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A B S T R A C T   

This paper describes a quasi-physical method (the Q-method) for determining the sea surface temperatures 
(SSTs). The Q-method is a coefficient-based technique developed for processing the multiband infrared (IR) data 
of the geostationary Himawari-8 satellite. We applied the Q-method to the split-window data from the Second- 
generation Global Imager (SGLI) onboard the Global Change Observation Mission-Climate (GCOM-C) satellite. A 
comparison of the determined SGLI SSTs and buoy data shows a bias with a robust standard deviation of − 0.097 
K and 0.28 K in the daytime and − 0.18 K and 0.28 K at night, respectively. Meanwhile, high biases of nearly 
− 0.5 K were calculated for SSTs at and around 305 K. A residuals analysis suggests that the high negative bias is 
caused by insufficient information on the atmospheric correction brought by split-window data. This paper 
discusses the physical and mathematical background of the Q-method and compares it with another coefficient- 
based physical scheme.   

1. Introduction 

Satellite-based remote sensors are expedient in the monitoring of the 
sea surface temperatures (SSTs) because they can observe the Earth with 
high resolution and at frequent intervals. Satellite-based SSTs have de
cades of history (e.g. O’Carroll et al., 2019; Minnett et al., 2019) and 
have generated several important data sets (e.g. Merchant et al., 2019; 
Casey et al., 2010; Kilpatrick et al., 2015; Ignatov et al., 2016). 

The determination of SSTs from thermal infrared (IR) images dates 
back to the 1970s (Anding and Kauth, 1970; Prabhakara et al., 1974; 
McMillin, 1975), when SSTs were estimated by correcting the brightness 
temperatures (BTs) for atmospheric attenuation using differences be
tween BTs (BTDs) measured by two split-window channels or at two 
different viewing angles. This is known as the split-window method. The 
split-window method developed into the multi-channel SST (MCSST) 
method (McClain et al., 1985) and the nonlinear SST (NLSST) method 
(Walton et al., 1998), among others (e.g. Kilpatrick et al., 2001; Pet
renko et al., 2014). These methods, which are calculated by regression 
analysis, are categorized as empirical regression methods. 

Aside from empirical methods, there are physically based methods. 
Závody et al. (1995) developed a coefficient-based scheme for retrieving 
SSTs from the along-track scanning radiometer (ATSR). They generated 

coefficients using simulated ATSR data and instrumental noise. The 
ATSR data were simulated numerically using atmospheric profiles of 
temperature and water vapor obtained by ships and coastal stations and 
SSTs estimated from the surface air temperature. The coefficient-based 
scheme was refined by Embury et al. (2012b) using the total column 
of water vapor provided by numerical weather prediction (NWP) ana
lyses (Embury et al., 2012b; Embury and Merchant, 2012; Embury et al., 
2012a). Nalli and Smith (1998) proposed the physical multi-window 
SST (PWSST) method. PWSST uses the deviation technique (Smith 
et al., 1991), an application of differential calculus, to solve the radiative 
transfer equation. Merchant et al. (2008) and Koner et al. (2015) applied 
optimal estimation (OE) and modified total least squares (MTLS) 
methods to determine SSTs. 

The quasi-physical SST method (Q-method) was developed to 
determine SST (QSST) using the multiband IR data from the Advanced 
Himawari Imager (AHI) onboard the Japanese Himawari-8/9 satellite 
(Kurihara et al., 2016). The Q-method is a physically based regression 
method that determines the skin SST as an approximate solution to the 
radiative transfer equation. Coefficients are generated using a radiative 
transfer model (RTM) and NWP data in advance. It is important to select 
the NWP data for a period that does not overlap that of satellite data. It 
improves the independence between retrieved SSTs and NWP. The Q- 
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method excludes bias correction and all other empirical adjustments. 
Yang et al. (2020) compared Himawari-8 QSSTs with the skin SSTs 
measured with the infrared SST autonomous radiometer (ISAR) (Donlon 
et al., 2008) installed on the research vessel (RV) Investigator of the 
Australia Commonwealth Scientific and Industrial Research Organisa
tion (CSIRO) (Beggs et al., 2017). They report bias and standard devi
ation of 0.09 K and 0.30 K for the Himawari-8 QSST. 

The Second-generation Global Imager (SGLI) is the optical sensor 
onboard the Global Change Observation Mission-Climate (GCOM-C) 
satellite. GCOM-C is a sun-synchronous polar-orbiting satellite launched 
by the Japan Aerospace Exploration Agency (JAXA) in December 2017 
(Imaoka et al., 2010). SGLI has spatial resolutions that can be switched 
between 205×250 m and 1×1 km and obtains global data via the scans 
for two or three days (Appendix A). SST is determined from the data 
obtained from the SGLI split-window channels at 10.8 and 12.0 μm. We 
modified the original Q-method to apply it to the split-window data. 

This paper discusses the modified Q-method and its validation result. 
The discussion refers to the modified Q-method as the Q-method as long 
as there is no risk of confusion, and SST denotes the skin SST unless 
otherwise noted. Section 2 introduces the Q-method, Sections 3 and 4 
discuss the physical background and performance of the Q-method, and 
validation results for retrieved SSTs are discussed in Sections 5 and 6. 
Section 7 concludes with a summary. GCOM-C and SGLI are outlined in 
Appendix A. A sensor-specific conversion from the radiance to SST is 
described in Appendix B. The mathematical background of the Q- 
method is discussed in Appendix C. Appendix D summarizes the notation 
used in the discussion. 

2. The SST method 

An SST (Ts) is derived from the radiance (Is), which in turn is 
determined by 

Is = Is0 + aT(I − I0) (1) 

Here, a and I are the column vectors of coefficients and IR data, 
respectively. The T on the shoulder of a denotes the transpose of the 
vector. Is0 and I0 denote pre-calculated initial data. Is and Is0 are the 
radiances of blackbodies which have the surface temperatures of Ts and 
Ts0. The wavelength is omitted to simplify the formula. Note that IR data 
is the same as the radiance at the top of the atmosphere (TOA). Eq. (1) is 
equivalent to the first-order Taylor polynomial at I = I0. 

Initial data, Is0 and I0 will be referred to as the anchor point. Devia
tion from the anchor point will be denoted by Δ, such that ΔI = I − I0. 
The conversion from Is to Ts is made by combining a regression formula 
and the inverse of the Planck function. The regression formula is 
introduced to take the sensor characteristics into account. Details on the 
conversion are discussed in Appendix B. 

The Q-method uses a look-up table for initial anchor points and co
efficients, which are generated for bins for the chosen SZAs (Fig. 1) in 
advance. In determining SST, an anchor point and coefficients are 
generated from the initial anchor points and coefficients by linear 
interpolation at the SZA of the satellite data. We chose BT and BTD as the 
keys to the initial anchor points because BT is easier to handle than the 
radiance. 

3. Physical background 

3.1. Assumptions 

The Q-method was initially developed for real-time retrieval. Since 
the accuracy of real-time external data was unknown, assumptions were 
made that would avoid the use of such data. However, some high- 
accuracy external data could be available with reprocessing. Further
more, it is also possible that external data improve SSTs retrieved in real- 
time. Thus, it is important to expand the Q-method to handle these 

external data. Expansion of the Q-method is left for the future. 

3.1.1. Clear sky 
We derived the Q-method from the radiative transfer equation for the 

clear sky, which is a common requirement for detecting IR SSTs. Cloud 
contamination can result in damage to retrieved SSTs that makes it 
difficult to evaluate SST methods. Referring to previous researches (e.g. 
Merchant et al., 2008), this paper uses robust statistics (the median and 
the robust standard deviation (RSTD) (e.g. Huber and Ronchetti, 2009, 
p. 106)) for validating the SGLI QSST. Although cloud contamination is a 
central issue, it is beyond the scope of this research. 

3.1.2. Aerosols 
Aerosols, including dust and volcanic ash, seriously impacts SST 

determination. Not only do absorb IR radiation, but they also change the 
ratio of the optical depth of the atmosphere (known as the β ratio) 
(Pavolonis, 2010; Závody et al., 1995; Inoue, 1987) and impairs atmo
spheric correction. Despite this, we did not take aerosols into account 
because there is no accurate real-time information about them available. 
However, degradation by aerosols, such as Mt. Pinatubo ash (e.g. Rey
nolds, 1993) and Saharan dust (e.g. Foltz and McPhaden, 2008), must be 
corrected for to generate accurate climatological SSTs. Aerosol correc
tion is an issue with the Q-method that we have left to future 
investigation. 

3.1.3. Sea surface emissivity 
Sea surface emissivity varies with the emission angle and surface 

roughness. Previous research has proposed models that determine sea 
surface emissivity at a given emission angle and surface wind speed (e.g. 
Masuda et al., 1988; Watts et al., 1996). However, it is unknown if the 
wind data available in real-time is sufficient to improve the accuracy of 
determined SSTs. Hence, we assumed that the wind speed is constant. As 
the result, the sea surface emissivity depends on only the satellite zenith 
angle (SZA). Here, SZA and the emission angle are the same in satellite- 
based remote sensing. Emissivities are determined in RTM at the 
empirically chosen constant surface wind speed of 5 m/s for each SZA. 

3.2. Formulation 

Most of the regression-based SST methods are developed from the 
well-known split-window method, which is based on an approximation 
formula: 

Ts ≃ T1 + η(T1 − T2) (2)  

where T1 and T2 denote BTs of the split-window and η is a coefficient 

Fig. 1. Bins on the BT-BTD plane. BTT1 
denotes the brightness temperature at 

the T1 channel, and BTDT1− T2 
denotes the brightness temperature difference 

determined by BTT1
− BTT2

. Each bin size is 1 K × 0.1 K. 
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derived from first-order approximations of the atmospheric trans
mittance (e.g. Liou, 2002, p. 385–387). Eq. (2) is derived by combining 
the radiative transfer equations for the split-window channels: 

I = Ist+(1 − t)I↑, (3)  

where t and I↑ are the atmospheric transmittance and the mean atmo
spheric up-welling emission, respectively. 

A serious problem with the split-window method is that biases are 
generated at SZAs larger than ~40∘ (McClain et al., 1983). This is likely 
to be caused by the split-window method, which does not consider the 
variation of the emission angle and the geometric radiation path length. 
To fix this problem, empirical regression-based methods typified by 
MCSST have added correction terms that include SZA (e.g., sec(SZA) −
1). Other problems may be caused by the translation from (3) to (2). The 
translation requires an approximation of the Planck function with a first- 
order polynomial. For example, the first-order polynomial calculated for 
BTs from 265 to 300 K generates systematic errors from − 0.68 to 1.2 K 
on BT at 10.8 μm and those from − 0.078 to 0.14 K on BTD (10.8μm −
12.0μm). Note that these errors are implicit in (2). BT and BTD are in
dependent and closely involved in the first-order approximation of SST 
and the atmospheric correction, respectively. It can be inferred that 
those errors generate complicated noise in retrieved SST data. Further
more, this complexity may be increased by the insensitivity of the split- 
window data to WV (Subsection 6.1). 

These problems are caused by the first-order approximation of 
radiative transfer, so they can be improved by narrowing the range of 
parameters. The basic idea of the Q-method is to solve the radiative 
transfer equation in a small space. We addressed these problems by 
using coefficients generated at almost evenly distributed anchor points 
and by solving the radiative transfer equation in the neighborhood of 
each anchor point. To avoid the errors caused by approximating the 
Planck function, calculations were made on a radiance base. We regar
ded the radiative transfer as a projection onto a three-dimensional space 
defined by BT, BTD, and SZA. Eq. (1) is derived by solving the first-order 
Taylor polynomials of the radiative transfer equation at each anchor 
point. The mathematical background of the Q-method is discussed in 
Appendix C in detail. Note that it is possible to generate coefficients for 
other variables related to the IR radiative transfer as well as those for 
SST and that the generated coefficients determine a pseudo-inverse 
model of the radiative transfer defined by a pseudo-inverse matrix 
(Appendix C). 

4. Performance 

4.1. Determination accuracy 

The performance of the Q-method was evaluated with over three 
million SGLI data points numerically generated by applying the Radia
tive Transfer for TOVS (RTTOV) 10.2 on NWP data. RTTOV was devel
oped at the Numerical Weather Prediction Satellite Application Facility 
(NWP SAF) of the European Organisation for the Exploitation of Mete
orological Satellites (EUMETSAT) (Saunders et al., 2012). The NWP data 
consisted of atmospheric temperature and water vapor fields objectively 
analyzed for the 15th of each month of 2013 provided by the Japan 
Meteorological Agency (JMA). The initial anchor points and coefficients 
were generated at SZAs of 0, 10,…, 50, 52,…, and 60∘ using the NWP data 
objectively analyzed for the 1st, 11th, and 21st of each month of 2013. We 
did not take NEΔT into account. Results are shown in Figs. 2 and 3. Bias 
and STD of all the data are 0.035 K and 0.35 K, respectively. A high 
negative bias of almost − 1 K was calculated at SSTs ~305 K (Fig. 2). 

4.2. Sensitivity and robustness 

We evaluated the Q-method’s sensitivity to SST variation and 
robustness against variations in the atmospheric water vapor (WV) 

according to Merchant et al. (2009a). Not only Accuracy, sensitivity, and 
robustness are all important in determining satellite-detected SSTs. We 
estimated the sensitivity by <(Tret − Tret

′)/(T − T′)>. Here, Tret and Tret
′

denote retrieved SSTs, and T and T′ are the true SSTs. Angle brackets 
denote an ensemble average. Sensitivity is a dimensionless quantity 
associated with the accuracy of differences in determined SSTs between 
two points or two different observation times (or spatial/temporal gra
dients of determined SSTs). If the SST method is insensitive to SST 
variation (i.e. sensitivity is less than 1), SST gradients would be under
valued and result in blurred SST fronts and other faults. Robustness 
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Fig. 2. Application of the Q-method to SGLI. TCWV is the Total Column Water 
Vapor. Dashed, single-dotted, and double-dotted lines refer to the mean errors 
at SZAs of 5∘, 35∘, and 55∘, respectively. Error bars show the STD of the error. 

Fig. 3. Sensitivity of Q-method for SGLI.  
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against WV variation was estimated by <(Tret − Tret
′)/(W − W′)> where 

W and W′ denote TCWV. We calculated robustness as an average of 
changes in SST generated by a change in TCWV of 10 kg/m2. TCWV can 
vary around fronts and coastal seas because of the exchange of the at
mosphere between land and ocean. If the variation in affected SST 
determination (i.e. the robustness) is not zero, the accuracy of retrieved 
SSTs would suffer. 

Sensitivity and robustness were assessed using SGLI simulation data. 
Sensitivity was evaluated using the T′ generated by adding random 
variations (ΔT) less than 5 K: T′ = T + ΔT. The Tret

′ was determined from 
SGLI data simulated by using the T′ and WV; here, no change was 
applied to the WV. Robustness was evaluated using the W′ generated by 
adding random variations less than 10% of the W: W′ = W + ΔW where 
ΔW/W < 0.1. Procedures for the evaluation were the same as those for 
evaluating the sensitivity. The result suggests a strong influence of WV 
over the SST determination (Fig. 2). The figure shows that sensitivity 
and robustness deteriorated significantly at high TCWV. Meanwhile, 
sensitivity is found to have improved at SZA of 55∘ and TCWV above 60 
kg/m2 (see the top of Fig. 2). This could be caused by degradation of the 
sensitivity test, numerical problems with the coefficients of the Q- 
method, or errors in the simulated SGLI data. The influence of high WV 
will be discussed in Subsection 6.1. 

4.3. Impact of surface wind speed 

The Q-method is premised on the sea surface emissivity estimated 
with a constant surface wind speed (Subsection 3.1) but, in reality, the 
wind speed is variable so the emissivity also varies with it. Discrepancies 
between the actual wind speeds and the assumed constant wind speed 
will generate biases in the determined SSTs. To evaluate the bias caused 
by an unexpected wind speed, we simulated SGLI data at each surface 
wind speed between 0 and 60 m/s and determined QSSTs from the 
generated data. Fig. 4 shows the biases calculated for each SZA. As the 
figure shows, the biases are less than 0.05 K at the SZAs of 5∘ and 35∘. 
However, the biases are slightly higher for an SZA of 45∘, and those were 
around 0.2 K for winds of 50 m/s or higher and at an SZA of 55∘. 

5. SGLI SST 

We retrieved QSSTs from the SGLI data from January to March of 
2019 and compared the result with buoy data. QSSTs were determined 
by using the same initial anchor points and coefficients as those gener
ated for the performance evaluation (Section 4). We also determined 
another set of SGLI SSTs using a coefficient-based scheme and compared 
the result with the QSSTs. 

5.1. Coefficient-based scheme (N2SST) 

Our coefficient-based scheme followed Embury and Merchant 
(2012). We will refer to the SGLI SSTs determined by this scheme as 
N2SST which denotes nadir-view two-channel SSTs. N2SST is deter
mined with a formula: 

Ts = a0 + aT T (4)  

where a and T are the column vectors of coefficients and brightness 
temperatures, respectively, and the a0 is the offset. Coefficients were 
generated for tropical, mid-latitude, and high-latitude regions (Table 1) 
according to Závody et al. (1995). Each regional coefficient was calcu
lated at each SZA using the same numerical data used to generate the 
initial anchor points and coefficients of QSST. SZAs are also the same as 
those of the initial anchor points. Note that the assumption about the sea 
surface emissivity also underlies N2SST. 

5.2. SGLI data 

We used SGLI data at the 1-km spatial resolution. The SGLI data 
points suspected to be cloudy were excluded based on a combination of a 
threshold-based test and Bayesian inference. In the threshold-based test, 
the STD of the horizontal QSST gradient was calculated with the data 
over a 3×3-pixel template then evaluated with a threshold of 0.6 K/km. 
This threshold is about twice as large as the random noise estimated in 
QSST. Cloud probability was calculated with the data: VN8 and SW2 
(Table A.5) for daytime and T1, T2, and objectively analyzed daily SSTs 
for nighttime. The daily SSTs were provided by JMA. The probability 
density function (PDF) was generated by using the SGLI data and the 
retrieved QSSTs for March to August 2018. The threshold of 0.2 was 
chosen empirically as the lowest cloud probability. Note that the 
threshold is not fully accepted because it depends on the sensitivity to 
clouds and accuracy of the data. SSTs that have passed the cloud test will 
fall into the best SST provided in the JAXA product. 

5.3. In-situ data 

Because QSST is determined as a skin SST, retrieved QSSTs ought to 
be validated using in-situ skin SST data (e.g. Minnett et al., 2001; Donlon 
et al., 2008). However, there are considerably fewer in-situ skin SST data 
available than buoy data, so the total volume of data is not sufficient to 
assess the accuracy of QSST adequately. Hence, we followed the tradi
tional method of validating satellite SSTs. Drifting- and moored-buoy 

Fig. 4. Bias caused by the surface wind speed. Dashed, single-dotted, and 
double-dotted lines refer to the biases at SZAs of 5∘, 35∘, and 55∘, and the solid 
gray line refer to those at an SZA of 45∘. 

Table 1 
Geographical region for N2SST.  

Region Latitude (deg) SST (K)   

Mean STD Low High 

Tropic − 25‑25 301.3 1.84 286.9 305.4 
Midlatitude − 50 to − 25, 25‑50 289.7 6.16 272.2 304.6 
High-latitude − 82 to − 50, 50‑82 277.9 3.3 271.2 293.6  
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Fig. 5. Locations of buoy data in the daytime. Red, blue, and green denote the 
locations of moored (total number is 628), drifting (31,178), and high- 
resolution drifting buoys (6037), respectively. (For interpretation of the refer
ences to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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data were downloaded from the In-situ SST Quality Monitor (iQuam) 
version 2.10 of the National Oceanic and Atmospheric Administration 
(NOAA). We used the buoy data that passed all of quality control (QC) 
checks of the iQuam (Xu and Ignatov, 2014). Each buoy data point was 
associated with the nearest SGLI SST in the 3 km × 3 h matchup window 
centered on the buoy. The total number of daytime matchups was 
37,843; of nighttime, 33,004 (Fig. 5). 

5.4. Impact of aerosol 

Fig. 6 shows the relation between the aerosol optical thickness (AOT) 
and discrepancies between QSST and buoy data for the daytime. AOTs 
were retrieved from the VNR data of SGLI (Yoshida et al., 2020). 
Although the deviations tend to become negative as AOT increases, 
there is no clear correlation, suggesting that the influence of aerosols 
was not serious in the validation. 

5.5. Result 

Table 2 and Figs. 7-9 show the results of the comparison. Biases are 
almost constant at over all the SZAs for both Q- and N2SSTs (Fig. 7). If 
the assumption on sea surface emissivity is not suitable, biases that vary 
with SZA will result. Therefore, these results suggest the assumption on 
the sea surface emissivity is adequate to determining SSTs at SZAs ≤50∘. 
Also, Fig. 8 shows high negative biases that were calculated in QSST 
around 305 K, but they did not appear in N2SST. High negative biases 

will be discussed in Subsection 6.1. The difference between N2SST and 
QSST will be discussed in Subsection 6.2. Except for these negative 
biases, all biases in QSSTs were within acceptable limits considering the 
cool-skin or the warm-layer effect (e.g. Fairall et al., 1996; Donlon et al., 
1999; Gentemann et al., 2003). Bias and STD are relatively high and 
large at night; this is likely to originate from the difficulties resulting 
from cloud masking at that time. 

6. Discussion 

6.1. Negative bias 

As discussed in Section 5, a high negative bias was calculated for 
QSSTs determined for buoy data of ~305 K. On the other hand, the 
result of the performance evaluation suggests that QSSTs determined for 
SSTs of ~302 K or higher have high negative biases (the second chart in 
Fig. 2). The result also suggests that high negative biases are generated 
where TCWV >60 kg/m2 (the third chart in Fig. 2). In general, the 
amounts of WV will be higher for higher SSTs, so, it can be inferred that 
negative biases are related to WV in the atmosphere. 

We analyzed residuals for the Q-method to clarify the relation be
tween negative bias and TCWV. Fig. 10 shows the residuals in the 
neighborhood of (T1, T1-T2) = (286.6 K, 3.94 K) at 60∘ of SZA, where 
SST takes values between 297 K and 304 K and TCWV between 40 kg/m2 

and 70 kg/m2. There is no correlation between the residuals and the 
split-window data (Fig. 10 A-C), suggesting that SSTs cannot be 
improved any further with only the given satellite data. This suggests 
that errors in QSSTs are generated by the limited satellite information 
rather than by issues with the Q-method. 

Meanwhile, a nearly linear correlation is found between the residuals 
for SSTs and those for the optical thicknesses of the atmosphere (Fig. 10 
D). Note that the optical thickness is determined as well by the Q- 
method (Appendix C). The optical thickness is a physical quantity con
nected with the atmospheric attenuation and should be removed by the 
SST method. The optical thickness of IR is dominated mostly by WV (e.g. 
Roberts et al., 1976). Therefore, the correlation in Fig. 10 D suggests a 
relation between WV and the errors in determined SSTs. Considering all 
discussions on Fig. 10 has led the researchers to infer that discrepancies 
between determined SSTs and their true values originate from the 
limited information about WV that can be determined from split- 
window data. Fig. 10 suggests also that the limited information in
creases the uncertainty of determined SSTs. Note that the sensitivity and 
robustness are also degraded by the limited WV information. 

Fig. 10 D says that the average error is negative where TCWVs are 
above the average and it is positive if TCWVs are below the average. The 
average of all errors in Fig. 10 is nearly zero because WV-dependent 
errors tend to offset each other. This argument holds for all bins in 
Fig. 1. As a result, SSTs are expected to have almost no bias if we see bias 
as a function of BT, BTD, or SAZ. However, it would not hold if we 
consider bias as a function of TCWV. Negative biases would predominate 
near the upper limit of TCWV because of the absence of positive bias to 

Table 2 
Statistics for January to March 2019.   

Bias       

Mean Median STD RSTD Outlier N Clear-%  

Daytime 
QSST − 0.086 − 0.097 0.36 0.28 0 37,843 10.4 
N2SST − 0.13 − 0.14 0.36 0.29 0     

Nighttime 
QSST − 0.23 − 0.18 0.58 0.28 133 33,004 7.7 
N2SST − 0.29 − 0.23 0.61 0.30 170   

Mean: mean bias, STD:standard deviation, RSTD: robust standard deviation, 
Outlier: the total number of the data where ∣SGLI− buoy∣ > 4., and N: the total 
number of the data. −1.5
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Fig. 6. Aerosol optical thickness (AOT) and deviation of QSST. The figure at the 
top shows deviations of the QSST from buoy data as a function of the aerosol 
optical thickness (AOT) at 550 nm. The figure at the bottom shows the relative 
frequency of AOT. The AOTs were retrieved as well as QSST using VNR data 
of SGLI. 
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Fig. 7. SGLI SST vs. buoy data. The horizontal line in each box indicates the second quartile (the median), and the upper and lower boundaries of the box denote the 
first and third quartiles. The ends of the range line show the highest and lowest data within a 1.5×interquartile range (IQR): the first quartile subtracted from the 
third quartile. The bottom column charts denote the number of data points. 

Fig. 8. SGLI SST vs. buoy data (2).  
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offset the negative bias. 
We see that high negative biases at ~305 K are generated by the 

combination of high amounts of WV and limited information provided 
by the split-window data. According to Fig. 2, a high negative bias can 
predominate where the TCWV is ~60 kg/m2 or higher. On the other 
hand, positive biases were not conspicuous where the WV is below the 
average. This may be caused by better atmospheric corrections at 
smaller WVs. Note that this argument cannot be applied to bias in small 
regions, because offsets of WV-associated biases do not necessarily occur 
in a small region, resulting a regional bias. 

Fig. 11 shows the frequency of appearance of TCWV that was 
calculated by using NWP data. The figure shows that the relative fre
quency of TCWV, which exceeds 60 kg/m2, is ~2% of the total and that 
more than 98% of them are calculated between 30 ∘S and 30 ∘N of lati
tudes. Fig. 12 shows the frequency of appearance of the TCWV 
exceeding 60 kg/m2 at each SST range. Figures suggest that TCWV ex
ceeds 60 kg/m2 at a probability from 5 to 20% at SST above 302 K. 
Hence, it is easily inferred that negative bias is not rare in SSTs in 
equatorial seas retrieved from the split-window data. A lower sensitivity 
to WV of the split-window data was reported by Merchant et al. (2009b). 
Furthermore, many studies have reported systematic biases of split- 
window SSTs of equatorial seas (e.g. Embury and Merchant, 2012). It 
was concluded that information provided by split-window data is not 
sufficient to determine SSTs of equatorial seas or those behind high WV. 

6.2. QSST and N2SST 

This section analyzes the results of comparing QSST and N2SST as 
presented in Section 5. 

Table 3 shows major differences between the Q-method and the 
scheme for N2SST (N2). The biggest difference would be the data. N2 
determines the SST from BTs, while the Q-method calculates the SST in a 
radiance space. As discussed in 3.2, the use of BT involves a problem 
arising from the approximation of the Planck function (the BT issue). 
Coefficients are also remarkable in the difference between the two 
methods. Coefficients of N2 are generated at only three latitudinal 

regions, meanwhile the Q-method uses coefficients generated at 
numerous anchor points. 

The most remarkable difference would be the negative bias discussed 
in Subsection 6.1. Fig. 8 shows no such bias in N2SST. This is likely to 
result from the regional coefficients of the N2-scheme; the N2-scheme 
uses coefficients generated for tropical regions. Inevitably, coefficients 
are adjusted for high WV conditions in tropical regions. This is why we 
believe biases are improved at N2SSTs around 305 K. That is, the 
regional coefficients of N2 improve the bias originating from the 
insensitivity of the split-window data to WV (the WV issue). However, 
uncertainty caused by the WV issue is likely to remain in N2SST, as 
suggested by the range lines at higher SSTs (Fig. 8). Meanwhile, the Q- 
method does not refer to any information for WV, so the WV issue is not 
improved in QSSTs. Accuracies of QSST and N2SST are almost the same, 
even though QSSTs were determined using coefficients to a greater 
extent than were N2SSTs. This is likely to be caused by the WV issue with 
QSST. However, it should be noted that a regression model, shown by 
the dashed line in Fig. 10 D, is also calculated at each anchor point. 
Calculated regression models are expected to improve the WV issue in 
QSST by using external data. 

The BT issue did not seriously impact N2SSTs. Except for the nega
tive bias, no significant difference is found between temperature- 
dependent and latitudinal biases for N2- and QSST. Noting that the BT 
issue is improved by narrowing the SST range, we infer that regional 
coefficients ameliorated the BT issue because of the narrow SST range in 
each region. Meanwhile, a slightly high bias and uncertainty (Table 2) 
were likely caused by the BT issue. However, the differences are quite 
small between N2- and QSST, and it is difficult from the results to 
conclude that the BT issue degrades N2SST. 

6.3. Numerical uncertainty vs. the RSTD 

Because the Q-method has been calculated in a numerical space, it is 
interesting to note how well the Q-method reflects reality. We compared 
the theoretically estimated uncertainties with STD/RSTDs derived by 
comparison with buoy data. The uncertainties were estimated by taking 

Fig. 9. SGLI SST vs. buoy data (3).  
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NEΔT (Table A.5) into account. Fig. 13 shows the uncertainties and 
RSTDs for comparison. Estimated uncertainties represent RSTDs well, 
however, they are slightly high. Note that these overestimates apply also 
to STD. However, estimated uncertainties are still meaningful to NWP 
and other objective analyses. 

We consider these overestimates can be caused by the quality control 
performed on NWP data. We checked NWP data for quality control by 
testing WV at each atmospheric layer. NWP data were excluded as 
cloudy if WV was saturated at least one layer. Here, we used Tetens’s 
formula, which gives the saturation WV pressure. As a result, all of the 
NWP data were used to calculate the Q-method if WV was not saturated 
in all layers (even if it was nearly saturated in a few layers), which may 
increase the numerical uncertainties. The clear/cloud threshold for NWP 
data should be reviewed. 

7. Conclusion 

We applied the Q-method to the split-window data obtained with the 
SGLI optical sensor onboard the GCOM-C satellite. The Q-method is an 

integrated method of local linear models that are derived from the IR 
radiative transfer equation. The Q-method is supported by rigorous 
mathematical derivation. The physical and mathematical backgrounds 
of the Q-method were discussed in detail. 

QSSTs retrieved by performing the Q-method on SGLI data were 
compared to buoy data and another set of coefficient-based SGLI SSTs 
(N2SSTs). The comparison shows a bias (median) and STD (RSTD) of 
− 0.086 K (− 0.097 K) and 0.36 K (0.28 K) for daytime and − 0.23 K 
(− 0.23 K) and 0.58 K (0.28 K) for nighttime. Biases were almost constant 
for all SZAs. The same applies to N2SST, suggesting that a wind speed of 
5 m/s is a suitable assumption for sea surface emissivity. However, an 
investigation result derived using numerically simulated SGLI data says 
that QSSTs at SZAs of 45∘ or above may include a bias generated by 
unexpected surface winds, Estimated bias values reached ~0.2 K at an 
SZA of 55∘ for wind speeds of ~50 m/s or higher. 

A high negative bias was found in QSST at ~305 K. High negative 
biases are likely to have originated from high amounts of WV in the 
atmosphere. A performance evaluation suggests that negative bias will 
predominate if TCWV is ~60 kg/m2 or higher. Residuals for the Q- 

Fig. 10. Residuals for the coefficients generated in the neighborhood of (T1, T1− T2) = (286.6 K, 3.94 K) at SZA of 60∘. eSST and eτ are the residuals for SST and τ, 
respectively. Solid lines and error bars in A-C show the mean residual and the standard error (STE) of the mean residual, respectively. STE is determined by STD 
divided by 

̅̅̅̅
N

√
. The dotted line in D is the regression line. 
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method suggest that limited information brought by split-window data 

is a physical reason for a high negative bias, uncertainty, low sensitivity 
to SST variation, and low robustness against variations due to WV. 
N2SSTs showed no high negative bias, likely a benefit of coefficients 
generated for each region of latitude. The result of N2SST suggests that 
high negative biases in QSSTs may be improved by expanding the Q- 
method and using external information. Further improvements to deal 

with high bias are left for the future. Although the impact of aerosols was 
not serious in this study, robustness against aerosol contributions is an 
issue with the Q-method, which needs to be improved. 

Numerically estimated uncertainties agree with the RSTDs calcu
lated from buoy data. Although they were slightly higher than the 
RSTDs, the overvalues are not serious, and the estimated uncertainties 
are meaningful to the NWP and other objective analyses. The authors 
speculate that this overshoot was caused by nearly saturated WV in NWP 
data, which is used to calculate uncertainties. 

SGLI QSSTs are available at JAXA’s websites: the JAXA Globe Portal 
System (G-Portal),1 the Satellite Monitoring for Environmental Studies 
(JASMES)2 of the JAXA Earth Observation Research Center (EORC), and 
the Group for High Resolution SST (GHRSST) server.3 
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Fig. 11. Frequency of the total column water (TCWV). The top shows relative 
frequency of TCWV in NWP data; the bottom, the TCWV above 60 kg/m2 in 
each latitudinal belt. 

Fig. 12. Frequency of TCWV which above 60 kg/m2. The histogram shows the 
rate of TCWV (>60 kg/m2) at each SST. 

Table 3 
N2-scheme and Q-method.   

N2-scheme Q-method 

Satellite 
data 

BT Radiance 

Coefficients Three latitudinal 
region×SAZ 

BT×BTD×SAZ 

SST Absolute temperature Radiance (deviation from an anchor 
point)  

Fig. 13. Determination errors vs. calculated uncertainties. Solid lines and thick 
error bars denote median and RSTD. Thin error bars and the horizontal axis 
denote the same uncertainties numerically calculated by taking NEΔT 
into account. 

1 https://gportal.jaxa.jp/gpr/?lang=en  
2 https://kuroshio.eorc.jaxa.jp/JASMES/index_catalog.html  
3 https://suzaku.eorc.jaxa.jp/GHRSST/index.html 
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Appendix A. GCOM-C and SGLI 

The GCOM-C satellite was launched from the Tanegashima Space Center by JAXA on 23 December 2017. GCOM-C is one of two satellites in JAXA’s 
GCOM program, the other being GCOM-W (water), which carries the Advanced Microwave Scanning Radiometer (AMSR) -2. GCOM-C follows up on 
the Advanced Earth Observing Satellite (ADEOS) -II, which observes geophysical parameters related to the global climate system. GCOM-C flies on a 
sun-synchronous orbit, which descends at around 10:30 am local time. SGLI is the optical sensor onboard the GCOM-C satellite and is the successor to 
the GLobal Imager (GLI) onboard the ADEOS-II satellite. SGLI consists of two components, the Visible and Near Infrared Radiometer (VNR) and the 
Infrared Scanner (IRS). The VNR has 11 non-polarized channels and two polarized channels, and the IRS has four short-wavelength infrared channels 
and two thermal infrared (or the split-window) channels. The swath width of the VNR is 1150 km. that of the IRS, 1400 km. The spatial resolution can 
be switched between 250×250 m and 1×1 km. Land and the ocean near shores are scanned with 250×250 m resolution, and the open ocean is scanned 
with 1×1 km resolution, taking two to three days to cover the whole globe. The resolution is changed following a programmed schedule. The 
specifications of GCOM-C and SGLI are presented in Tables A.4 and A.5. 

Table A.5 
SGLI channel specifications.  

Ch.** λ Δλ Lstd, Lmax SNR at Lstd IFOV  

[nm] [nm] [W/m2/sr/μm]  [m] 

VN1 380 10 60 240–241 624–675 250 / 1000 
VN2 412 10 75 305–318 786–826 250 / 1000 
VN3 443 10 64 457–467 487–531 250 / 1000 
VN4 490 10 53 147–150 858–870 250 / 1000 
VN5 530 20 41 361–364 457–522 250 / 1000 
VN6 565 20 33 95–96 1027–1064 250 / 1000 
VN7 673.5 10 23 69–70 988–1088 250 / 1000 
VN8 673.5 20 25 213–217 537–564 250 / 1000 
VN9 763 8 40 351–359 1592–1746 1000 
VN10 868.5 20 8 37–38 470–510 250 / 1000 
VN11 868.5 20 30 305–306 471–511 250 / 1000 
P1 670 20 25 293 609 1000 
P2 865 20 30 396 646 1000 
SW1 1050 20 57 289.2 951.8 1000 
SW2 1380 20 8 118.9 347.3 1000 
SW3 1640 200 3 50.6 100.5 250 / 1000 
SW4 2210 50 1.9 21.7 378.7 1000  

Ch. λ Δλ Tstd, Tmax NEΔT at Tstd IFOV  
[μm] [μm] [K]  [m] 

T1 10.8 0.7 300 340 0.08 250 / 500 / 1000 
T2 12.0 0.7 300 340 0.13 250 / 500 / 1000 

L: signal level, SNR: signal noise ratio, NEΔT: noise equivalent temperature difference, VN, P: non-polarization and polarization channel of VNR. SW, T: short- 
wavelength-infrared and thermal infrared channel of IRS.  

Table A.4 
GCOM-C specifications.a  

Item Specification 

Instrument Second Generation Global Imager (SGLI) 
Launch date 23 Dec. 2017 
Mission Life 5 years 
Power 4250 w (EOL) 
Weight 2020 kg 
Dimension Dual solar-paddle design  

4.6 m (X) x 16.3 m (Y) x 2.8 m (Z) 
Orbit Sun-synchronous 
Altitude 798 km 
Inclination 98.6 deg. 
Descending local time 10:30±15 min.  

a https://suzaku.eorc.jaxa.jp/GCOM_C/index.html  
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Appendix B. Conversion from Is to Ts 

This appendix presents a conversion method from radiance to brightness temperature by taking the relative sensor response into account. See 
Appendix D for the notation used in the discussion. 

The relation between the monochromatic radiance and the brightness temperature follows the Planck’s law: 

Bλ(T) =
2hc2

λ5( e hc
KλT − 1

). (B.1) 

On the other hand, the radiance obtained on a spectral channel of the optical sensor is generally given by a channel-specific function: 

B(T) =
∫

λP(λ)Bλ(T)dλ
∫

λP(λ)dλ
. (B.2) 

Here, P(λ) denotes the relative sensor response function (RSR). The RSR gives a weight for each wavelength that is specific to the spectral channel. 
Hence, the inverse transformation from B(T) to T also needs to consider the effect of the RSR. It is also the same for converting the surface radiance to 
SST. We introduced an extended inverse of the Planck function: 

Ts = ϕ1⋅B− 1
λ1
(Is) (B.3)  

to take the RSR of SGLI into account approximately. Here, the middle dot denotes the function composition. Because Is is calculated at T1, λ1 denotes 
the central wavelength of T1. The ϕ1: 

ϕ1(T) =
∑n

k=0
bkTk (B.4)  

is the regression formula for taking into account the RSR of T1. Coefficients are generated by performing a regression analysis of the temperatures T 
and T′ = Bλ1

− 1 ⋅ B1(T). Here, B1 denotes the channel-specific function for T1. We adopted n = 2 as the degree of ϕ1 for SGLI. Note that residuals of ϕ1 are 
negligibly small. 

Appendix C. Mathematical background of the Q-method 

The mathematical process to derive the Q-method from the radiative transfer equation is discussed here, as well as the uncertainty of the method. 
Notations used in the discussion are summarized in Appendix D. 

C.1. Local linearity 

The Q-method is calculated assuming the local linearity defined below. 
Let I = F(x) denote the radiative transfer from the sea surface to the top of the atmosphere. Here, I is the radiance at the top of the atmosphere and F 

denotes the radiative transfer function. The x is a column vector of parameters that affects radiative transfer. Let us assume that the parameters are not 
correlated with each other. Note that x is discussed in the next subsection. The Taylor expansion of F at x = x0 is given by 

Is = F(x0)+∇F(x0)
T Δx+⋯ (C.1)  

where ∇F(x0) is a (column) gradient vector at x = x0 and Δx is a column vector of the difference between x and x0: Δx = x − x0. 
The original Q-method assumes only 

Is = F(x0)+∇F(x0)
T Δx (C.2)  

for each IR channel. To apply the Q-method to the split-window data of SGLI, we added another assumption: 

Δxi = AΔxj. (C.3) 

Here, A is the matrix. The i and j associated with Δx indicate the IR channel. An added assumption induces a linear model which calculates Is at IR 
channel i from Δxj. Because we did not assume (C.3), the original method determines SST by iterative calculations; this is to account for nonlinear 
relations between IR channels. However, by adding (C.3), the modified method determines SST with a single calculation by a linear model. We 
consider the extended assumption to be more natural. 

C.2. Derivation of the Q-method 

The IR radiative transfer under the clear sky condition is formulated by 

Iλ =

{

ελBλ(Ts)+ (1 − ελ)

∫ psrf

pTOA

∂tλ(p,psrf )

∂p
Bλ
(
Tp
)
dp

}

tλ(psrf ,pTOA) +

∫ pTOA

psrf

∂tλ(p,pTOA)

∂p
Bλ
(
Tp
)
dp (C.4) 

(e.g. Liou, 2002). The 1 − ελ is the reflectivity of the surface according to Kirchhoff’s law (e.g. Liou, 2002, p. 13). Note that the determined 
reflectivity is an approximation, because Kirchhoff’s law may not hold if a strong surface wind makes the sea surface rough. The two integrals denote 
the integrated intensities of downwelling and upwelling radiations from the atmosphere, respectively. By replacing these integrals with I↓ and I↑, (C.4) 
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can be rewritten as 

I = εIst+(1 − ε)I↓t+ I↑ (C.5)  

where Bλ(Ts) and tλ(psrf,pTOA) are simplified to Is and t; the λ associated with each parameter is omitted. 
Then, let x = (Is, τ, I↑, I↓, I)T be a column vector of the parameters of (C.5), and x0 be the anchor point vector of x (vectors will be assumed to be 

column vectors unless otherwise noted). Here, τ = − ln (t) is the spectral optical thickness of the atmosphere. We introduced τ because it is determined 
with a linear function of the radiation path length: 

τ =

∫

s
ksρsds

= kρL
(C.6)  

where the k and ρ denote the absorption coefficient and density of the atmosphere, respectively (e.g. Liou, 2002, p. 30). L is the total path length from 
the surface to the top of the atmosphere, and an overline indicates the mean. The total path length is almost a constat at each SZA. The last term is 
derived by applying the mean value theorem to the second term. 

The order of elements is chosen for the convenience of discussion. Note that the result is independent of the order, as will be shown later. Then, 
consider the formulation of ΔI: the last element of Δx = x − x0. However, this is not simple because of mutual dependence between the elements. To 
avoid complications due to the mutual dependence, we orthogonalized Δx by performing Gram-Schmidt (GS) orthogonalization. The GS process 
orthogonalizes Δx by extracting the orthogonal components from the elements. Appendix C.5 discusses the details of the GS. Note that GS is robust 
against linearity or multicollinearity of the data. GS is performed on Δx calculated by using x gathered at each bin (Fig. 1). Here, x is generated by 
using RTM and NWP data, then, x0 is determined with the following two-step procedure:  

1. Each element of x0 is determined by the ensemble average of x ,  
2. Then I0 is determined from other determined elements by (C.5). 

Let Δx = (ΔIs, rτ, r↑, r↓, r)T be the vector of the orthogonal component determined by performing GS on Δx . Here, rτ denotes the orthogonal 
component of Δτ; the same applies to the others. Note that ΔIs is transformed onto Δx without any change. The coordinate transformation matrix Px, 
such that 

Δx = PxΔx, (C.7)  

is also generated through the GS process. Px is a lower triangular matrix with non-zero diagonal elements and is invertible. Although Px depends on the 
order of the elements of x , the results derived from different Px are equivalent because of the invertibility of Px. Focusing on ΔI, the last element of Δx , 
we have 

ΔI = a1ΔIs + a2rτ + a3r↑ + a4r↓ + r (C.8)  

from (C.7). Here, (a1,⋯,a4,1) is given by the 5th-row vector of Px. Note that there may be fewer than five terms on the right side of (C.8) because of the 
exclusion of linearly dependent elements through the GS processes. 

In SST determination, we have (C.8) for each IR channel. Let n be the total number of the IR channels. Then, (C.3), the extended assumption of local 
linearity, allows us the linear conversion of Δx between the IR channels, (i.e., Δxλj = A(ij)Δxλi for all i, j of the IR channels). Here, A(ij) is the matrix of 
coefficients. Hence, (C.8) for each IR channel can be assembled in vector form: 

ΔI = AΔx, (C.9)  

where ΔI is the n-vector of ΔI for each IR channel, A is an m×n-matrix, and Δx is the deviation vector for the first IR channel. Here, m≤5 is the total 
number of elements of Δx. Then, by letting A+ be the pseudo-inverse of A, we have 

Δx = A+ΔI (C.10)  

by multiplying both sides of (C.9) by A+ from the left. A+ is also referred to as the Moore-Penrose inverse (e.g. Barata and Hussein, 2012). If ATA is 
invertible, A+ is given by 

A+ =
(
AT A

)− 1AT . (C.11) 

Here, the invertibility of ATA holds if row vectors of A are linearly independent of each other. Linear independence of the row vectors could be 
claimed if the combination of IR channels was suitable for SST determination. Noting that ΔIs is the first element of Δx, it is apparent that the first row 
vector of A+, and ΔI gives the second term on the right side of (1). Meanwhile, the anchor point gives the first term Is0. Hence, we finally have (1). Note 
that A and A+ are not commutative in general. Hence, the transformation from (C.9) to (C.10) is not invertible, which suggests the calculation is an 
approximation. 

Matrix A is determined by performing a regression analysis on ΔI and Δx. It is also possible to calculate A+ directly with a regression analysis. In the 
latter case, A+ is given by 

A+ =
(
S− 1

x Sxy
)T (C.12)  

where Sx is the variance-covariance matrix (simply the covariance matrix, hereafter) of ΔI, and Sxy denotes the covariance matrix of ΔI and Δx. Here, Sx 
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and Sxy are determined by 〈ΔIΔIT〉 and 〈ΔIΔxT〉, respectively. It is easily confirmed that the first vector of Sxy is given by 〈ΔIsΔI〉. Therefore, the co
efficient vector a in (1) is determined only from ΔIs and ΔI, and is not affected by other orthogonal components. Let Se be the covariance matrix of the 
sensor-specific noise. Then, A+ is calculated by taking the sensor noise into account by 

A+ = ST
xy

(
S− 1

x + Se
)T
. (C.13) 

Note that the discussion above applies to other Δ values, which suggests that other parameters can be determined similarly. 

C.3. Uncertainty 

Uncertainties originating from the Q-method are given by the residuals with the regression model A+. Here, a residual is a deviation of A+ΔI from 
Δx. Let Sr be the covariance matrix of the residuals, then, the method-generated uncertainty is given by the diagonal elements of Sr: 

Sr =
〈
(A+ΔI − Δx)(A+ΔI − Δx)T 〉 (C.14) 

On the other hand, discrepancies between determined SSTs and the true values originating from sensor noise can be calculated by A+e where e 
denotes the vector of the sensor noise. Let Sn be the covariance matrix of A+e. Then, Sn is derived by 

Sn =
〈
(A+e)(A+e)T 〉

= A+Se(A+)
T
,

(C.15)  

where Se denotes the covariance matrix of e, i.e., Se = 〈eeT〉. Finally, the total uncertainties in determined SSTs are given by 

Sr + Sn. (C.16) 

Note that (C.16) does not include the uncertainties originating from the anchor points and coefficients which are generated by using RTM and NWP 
data. Degradations caused by cloud masking errors are also not included. 

C.4. Validity of the extension of local linearity 

The extended assumption of local linearity, (C.3) is directly connected to the derivation of (C.9). Hence, the degradation originating from the 
assumption is evaluated by examining the variance of ΔI − AΔx. Let Sa be the covariance matrix of ΔI − AΔx. Then, Sa is calculated by 

Sa =
〈
(ΔI − AΔx)(ΔI − AΔx)T 〉 (C.17) 

Regarding the SGLI, the variance has been estimated to be 0.022–0.026 K for T2, which is given by the second diagonal element of Sa. Also, the 
nominal value of the noise equivalent temperature difference (NEΔT) is 0.13 K for T2 (Table A.5). Hence, the estimated degradation is 0.0026 
≈

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
0.132 + 0.0262

√
− 0.13 (K) at the maximum of T2. Therefore, the impact of the assumption is considered to be negligible. Note that T1 is not 

affected by the extension. 

C.5. Gram-Schmidt process 

The Gram-Schmidt process (GS) is a method to orthogonalize the vectors in the Euclidean space. However, it is also possible to orthogonalize two 
or more correlated variables similarly, also called GS here. 

Let u = (ui) be a vector and U be a set of u, and let v = (vi) and V be the vector and its set generated by performing GS on u ∈ U. Here, let us assume 
that <u>u∈U = 0. Then, each v ∈ V is derived by a GS iteration as seen here 
⎧
⎪⎪⎨

⎪⎪⎩

v1 = u1

vi = ui −
∑i− 1

j=1

< uivj >

< v2
j >

vj for i > 1.
(C.18) 

Here, ensemble averages are calculated using u ∈ U and v ∈ V. It is not difficult to show that v satisfies 〈vivj〉v∈V = 0 for all pairs of i, j (i∕=j). For 
example, <v1v2 > = 0 is shown as: 

〈v1v2〉 = 〈u1v2〉

=

〈

u1

(

u2 −
〈u1u2〉

〈u2
1

〉 u1

)〉

= 〈u1u2〉 −
〈u1u2〉

〈u2
1

〉
〈
u2

1

〉

= 0,

(C.19)  

and the same for the others. Let P = (pij) be the coordinate transformation matrix from V to U. Then, P is given by 
⎧
⎪⎨

⎪⎩

pij =

〈
uivj

〉

〈
v2

j

〉

pij = 0 if i < j.

(C.20) 
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GS will fail at the (i + 1)-th process if ui linearly depends on some uj (j < i), (i.e., if ui is written as ui =
∑

j<iajuj). However, the failure can be avoided 
by excluding ui. Linear dependence can be determined by examining vi for its variance because 〈vi

2〉 = 0 if ui depends on some uj. Note that this 
exclusion does not harm the result because the excluded ui can be retrieved using the remaining orthogonalized parameters. In computer calculations, 
computational instability can occur with an extremely small variance of vi. To avoid this, the variance of vi should be examined through the process. 

Lastly, here is an important point. This discussion has assumed that 〈u〉 = 0. However, for the ΔI of the Q-method, its average is not zero because of 
the nonlinearity of the radiative transfer Eq. (C.4). To avoid unexpected results, we adjusted each ΔI by ΔI − 〈ΔI〉 so that ΔI has an average of zero. 
However, this adjustment is performed only for GS, otherwise the result will be incorrect such that ΔI ∕= 0 at Δx = 0 (Fig. C.14).

Fig. C.14. First-order approximations of ΔIs by ΔI. Gray dots are the data to be fitted. A is an approximation line calculated from offset-adjusted ΔI (ΔI − 〈ΔI〉). B was 
calculated by performing a regression analysis, and C was derived by adding the offset of 〈ΔI〉 to ΔI of A to restore the original ΔI. A was adopted for the Q-method. B 
generates bias different at the ends of the range of ΔI, although it makes the variation of residuals minimum. C generates negative bias as clear from the y-coordinate 
of the y-intercept. 

Appendix D. Notation 

This appendix summarizes the notation used in the discussions.   

Notation Description 

B Planck function 
c The velocity of light 
h Planck’s constant 
I Radiance 
Is Sea surface radiance 
I↑ Total atmospheric upwelling radiance 
I↓ Total atmospheric downwelling radiance 
K Boltzmann’s constant 
ln Natural logarithm 
p Atmospheric pressure 
psrf Atmospheric pressure at the Earth surface 
pTOA Atmospheric pressure at the top of the atmosphere 
sec The secant function 
T Absolute temperature 
Ts Sea surface temperature (SST) 
t Transmittance 
ε Sea surface emissivity 
θ Zenith angle 
λ Wave length 
σ2 Variance 
τ Spectral optical thickness 
x0, Δx An anchor point and the deviation from the anchor point (x − x0) 
x Vector on a oblique coordinate system 
A, x Matrix, vector on the Cartesian coordinates 
AT, xT, xT Transpose of matrix, vector 
A− 1, f− 1 Inverse of matrix, function 
A+ Pseudo-inverse of matrix 
〈 〉 Ensemble mean 
⋅ Function composition  
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