known image pair).
Ideal UBDF FSDAF STARFM VIPSTF-SW STDFA VIPSTF-SU
RMSE Blue 0 0.0201 0.0140 0.0147 0.0143 0.0162 0.0162
Green 0 0.0240 0.0201 0.0209 0.0194 0.0233 0.0222
Red 0 0.0284 0.0242 0.0253 0.0229 0.0280 0.0265
NIR 0 0.0462 0.0328 0.0325 0.0315 0.0401 0.0400
SWR1 0 0.0633 0.0610 0.0681 0.0584 0.0674 0.0638
SWR2 0 0.0512 0.0555 0.0614 0.0481 0.0593 0.0526
Mean 0 0.0389 0.0346 0.0372 0.0324 0.0391 0.0369
cC Blue 1 0.4774 0.6540 0.6396 0.6949 0.5597 0.5800
Green 1 0.5265 0.6766 0.6586 0.7026 0.5700 0.5924
Red 1 0.5011 0.6659 0.6466 0.6952 0.5554 0.5706
NIR 1 0.6043 0.8317 0.8384 0.8456 0.7423 0.7351
SWR1 1 0.6427 0.7494 0.7486 0.7671 0.6758 0.6800
SWR2 1 0.6051 0.7168 0.7330 0.7541 0.6470 0.6525
Mean 1 0.5595 0.7157 0.7108 0.7432 0.6250 0.6351
the response function, noise, etc.) vary for different sensors (Gao et al., 0.8001 | i
2014; Roy et al., 2016). For example, although Terra, Aqua and Landsat ’ : :
are all Sun-synchronous orbit satellites, their viewing angles are dif- 0.700 : |
ferent. MODIS images are acquired at very large viewing angles, while : |
Landsat images are acquired with near-nadir view. All these factors will 0.600} : |
cause an inevitable bias in the simple averaging model. The bias can : ;
also differ greatly for MODIS-Landsat pairs acquired in different spatial 0.500 | :
regions and at different times. Since the bias is difficult to characterize %) i :
at the current stage, it is challenging to express the relationship be- © 04001 : |
tween Landsat and MODIS in a perfectly accurate mathematical model. : ;
However, if any prior knowledge or auxiliary information is available, 0.300 : |
it can be used readily when constructing the relation between the / |
Landsat and MODIS images for possible enhancement of the proposed 0.200 i i
VIPSTF approach. 0.100 i i
1 1
i 0.000 e
4.3. Production of the VIP L1 L2 L3 L4 L5 L6 L7 L9 LIOLIILI2LI3LI4LIS
This paper introduced the concept of the VIP to synthesize a MODIS- Image ID

Landsat image pair closer to the prediction time. Theoretically, there
should be opening solutions to produce the VIP. In this paper, it was
determined specifically using a linear transformation model. See Egs.
(3) and (4), when constructing the VIP, we defined two functions, g;
and g,. Based on the assumption of linear transformation, g; and g
were defined as the linear weighted sum of MODIS and Landsat time-
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Fig. 15. The CC between Landsat images at the known and prediction times.

series images, as expressed in Egs. (9) and (10). The rationale for the
production of the VIP (i.e., the linear regression-based solution to de-
coefficients) was

termine the demonstrated mathematically.
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Fig. 14. The prediction accuracy based on different image pairs for Site 2. (a) RMSE. (b) CC.
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Fig. 16. Variation in the absolute regression coefficient |a|. (a) |a| of Landsat at different times (e.g., 14 images). (b) Scatter plot between |CC| and |a| for the Red
band. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Experiments also validate that both the virtual MODIS and Landsat
images are closer to that for the prediction time (see Figs. 9 and 10).
Except for the linear transformation adopted in this paper, other
transformation models such as nonlinear transformation may also be
considered in future research. The application of these models may
potentially lead to a more appropriate characterization of VIP and in-
crease the fusion accuracy finally. Nevertheless, two points need to be
emphasized when developing other transformation methods. First, the
main objective of the production of the VIP is to reduce AM, that is, to
produce a VIP closer to the prediction time. Second, the transformation
should preserve the consistency between the MODIS and Landsat
images, such as in Eq. (5). This means that the two functions g; and g»
need to be connected in a certain way, either explicitly or intrinsically.

4.4. The applicability of VIPSTF

In the general framework of the existing spatio-temporal fusion
methods in Egs. (1) and (2), the function f is the most critical issue for
prediction. For the SW and SU methods used in the proposed VIPSTF
approach, f is a specific function that can be characterized explicitly by
a mathematical expression. However, there also exists some other
spatio-temporal fusion methods where f cannot be defined as an explicit
function. For example, in some learning-based methods (e.g., sparse
representation (Huang and Song, 2012; Zhao et al., 2018), support
vector regression (Moosavi et al., 2015) and deep learning (Das and
Ghosh, 2016; Song et al., 2018)), the processing of AM is performed in a
black box. In this paper, VIPSTF was demonstrated to be more accurate
by applying the linear mechanism of SW and SU methods to process the
new MODIS increment AM’ between the virtual MODIS image and the
MODIS at the prediction time. Based on this encouraging performance,
it is also worthwhile to investigate whether VIPSTF has the potential to
be adopted to other spatio-temporal fusion methods (e.g., learning-
based methods) where the function f cannot be expressed explicitly. For
these methods, however, the combination with VIPSTF tends to be more
complex, and the feasibility remains to be validated and developed. On
the other hand, for some learning-based methods, at least two image
pairs (one before and one after the prediction time) are required. The
VIP produced in this paper is actually a single image pair. Thus, it
would be interesting to construct multiple VIPs (e.g., one VIP before
and one VIP after the prediction time) for these methods, or even ex-
tend the original learning-based methods to be applicable to only one
image pair. This is part of our ongoing research.

14

4.5. Comparison between VIPSTF-SW and VIPSTF-SU

In this paper, two versions of VIPSTF were developed by extending
existing SW and SU schemes for characterizing the function f. From the
prediction by one image pair for the heterogeneous area in Section 3.2,
the two types of methods have close performances and the difference in
accuracy is small. For the area experiencing land cover changes in
Section 3.3, however, the prediction of the SW methods have a greater
accuracy than the SU methods in most cases; see the lines in Fig. 14(b).
The reason is that there is a strong assumption in the SU-based
methods: the proportions of land cover classes do not change during the
time of interest. This assumption means the matrix of coarse propor-
tions in Eq. (21) is fixed for any time, which makes the SU methods
especially sensitive to land cover changes. In future research, it may be
of great interest to develop more adaptive SU methods to account ex-
plicitly for land cover changes. For example, a bias term reflecting the
degree of change in proportions could be included in the original coarse
proportions to predict more reliable increments for each class. How-
ever, how to quantify the change degree would be a critical issue, which
may require reliable change detection between coarse spatial resolution
images. On the other hand, blocky artifacts always exist in the predic-
tions of SU methods because the unmixing step is implemented in units
of coarse pixels, so that the pixels belonging to the same class in a local
window may have very different reflectances. The spatial filtering
scheme used in the Fit-FC method proposed in our previous research
(Wang and Atkinson, 2018) may be a plausible solution to remove
them, but the prediction can sometimes be visually smooth. It is found
that the use of coarse proportions upscaled from soft classification re-
sults of an available fine spatial resolution land cover map, rather than
a fine hard classified map in spatial unmixing, can alleviate the blocky
artifacts (Ma et al., 2018; Liu et al., 2020; Wang et al., 2020). The
theoretical basis behind this needs to be investigated further. Therefore,
it would also be interesting to seek solutions to reduce the blocky ar-
tifacts in SU-based methods including the proposed VIPSTF-SU method
for further enhancement.

4.6. Comparison with solutions based on Landsat time-series

Some studies have been developed for predicting Landsat images
based on the homologous Landsat time-series accumulated from other
days (Hilker et al., 2009; Zhu et al., 2015; Zhu et al., 2018b). For ex-
ample, Zhu et al. (2015) synthesized Landsat images at any given time
using all available Landsat data based on seasonal trend analysis. Zhu
et al. (2018b) filled the missing pixels due to SLC-off and cloud con-
tamination to produce spatially complete Landsat data. These
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researches are different from the spatio-temporal fusion investigated in main findings are summarized as follows.
this paper. First, from the perspective of data, they are performed based
on the availability of Landsat time-series, sometimes for a very long 1) VIPSTF can enhance the performance of spatio-temporal fusion. The
time (e.g., > 30 years in Zhu et al. (2015)). Spatio-temporal fusion, accuracies of both VIPSTF-SW and VIPSTF-SU are greater than the
however, is flexible to the number of available Landsat images and has original STARFM and STDFA methods as well as the popular UBDF
a much lighter dependence on the number of data. That is, spatio- and FSDAF methods. For the prediction using M7-L7 as the known
temporal fusion can also be performed using only one temporal image pair for Site 1, the mean CC of VIPSTF-SW is 0.8435, which is
neighboring Landsat image. Second, from the perspective of principles, 0.0392, 0.1215 and 0.0121 larger than for STARFM, UBDF and
spatio-temporal fusion actually focuses on the issue of downscaling, by FSDAF, respectively. Also, the mean RMSE of VIPSTF-SU is 0.0060,
taking full advantage of the coarse MODIS images and the fine Landsat 0.0075 and 0.0014 smaller than for STDFA, UBDF and FSDAF, re-
images to predict the completely missing Landsat images on the same spectively.
dates of MODIS images. The solutions based on long Landsat time-series 2) Both the virtual MODIS and Landsat images in the VIP are closer to
account for seasonal trends and fit a model to characterize the re- the data at the prediction time than the original image pairs. The
flectance at any time (Zhu et al., 2015). The gap-filling solution in Zhu VIP can effectively reduce the increments at both the MODIS and
et al. (2018b) is performed using spatial and temporal interpolation, Landsat levels. The advantage of VIPSTF is especially obvious when
based on partly available Landsat data at the prediction time, rather the reduction in the increment is large (i.e., the case where the
than completely missing Landsat data at the prediction time as in original image pairs are temporally far from the prediction time).
spatio-temporal fusion. Given the common goal of predicting Landsat 3) VIPSTF is applicable to both heterogeneous sites and sites experi-
images, these two types of solutions can be potentially combined, which encing temporal land cover type changes.
may be one breakthrough to enhance the performance of predicting 4) For the prediction by multiple image pairs, as the number of image
missing Landsat data. Seasonal trends present the law of dynamic pairs increases, the prediction accuracies of STARFM and STDFA can
change of land cover at Landsat resolution at different times, while decrease, but that of VIPSTF increases slowly or stays stable. This
spatio-temporal fusion further exploits information from additional means that VIPSTF is robust to the use of different image pairs,
coarse MODIS images. This provides an interesting avenue for future which releases it from the complicated problem of image pair se-
research. lection.

5) For the site with land cover changes, VIPSTF-SW is more accurate
5. Conclusion than VIPSTF-SU, and the latter is more sensitive to land cover

changes. When using M7-L7 as the known image pair, the mean CC
For spatio-temporal fusion, uncertainty exists mainly in the down- of VIPSTF-SW is 0.1081 larger than for VIPSTF-SU.

scaling process of estimating the fine spatial resolution level increment 6) When using more image pairs, the computational cost of STARFM
(e.g., Landsat level increment) from the coarse level increment (e.g., and STDFA increases noticeably, while VIPSTF always maintains a
MODIS level increment), which also means the difference between constant and smaller running time.

images of the known and prediction times. This paper proposed to
construct a VIP which is closer to the data at the prediction time to
capture more fine spatial resolution information directly from the
known Landsat images, thus, reducing the burden of estimating the
Landsat level increment. It was demonstrated theoretically that the VIP
can reduce the MODIS level increment. Based on the concept of VIP, the
VIPSTF approach was proposed. VIPSTF is a general approach suitable Acknowledgments
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Appendix A. Appendix

N
As seen from Eq. (14), AM can be expressed as ), w; (M, — M;) when using multiple image pairs for fusion. Considering the relationship between

i=1
the expectation and the variance, E(AM?) can be calculated as
E(AM?) = Var(AM) + E?(AM)
N N
= Var[z Wi(Mp - Ml):| + E2|:Z W,'(Mp - M,)]

i=1 i=1

(A1)

N
As for the variance term Var [ > wi(M, — M) ], M,, can be represented by the transformation of My according to Eq. (11) (note that M; and M; do

i=1
not refer to the same MODIS image). Thus, we have
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Var(AM) = Var w; (M, — M;)

||'Mz

i=1

N N
= Var wiZakMk+b+r—Mi
i=1  \k=1
N N
= Var ZWi ZakiMk+b+r
i=1 k=1
N N N N
= Var w; Z a My + Z wib + Z w;r
i=1 k=1 i=1 i=1
N N
= Var Zwi z a My +r
i=1 k=1 (A2)
N
In Eq. (A2), M; is merged with Y, a,M; by defining a new coefficient
k=1
a — 1, k=i
Ay = ..
a L k#i (A3)
N N N
Moreover, the term ), w;b can be canceled in Eq. (A2) as both w; and b are constant, and the term ), w;r is simplified as r since ), w; = 1.
i=1 i=1 i=1
Considering the expansion rule of the variance of the sum of two variables, Eq. (A2) can be rewritten as
N N N N
Var(AM) = Var z w; Z a, M | + Var(r) 4+ 2Cov Z w; Z a Mg, r
i=1 k=1 i=1 k=1
N N N N
= Var Z w; Z ai My [ + Var(xr) + 2 z w; Z ay; Cov (M, 1)
i=1 k=1 i=1 k=1 (A4)
According to the relationship between the covariance and the expectation, Cov(M,r) can be transformed as
Cov(My,r) = E(Myr) — E(M)E(r) (A5)

where - means the inner product between two vectors.
For classical least squares-based linear regression modeling, there are two important properties. First, the expectation of the product of the
independent variable and the residual is zero. Second, the expectation of the residual is zero (Draper and Smith, 2014)

E (Mk~r) =0
E®=0 ' (A6)
Therefore, Eq. (A5) equals to zero and Eq. (A4) can then be rewritten as

N N
Var(AM) = Var Z w; Z a My | + Var(r).
i=1 k=1 (A7)

According to Eq. (A7), Eq. (A1) can be updated as

N N N
E(AM?) = Var| Y. w; ), a Mg | + Var(x) + E2[ Y w;(M, — M) |.
i=1 k=1 i=1 (A8)

When the VIP is used, based on Egs. (10) and (11), E(AM"?) can be derived as
E(AM?) = E[(M, — Myp)?]

=E(r?
=Var(r) + E2(r)
= Var(r) (A9)
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