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A B S T R A C T   

McArthur’s foliage height diversity (FHD) has been the gold standard in the determination of structural 
complexity of forests characterized by LiDAR vertical height profiles. It is based on Shannon’s entropy index, 
which was originally designed to describe evenness in abundances among qualitative typologies, and thus the 
calculation of FHD involves subjective layering steps which are essentially unnatural to describe a continuous 
variable (X) such as height. In this contribution we aim to provide a mathematical framework for determining 
maximum entropy in 3D remote sensing datasets based on the Gini Coefficient of theoretical continuous dis
tributions, intended to replace FHD as entropy measure in vertical profiles of LiDAR heights (1D, X), with ex
tensions to variables expressing dimensions of higher order (2D or 3D, Z ∝ X2 or X3). Then we apply this 
framework to Boreal forests in Finland to describe landscape heterogeneity with the intention to improve the 
modelling of forest aboveground biomass (AGB), hypothesizing that LiDAR models of AGB should essentially be 
different in areas of differing structural characteristics. We carried out a pre-stratification of LiDAR data collected 
in 2012 using simple rules applied to the L-skewness (Lskew) and L-coefficient of variation of LiDAR echo heights 
(Lcv; equivalent to the Gini coefficient, GCH), determining a new threshold at GCH = 0.33 as a consequence of the 
newly developed mathematical proofs. We observed only moderate improvements in terms of model accuracies: 
RMSDs reduced from 41.7% to 38.9 or 37.0%. More remarkably, we identified critical differences in the metrics 
selected at each stratum, which is useful to understand what predictor variables are more important for esti
mating AGB at each area of a forest. We observed that higher LiDAR height percentiles are more relevant at open 
canopies and heterogeneous forests, whereas closed canopies in homogeneous forests obtain most accurate 
predictions from a combination of cover metrics and percentiles around the median. Without stratification, the 
overall model would neglect explained variability in the structural types of lower occurrence, and predictions 
from a model influenced by structural types of higher occurrence would be biased at those areas. These results 
are thus useful in terms of improving our understanding on the relationships underlying LiDAR-AGB models.   

1. Introduction 

Structural complexity is an essential morphological trait of ecosys
tems, complementary to others like vegetation height or cover 
(Schneider et al., 2017; Fahey et al., 2019; Valbuena et al., 2020), which 
is relevant to various ecological processes such as nutrients cycling, 
carbon sequestration and species interactions (Brokaw and Lent, 1999; 
Lindenmayer et al., 2000; McElhinny et al., 2005). There is however a 

lack of consensus on the most appropriate means to measure the struc
tural complexity of ecosystems (Neumann and Starlinger, 2001; Lexerød 
and Eid, 2006), with approaches focused on measuring either entropy, e. 
g. Simpson or Shannon indices (McArthur and McArthur, 1961), or 
variability, e.g. variance or Gini coefficient (GC) (Gini, 1921; Weiner, 
1990). The most popular approach follows the early works of McArthur 
and McArthur (1961) who calculated the Shannon-based foliage height 
diversity (FHD) after layering the ecosystem vertical profile into three 
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strata, but there have been pleas for alternative measures (Lovejoy, 
1972; Pearson, 1975; Erdelen, 1984; Weiner and Thomas, 1986; Val
buena et al., 2012). This dichotomy has been reflected in the derivation 
of structural complexity measures from LiDAR, with alternatives based 
on either layering the vertical profile (Lefsky et al., 2002a; Vierling 
et al., 2008; Simonson et al., 2014; Weisberg et al., 2014; Listopad et al., 
2015; Wilkes et al., 2016; Almeida et al., 2019a; Bakx et al., 2019) or 
measuring variability in LiDAR heights (Valbuena et al., 2017a; Moran 
et al., 2018; Mononen et al., 2018; Crespo-Peremarch et al., 2020; Hagar 
et al., 2020). 

In this contribution we propose a mathematical framework (Ap
pendix A) which effectively merges both approaches, by showing how 
maximum entropy can be flagged up from values of a variability mea
sure such as the Gini coefficient. They constitute formal deductive proofs 
of ideas that have previously been presented on the basis of empirical 
indications such as a threshold at GC = 0.5 employed to discriminate 
ecosystem structural heterogeneity (Valbuena et al., 2012, 2017a). 
Based on these mathematical developments, we further argue that 
different thresholds apply for GC depending on whether calculated from 
LiDAR heights (GCH), or tree basal areas (GCBA), because the former is a 
variable representing one dimension (X) and the latter is an area, and 
thus bi-dimensional (X2) (Appendix A). This mathematical framework 
thus provides unified means for determining maximum entropy in the 
3D space of information provided by remote sensing tools such as 
LiDAR. 

To quantify the amount of carbon sequestered by forests over large 
geographical areas, and use them to inform global policies, it is impor
tant to attain reliable estimations of forest aboveground biomass (AGB) 
from local to global scales (Gibbs et al., 2007). In this context, remote 
sensing in general, and LiDAR in particular, are the key technologies to 
monitor reductions in emissions of greenhouse gases from deforestation 
and forest degradation (REDD) (Boudreau et al., 2008; Asner et al., 

2010). Airborne LiDAR produces detailed canopy information (Maltamo 
et al., 2005; Gobakken and Næsset, 2008) that provides opportunities for 
predicting accurately various ecosystem attributes such as vegetation 
height (Magnussen et al., 1999; Maltamo et al., 2004; Koukoulas and 
Blackburn, 2005), tree diameters (Næsset, 2002; Räty et al., 2018), 
structural heterogeneity (Vierling et al., 2008; Weisberg et al., 2014; 
Adnan et al., 2019), tree species (Van Aardt et al., 2008), or forest 
biomass and carbon (Næsset and Gobakken, 2008; Kronseder et al., 
2012; Valbuena et al., 2017b). Metrics derived from airborne LiDAR are 
the most promising information for efficient and accurate AGB predic
tion (Asner and Mascaro, 2014; Bouvier et al., 2015; Longo et al., 2017). 
For this reason, these metrics are employed as auxiliary variables in 
airborne LiDAR-assisted estimations (Gobakken and Næsset, 2008; 
Asner et al., 2010). Mehtätalo and Nyblom (2009, 2012) developed the 
relationship between canopy height obtained from airborne LiDAR data 
and forest attributes such as stand density and mean tree height, 
improving model-based estimations. However, we still lack information 
on the relationship between LiDAR metrics with the forest AGB, and how 
the predictive models are affected by forest structures (Drake et al., 
2003; Knapp et al., 2020). 

Researchers have developed a wide variety of LiDAR models esti
mating AGB stocked in forests (Zolkos et al., 2013). The prediction error 
of the total AGB is dependent on the relationship between foliage 
observed by LiDAR and various AGB components (Lefsky et al., 2002b; 
Næsset and Gobakken, 2008; Hernando et al., 2019). Thus, high het
erogeneity in the structural complexity of forests may cause difficulties 
in modelling (Drake et al., 2003; Hall et al., 2005; Jaskierniak et al., 
2011; Vincent et al., 2014). While there have been many attempts to 
generalize LiDAR modelling of AGB (Asner and Mascaro, 2014; Bouvier 
et al., 2015), a general relationship may not be appropriate for all re
gions, both even and uneven sized forests or dense and sparse spatial 
structures (Vincent et al., 2014; Häbel et al., 2019; Knapp et al., 2020). 

Fig. 1. Map of the North Karelia Region, Finland (study area).  
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To overcome this difficulty, the forest area can be stratified into different 
development classes (Næsset, 2002) or forest structural types (FSTs) 
(Mascaro et al., 2011; Vincent et al., 2014), and a separate model can be 
applied to each of them to obtain more reliable AGB estimations. With 
these regards, we hypothesized that the Gini coefficient can be useful for 
such FST stratification prior to modelling the forest AGB. Bollandsås and 
Næsset (2007) obtained reliable results following such approach with 
the support of field information (i.e., GCBA). Alternatively, we postu
lated that these FSTs could be detected directly from airborne LiDAR 
data (i.e. GCH), and apply a separate AGB model in each FST to improve 
AGB predictions. Based on results in Valbuena et al. (2017a), we 
considered the use of L-moment ratios for such stratifications: L-coeffi
cient of variation of LiDAR echo heights (Lcv; equivalent to the Gini 
coefficient, GCH) and L-skewness (Lskew). We considered a new threshold 
at GCH = 0.33 for separating even sized from uneven sized forest 
structures, based on findings in Appendix A. Furthermore, Valbuena 
et al. (2017a) also identified FSTs according to their light environment 
characteristics using the Lskew = 0 threshold which segregate the 
euphotic/open canopy and oligophotic/closed canopy forest areas 
(Lefsky et al., 2002a), by separating them as positive and negative 
skewness in between the [− 1,1] bounds of Lskew. We evaluated the po
tential of these detected FSTs in improving the AGB prediction from the 
airborne LiDAR data. 

In this article, we set the mathematical foundations for determining 
maximum entropy from a distribution of heights in 3D remote sensing 
(Appendix A), as an alternatively to common binning procedures 
employed to determine McArthur and McArthur’s (1961) FHD. Then we 
employed this rationale, stratified the LiDAR-surveyed area according to 
the Lcv = 0.33 and Lskew = 0 rules following Valbuena et al. (2017a), and 
carried out stratified sampling with roughly equal sample sizes within 
each FST. The aim of this stratification was to evaluate the potential of 
FSTs to improve forest AGB predictions in the pre-stratified airborne 
LiDAR data compared to the AGB predictions in the whole dataset 
without pre-stratification. We developed a general LiDAR-AGB model 
for the whole dataset without pre-stratification, and separate FST- 
specific models at each stratum. We hypothesized that LiDAR models 
predicting AGB should essentially be different in areas of differing 
structural characteristics. For this reason, we also paid careful attention 
to the LiDAR metrics selected at each model, and used those results to 
make inferences on the relationship behind the choice of metrics at each 
forest area, with the intention to shed light on the effects of forest het
erogeneity on LiDAR models predicting AGB. 

2. Material and methods 

2.1. Study area and data collection 

This study was conducted in a 252,000 ha boreal forest located in the 
North Karelia region of Finland (Fig. 1). The dominant species in the 
study area are Norway spruce (Picea abies (L.) Karst.), Scots pine (Pinus 
sylvestris L.) and Birch species (Betula spp.), and some other deciduous 
species such as Alnus spp. and Populus spp. are also present. In May 2012, 
a Leica ALS60 laser scanning system was used to collect airborne LiDAR 
data. Flight elevation was 2300 m above ground level, which resulted in 
a scan density of 0.91 pulses per square meter. The digital terrain model 
with 2 m resolution derived from the same LiDAR dataset was provided 
by National Land Survey (Finland). The DTM was subtracted from the 
LiDAR echo heights and area-based LiDAR metrics were computed using 
the FUSION software (Version 3.70, USDA Forest Service; McGaughey, 
2019). With the intention to get in the full structural characteristics of 
forests and commensurate with forest data acquisition, a very small 
height threshold (< 0.1 m) was used to exclude ground echoes in the 
computation of area-based metrics (Görgens et al., 2017). This elimi
nates ground echoes but consider seedlings and saplings, which were 
included in the field inventory (Valbuena et al., 2016). Among the set of 
FUSION metrics, two L-moment ratios were used for simulating a pre- 

stratification: L-coefficient of variation (Lcv) and L-skewness (Lskew). 
The remaining metrics were involved in the modelling of AGB. 

Field data for the calibration/validation of AGB models were jointly 
collected by the Finnish Forest Centre (Suomen Metsäkeskus; SMK) and 
University of Eastern Finland (UEF) in 2013 (Valbuena et al., 2017a). 
There were 244 field plots in total from eight different strata and sample 
size was approximately equal in each stratum. The stratification was 
based on the forest development classes – seedling, sapling, young, 
advanced, mature, shelterwood, seed-tree and multi-storey (Valbuena 
et al., 2016) –, determined on the basis of the SMK stand-wise infor
mation from the previous forest management plan, randomly selecting 
plot locations over areas covering each development class. Field data 
acquisition consisted in a concentric circle design, recording species and 
diameter at breast height (dbh; cm) of trees within each concentric plot 
according to its size (Valbuena et al., 2016). Tree heights (h; m) were 
measured only for the basal area median tree of each species. For the 
even sized development classes (young, advanced and mature), the field 
data were collected by SMK using a plot size of 9 m radius for trees with 
dbh > 8 cm, while saplings were recorded within 5.64 m radius and 
seedlings were counted using a 2.82 m long stick in distributed sub-plots 
(Fig. 2). Plots within the seed tree, shelterwood and multi-storey 
development classes were collected by UEF using the same plot 
design. However, the size of the outer plot in these three development 
classes was slightly increased to 9.77 m so that its size would become 
integer multiplier of the inner subplots, which is convenient for the 
calculation of GCBA following Valbuena et al. (2013). For visual com
parison of these development classes, mean leaf area density (LAD) 
vertical profiles with 95% confidence intervals from all plots within each 
development class were calculated from LiDAR data using the R package 
LeafR (Almeida et al., 2019b). 

2.2. Rule-based stratification of forest structural types using airborne 
lidar data 

Postulating that LIDAR models of AGB should be essentially different 
in areas of differing structural characteristics, we employed this dataset 
to simulate a pre-stratification scenario by classifying the prediction 
area into FSTs detected directly from the LiDAR data. The study area was 
stratified using the abovementioned two L-moment ratios of airborne 

Fig. 2. Plot design for field data collection.  
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LiDAR height distributions, and the rules were deduced from their 
mathematical properties instead of inductive statistical distributions or 
supervised classification, thus absence of any field information is 
involved (Valbuena et al., 2016). As Lcv is mathematically equivalent to 
the Gini coefficient of LiDAR echo heights (GCH) (Valbuena et al., 
2017a), it could be used to describe the structural properties related to 
the inequality in tree sizes within a forest area. Lcv = 0.33 was used as a 
boundary line to discriminate forests with even-sized FSTs (Lcv < 0.33) 
from uneven-sized ones (Lcv > 0.33), on the grounds that maximum 
entropy in the distribution of LiDAR heights is reached at Lcv = 0.33 
(Appendix A). Similarly, asymmetry (Lskew) describes the structural 
heterogeneity related to light availability and tree size dominance 
(Valbuena et al., 2017a). Lskew = 0, which represents the symmetric 
distribution of LiDAR echo heights, was used to separate forests having 
oligophotic areas/closed canopy (Lskew < 0) from euphotic areas/open 
canopy areas (Lskew > 0) (Lefsky et al., 2002a). 

2.3. Aboveground biomass calculation from field data 

R statistical software (R Core Team, 2019) was used for all statistical 
analyses and modelling. Locally developed species-specific biomass 
equations were used to calculate tree above-ground biomass (agb; kg) for 
Scots pine and Norway spruce (Repola, 2009), and another for birch 
(Repola, 2008) which was used for all deciduous species. These were 
based on dbh and h, and thus individual tree heights were subsequently 
predicted using the Näslund (1936) height curve: 

h = 1.3+
(

dhb
β0 + β1dbh

)α

, (1)  

where the exponent was α = 2 for pine and deciduous species, and α = 3 
for spruce. We followed the methods suggested by Siipilehto (1999) in 
the estimation the Näslund’s height curve model parameters (β0, β1) for 

each species which included plot-level calibration with species-specific 
diameter (D̃ba) and height (H̃ba) of the tree with median basal area 
(b̃a). Then the species-specific parameters were used in the height curve 
model to predict the missing tree heights from their dbh. Once calculated 
all the tree level agb values, they were aggregated to plot level (AGB; 
Mg∙ha− 1) according to their corresponding hectare expansion factors, 
and used as a response variable in subsequent LiDAR models. 

2.4. Modelling of aboveground biomass from airborne LiDAR data 

Many airborne LiDAR derived metrics (predictors) were available for 
modelling the AGB. We used function “regsubset” of the R package 
“leaps” (Lumley and Miller, 2017), which performed a selection of the 
best subset of predictors using an exhaustive search among typical 
LiDAR-AGB models (Valbuena et al., 2017b). We made an independent 
selection, the best subset of predictors for the general model including 
the whole dataset (i.e. without stratification), and also for each FST- 
specific model (even versus uneven sized forest structures, and 
euphotic/open canopy versus oligophotic/closed canopy areas). There
after, modelling based on the k-nearest neighbor (k-NN) method was 
used to predict the response variable (AGB) from the best subset of 
airborne LiDAR predictors (Mcinerney et al., 2010). We used Euclidean 
distance with k = 5 in the k-NN implementation available in the R 
package “YaImpute” (1.0–31 version; Crookston and Finley, 2008). 

2.5. Accuracy assessment of aboveground biomass prediction 

We used a 10-fold cross validation method for assessing the accuracy 
of the resulting models. The results of the general model and FST- 
specific models were evaluated and compared by means of their mean 
difference (MD) and root mean square difference (RMSD): 

Table 1 
Aboveground biomass and other forest attributes calculated at each forest development class.     

AGB (Mg∙ha− 1) QMD (cm) GCBA N (trees∙ha− 1) GCH/Lcv Lskew 

Development Class Seedlings Min 2.48 0.10 0.00 13,909 0.07 0.14 
Mean 7.96 0.10 0.00 44,770 0.23 0.31 
Max 28.51 0.10 0.00 182,522 0.54 0.70 
SD 5.14 0.00 0.00 32,987 0.09 0.13 

Saplings Min 6.14 0.10 0.00 1601 0.20 − 0.18 
Mean 34.88 3.05 0.35 31,852 0.42 0.21 
Max 112.48 6.93 0.89 110,774 0.60 0.59 
SD 24.62 1.78 0.29 24,754 0.12 0.20 

Young Min 13.09 6.23 0.25 864 0.15 − 0.36 
Mean 79.91 10.00 0.43 3254 0.29 ¡0.11 
Max 160.01 14.44 0.66 6523 0.58 0.33 
SD 31.67 2.18 0.09 1475 0.11 0.17 

Advanced Min 49.56 12.68 0.15 314 0.09 − 0.41 
Mean 96.98 17.27 0.42 1003 0.28 ¡0.20 
Max 182.76 22.15 0.63 2082 0.50 0.14 
SD 30.26 2.63 0.14 462 0.10 0.13 

Mature Min 73.75 16.07 0.19 314 0.09 − 0.48 
Mean 179.07 23.35 0.49 844 0.23 ¡0.21 
Max 410.55 32.44 0.68 1807 0.41 0.00 
SD 76.81 4.60 0.17 374 0.08 0.11 

Shelterwood Min 23.15 3.32 0.79 9020 0.21 − 0.36 
Mean 171.01 5.63 0.95 33,935 0.36 0.07 
Max 305.34 9.25 1.00 108,805 0.57 0.26 
SD 83.39 1.65 0.06 24,028 0.10 0.15 

Seed Trees Min 23.65 2.29 0.11 117 0.14 − 0.23 
Mean 70.43 14.76 0.73 9833 0.58 0.37 
Max 143.52 38.14 0.99 39,601 0.85 0.90 
SD 28.29 12.14 0.35 11,209 0.21 0.31 

Multi-Storied Min 17.99 1.41 0.68 2219 0.20 − 0.22 
Mean 77.02 3.87 0.92 33,279 0.58 0.30 
Max 271.39 9.60 0.99 78,131 0.84 0.83 
SD 54.73 2.19 0.09 16,382 0.16 0.30 

AGB: aboveground biomass; QMD: quadratic mean diameter; GCBA: Gini coefficient of basal area; GCH: Gini coefficient of LiDAR; Lcv: L-coefficient of variation of LiDAR 
heights; Lskew: L-skewness of LiDAR heights SD: standard deviation. 
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RMSD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑n

i=1

((

yi
cv − ŷi

)2

n

√
√
√
√
√
√

, (2)  

MD =

∑n

i=1

((

yi
cv − ŷi

)

n
, (3)  

where n is the total number of observations (field plots), yi
cv and ŷi are 

the predicted and observed value of AGB for observation i, respectively. 
Relative values (%) of MD and RMSD were obtained as the percentage 
over the mean observed AGB. As an additional quality control measure, 
we used a hypothesis test on the 1:1 correspondence between the 
observed (obsi) and predicted (prei

cv) values from the intercept (α) and 
slope (β) of their linear regression (Leite and Tavares de Oliveira, 2002; 
Piñeiro et al., 2008), 

obsi = α+ βprei
cv, (4) 

To avoid overfitting the models to the sample, the best subset pro
cedure was constrained by additional restrictions to the sum of squares 
ratio (SSR), which evaluates the inflation in the unexplained variance 
when the model is not cross-validated (Valbuena et al., 2017b). SSR is 
the ratio between the squared root sum of the squares obtained by cross 
validation (SScv) and without cross validation (SSfit). 

SSR =
̅̅̅̅̅̅̅̅
SScv

√ / ̅̅̅̅̅̅̅̅
SSfit

√
, (5)  

SScv =
∑n

i=1

(

yi
cv − ŷi

)2

(6)  

SSfit =
∑n

i=1

(

yi
fit − ŷi

)2

(7) 

Where, ŷi is the observed value of the AGB for observation i, and yi
cv 

and yi
fit are the predicted values using cross validation and without cross 

validation, respectively. 

Fig. 3. Mean leaf area density (LAD) profiles calculated directly from LiDAR data for each development class (a) Sapling (b) Young (c) Advanced (d) Mature (e) 
Shelterwood (f) Multi-storey and (g) Seed trees. Lines show mean LAD of all plots and grey areas their 95% confidence intervals. 
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Fig. 4. Distribution of different forest development classes on either side of the (a) Lcv(GCH) = 0.33 and (b) Lskew = 0.  
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3. Results 

3.1. Airborne LiDAR based forest structural types 

Table 1 gives a development class-wise summary of plot-level char
acteristics calculated from the field data – density (N), quadratic mean 
diameter (QMD), above ground biomass density (AGB) and Gini coeffi
cient of basal area (GCBA) –, and also from the LiDAR data – L-coefficient 

of variation (Lcv; equivalent to the Gini coefficient, GCH) and L-skewness 
(Lskew). of LiDAR return heights –. Height profiles of each development 
class calculated from LiDAR data are given in Fig. 3, which shows mean 
changes in LAD through the vertical profiles at each development class. 
Fig. 4 further shows how different forest structural types detected 
directly from airborne LiDAR data are distributed either sides of the 
Lcv(GCH) = 0.33 and Lskew = 0 thresholds. Some structural dynamics can 
be observed from these figures, since the majority of areas in seedling 

Fig. 5. Comparison of diameter and basal area distribution in the even and uneven sized forest structural types separated by Gini coefficient of LiDAR (GCH(Lcv) =
0.33) (a, b) and Gini coefficient of basal area (GCBA = 0.5) (c, d). 
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development classes were separated as even sized by Lcv(GCH) < 0.33, 
because they are very small and roughly equal in size at first, to later 
more inequality in diameter distribution toward the sapling stage 
(Lcv(GCH) > 0.33) (Fig. 4a). Likewise, the young, advanced and mature 
development classes which mostly contain equality in diameter/basal 
area distribution were mostly separated as even sized (Lcv(GCH) < 0.33). 
Seed trees and multi-storied development classes have higher inequality 
in their diameter distribution, they show high dispersion in their LiDAR 
echoes, and thus they were separated as uneven sized structure 
(Lcv(GCH) > 0.33). Similarly, in Fig. 4b most seedling and sapling 
development classes were separated as euphotic areas (Lskew > 0) 
because their canopies have not closed yet at these stages of develop
ment. As they grow and increase in AGB through young, advanced and 
mature development classes, they shift toward oligophotic areas with 
closed canopies and negative skewness of LiDAR return heights (Lskew <

0). The shelterwood development class which has a dense overstory and 
high LiDAR returns was classified as oligophotic (Lskew < 0), whereas 
seed-tree areas and multi-storey development classes with sparse over
storey were mainly classified as euphotic (Lskew > 0). 

We were then interested on whether the different thresholds that 
Appendix A shows for LiDAR heights (GCH(Lcv) = 0.33) and field data 
(GCBA = 0.5) would segregate forests with similar structural properties. 
Fig. 5 shows a comparison of aggregated diameter distributions (plus 
basal area-weighted distributions, in darker colors in the background) 
with confidence intervals. The difference between the distribution of 
proportions in density of stems versus basal area highlights structural 
differences which cannot be easily appreciated in diameter distribu
tions, since in highly complex structures with large differences in tree 
sizes the proportion of basal area taken by larger trees becomes pre
dominant. This could be appreciated in the distributions of strata 

yielded from the LiDAR data only (GCH(Lcv) < 0.33 and GCH(Lcv) > 0.33, 
respectively in Fig. 5a and b), as much as it was for the distributions 
yielded when the strata was generated using the field data itself (GCBA <

0.50 and GCBA > 0.50, respectively in Fig. 5c and d). These results 
emphasize the reliability of a purely LiDAR-based classification in the 
structural heterogeneity assessment of forests. 

3.2. Best-subset variable selection 

In order to facilitate direct comparison of all models, we fixed the 
number of LiDAR predictors to be six for all models, based on the SSR 
restriction of the best-subset procedure which assured that none of them 
had over-fitting effects, plus a positive outcome in the hypothesis test of 
1:1 correspondence. Table 2 shows the variables selected at each of 
them: the general model developed for the whole data without pre- 
stratification, and each FST-specific model developed for the even and 
uneven sized forest structures and oligophotic/closed canopy and 
euphotic/open canopy areas, obtained from the direct classification of 
airborne LiDAR data. While all the selected predictors were those typi
cally included in LiDAR-AGB modelling – averages (e.g. quadratic or 
cubic means), dispersion statistics (e.g., variance), percentiles, and 
cover metrics (i.e. percentages above thresholds) of LiDAR return 
heights –, we identified critical differences in the metrics selected at 
each stratum, which is useful to understand what predictor variables are 
more important for estimating AGB at each area of a forest. We observed 
that higher LiDAR height percentiles were more relevant at open can
opies and heterogeneous forests, whereas closed canopies in homoge
neous forests obtained a best subset based on combinations of cover 
metrics and percentiles around the median. In the uneven-sized struc
tures, higher percentiles, variance and absolute average deviation of 

Table 2 
Airborne LiDAR predictors selection (best subset) for the general model (whole data without pre-stratification) and each forest structural type specific model (even 
sized, uneven sized, oligophotic/closed canopy and euphotic/open canopy forest structures).  

Predictors General Model GCH(Lcv) Lskew 

Even (<0.33) Uneven (>0.33) Oligophotic (<0) Euphotic (>0) 

Variance *  *  * 
Median of the absolute deviations (MAD) from the overall mode * *  *  
MAD from the overall median     * 
L.skewness  *    
Average absolute deviation (AAD)   *   
Cubic mean     * 
Quadratic mean  *    
25th height percentile *     
50th height percentile * *  *  
60th height percentile     * 
70th height percentile   *   
99th height percentile   *  * 
% first returns above 0.1 m   *   
% all returns above 0.1 m    *  
% all returns above mean    *  
% first returns above mode  *  *  
Ratio returns above 0.1 m /total first returns * * *  * 
Canopy relief ratio *   *   

Table 3 
Accuracy assessment of the observed and predicted aboveground biomass of the general model.   

Whole Data GCH(Lcv) Lskew 

Even (<0.33) Uneven (>0.33) Oligophotic (<0) Euphotic (>0) 

Sample size 244 120 124 119 125 
MD − 3.55 − 2.09 − 4.97 − 4.56 − 4.31 
MD (%) − 3.95 − 2.33 − 5.54 − 5.08 − 4.81 
RMSD 37.4 37.1 37.6 37.6 37.3 
RMSD (%) 41.7 41.4 41.9 41.9 41.6 
SSR 1.03 1.02 1.04 1.04 0.98 

GCH(Lcv): Gini coefficient/L-coefficient of variation of LiDAR heights; Lskew: L-skewness of LiDAR heights; MD: mean difference; RMSD: relative mean square 
difference;. 
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Fig. 6. Observed vs predicted aboveground biomass (Mg∙ha− 1) plots of the kNN imputation method using general model for (a) whole data without pre-stratification 
and each forest structural types obtained directly from airborne LiDAR classification such as (b) even sized, (c) uneven sized, (d) oligophotic/closed canopy and (e) 
euphotic/open canopy. The red line represents 1:1 correspondence and the black line shows linear regression fit between observed and predicted values. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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LiDAR return heights were selected. On the other hand, in the even-sized 
stratum, the model included the mode, Lskew, the median and cover 
metrics (percentage of all returns above mode and total first returns). 
Similarly, in the oligophotic/closed canopy areas, the median and cover 
metrics were important, while in the euphotic areas/open canopy areas, 
higher percentiles and mean absolute deviation from median and vari
ance were selected. Thus, the similarities of even-sized with oligophotic 
areas on one hand, and uneven with euphotic areas observed in Fig. 4, 
showed an influence in the modelling itself (Table 2), thus indicating 
convergence in the relationships between structure and modelling 
results. 

3.3. Modelling aboveground biomass from airborne LiDAR based forest 
structural types 

The AGB was predicted in each model using the associated best 
subset of LiDAR predictors, and their accuracies were assessed. In the 
general model (Table 3 and Fig. 6), i.e. a model fitted using the whole 
dataset, the RMSD between the observed and predicted AGB was 37.4 
Mg∙ha− 1. We disaggregated these accuracy statistics by strata, to allow 
direct comparison with the FST-specific models, which resulted in 37.1 
and 37.6 Mg∙ha− 1, in the even and uneven-sized forest areas and 37.6 
and 37.3 Mg∙ha− 1 in oligophotic and euphotic areas, respectively. In 
relative terms, the general model RMSD 41.7%, which seems high 
because of the inclusions of seedling and sapling areas of very low AGB 
in the dataset. The general model showed some bias when applied to 
specific FSTs, as it can be appreciated by underpredictions of around 
4.8–5.5% in terms of their MDs, with the even-sized forests being the 
only areas where not such strong bias effect was observed (− 2.33% 
only). 

The results for the FTS-specific models are summarized in Table 4a-b, 
and the scatterplots in Figs. 7-8. The RMSD improved both in the even 
sized (34.6 Mg∙ha− 1) and uneven sized (35.3 Mg∙ha− 1) forest structures 
(Table 4a) as compared to the general model (Table 3). The MD similarly 
improved in the uneven sized forest structure (− 2.72 Mg∙ha− 1) and only 
slightly decreased in the even sized areas (− 2.30 Mg∙ha− 1). These 
specific models developed for the even and uneven sized forest struc
tures also showed an improvement in the MD and RMSD when aggre
gated for the whole area (− 2.52 and 34.9 Mg∙ha− 1) (Table 4a), 

compared to the general model (− 3.55 and 37.4 Mg∙ha− 1) (Table 3). 
Similar improvements in the MD and RMSD were observed in the FST 
specific models developed for the oligophotic/closed canopy areas 
(− 2.22, 33.5 Mg∙ha− 1), euphotic areas/open canopies (− 2.52, 32.9 
Mg∙ha− 1), and whole data (− 2.37, 33.2 Mg∙ha− 1) (Table 4b). All the 
FST-specific modelling approaches, thus, showed improvements 
compared to the general model both in terms of unbiasedness and 
improving the precision of predictions. 

4. Discussion 

4.1. Determining maximum entropy from a distribution of heights in 3D 
remote sensing 

In previous contributions we have showed a threshold of interest 
which flags up maximum entropy at the Gini Coefficient value of GCBA 
= 0.50 (Valbuena et al., 2012, 2017a). This threshold allows to compare 
the entropy of the ecosystem using a statistic of dispersion, arguing that 
is more correct for continuous variables because it avoids the factitious 
binning step required when computing foliage height diversity (McAr
thur and McArthur, 1961), based on Shannon’s entropy index which was 
originally meant for discrete variables (Shannon, 1948). It is important 
to note that this threshold is applicable for a Gini coefficient of a Lorenz 
curve representing differences in basal area among trees growing within 
a given area (GCBA) (Valbuena et al., 2012). On the other hand, in this 
contribution we further argue that for a Gini coefficient of a Lorenz 
curve representing differences in LiDAR heights within that same area 
(GCH), the alternative value of GCH = 0.33 should be the one used 
instead to identify maximum entropy. The reason is that height is a one- 
dimensional variable (X), whereas basal areas are two-dimensional (X2). 
In order to achieve these generalized conclusions, we need to use 
theoretical distribution functions and show how their parameters 
propagate into Lorenz curves and values of the Gini Coefficient directly 
dependent on those parameters. In the Appendix A, we show formal 
proofs for these values obtained from theoretical distributions, to illus
trate the reasoning employed in this contribution. We also show how 
these maxim entropy values of GCX extend to higher dimensions (e.g. 
GCX2), thus developing a mathematical framework which provides uni
fied means for determining maximum entropy in the 3D space of in
formation provided by remote sensing tools such as LiDAR. Fig. 5 
illustrates empirically the equivalence of the LiDAR and field 
approaches. 

4.2. Rule-based pre-stratification into different forest structural types 

Airborne LiDAR explains the key characteristics of forests related to 
the structural heterogeneity that can be relevant to describe tree size 
hierarchy (Valbuena et al., 2013), vegetation growth (Stark et al., 2012) 
and light availability (Lefsky et al., 2002a). Advancement in airborne 
LiDAR remote sensing promises reliable accuracies in the prediction of 
biophysical stand properties (Lefsky et al., 2002b; Valbuena et al., 2020) 
and various studies have evaluated and found that the pre-stratification 
of forests using airborne LiDAR can improve the attribute estimation 
(Næsset, 2002; Maltamo et al., 2015) and reduce the sampling efforts 
(Papa et al., 2020). Following the same concept but using solely the 
LIDAR data as opposed to using field information, in this study different 
FST were obtained from the direct classification of airborne LiDAR data. 
We applied rule-based pre-stratifications and used Lcv(GCH) and Lskew of 
the LiDAR echo heights which are the two prominent LiDAR metrics in 
separating the even from uneven sized structures and oligophotic/closed 
canopy from euphotic/open canopy forest areas, respectively (Valbuena 
et al., 2017a). In Fig. 4a, we found that the young, advanced and mature 
development classes which have similar diameters and basal areas dis
tributions (GCBA < 0.5) usually backscatter most of the LiDAR returns 
and hold smaller variance in their height values were mostly separated 
by the lower values of Lcv(GCH) < 0.33. There is a consistency on results 

Table 4 
Accuracy assessment of the observed and predicted aboveground biomass of 
each forest structural type specific models.  

(a) Even versus uneven-sized structure  

Whole Data GCH(Lcv) 

Even (<0.33) Uneven (>0.33) 

Sample size 244 120 124 
MD − 2.52 − 2.30 − 2.72 
MD (%) − 2.81 − 2.57 − 3.03 
RMSD 34.9 34.6 35.3 
RMSD (%) 38.9 38.6 39.4 
SSR 0.97 0.96 0.99   

(b) Oligophotic/closed canopy versus euphotic/open canopy areas  

Whole Data Lskew 

Oligophotic (<0) Euphotic (>0) 

Sample size 244 119 125 
MD − 2.37 − 2.22 − 2.52 
MD (%) − 2.64 − 2.48 − 2.81 
RMSD 33.2 33.5 32.9 
RMSD (%) 37.0 37.4 36.7 
SSR 0.98 0.98 0.98 

GCH(Lcv): Gini coefficient/L-coefficient of variation of LiDAR heights; Lskew: L- 
skewness of LiDAR heights; MD: mean difference; RMSD: relative mean square 
difference; SSR: sum of square ratio. 
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in Table 1 showing that LiDAR values of GCH are reflected by higher 
values in GCBA, with the proofs in Appendix A being the explanation for 
this effect. A notable exception is observed in the case of the sapling 
development, which showed a high uncertainty in terms of GC, with a 
wide range of values in both GCBA and GCH (Table 1). This is the reason 
that Lskew was important to add as an additional LiDAR metric because 
the similarity between GCBA (Valbuena et al., 2013) and GCH (Lcv) only 
occurs if the higher values of GC is due to the presence of canopy gaps 
which allow large a portion of laser pulses to pass and disperse in the 
canopy (Stark et al., 2012; Valbuena et al., 2017a). Thus, by looking at 
the Lskew values, the sapling was separated as euphotic/open canopy 
areas (Lskew > 0) which could be the reason of the higher Lcv values. 
Other development classes such as seed-tree and multi-storey areas were 
separated as uneven sized by both GCBA (0.73 and 0.92) and GCH (Lcv =

0.58 and 0.58), however, the shelterwood development class wherein 
the mean GCBA was 0.95 was not properly separated and many plots 
were below Lcv(GCH) = 0.33 (Fig. 4 and Table 1). This might be due to 
the omission of the understory vegetation by the lower point density of 
the ALS data in our study area (0.91 points.m− 2) and any pointy density 

lower than at least 3 points.m− 2 are unsuitable for the structural het
erogeneity assessment, using the GC in particular (Adnan et al., 2017). 
Thus, the disintegration of such classes could further be improved by 
increasing the pulse density of the LiDAR data (Gobakken and Næsset, 
2008; Ruiz et al., 2014). 

When laser pulses hit a closed canopy vegetation, only a small 
portion of pulses penetrate the canopy, which is represented by LiDAR 
height distributions with negative asymmetry Lskew < 0. This also in
dicates the shady/oligophotic areas where only a smaller portion of light 
will reach the ground, for example, young, advance and mature devel
opment classes. Similarly, areas where smaller portion of LiDAR returns 
due to the presence of sparse vegetation denotes the open/euphotic 
areas which were detected by Lskew > 0, for example, seedlings, saplings, 
seed trees, shelterwood and multi-storey (Fig. 4b and Table 1). Fig. 5 
further highlights the importance of this rule-based classification and 
presents an adequate comparison between the even and uneven sized 
forest structures separated by the GCH(Lcv) = 0.33, or GCBA = 0.5 (Ap
pendix A). In this figure, it is clear that the diameter and basal area 
weighted distributions in both even sized and uneven sized structure 

Fig. 7. Observed vs predicted aboveground biomass (Mg∙ha− 1) plots of the kNN imputation method using specific models developed for (a) even sized and (b) 
uneven sized forest structure and their combination for the (c) whole data. The red line represents 1:1 correspondence and the black line shows linear regression fit 
between observed and predicted values. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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which are obtained from the GCH (Fig. 5a and b) and GCBA (Fig. 5c and 
d) are very similar and the small differences are due to missing detection 
of seedling in the smallest size class. This provides further insights that 
GCH is an appropriate option to separate structural heterogeneity of 
forest. 

4.3. Selection of best subsets of airborne LiDAR predictors in the AGB 
prediction models 

Various alternatives are used to select the optimum number of pa
rameters (predictors) to predict a response variable such as best subset, 
stepwise, and nearest neighbor (MSN) selection methods (Næsset, 2002; 
Van Aardt et al., 2008; Asner et al., 2010; Valbuena et al., 2017b; 
Almeida et al., 2019a). We used the best subset method in which the 
selection of a given variable is independent of interactions among var
iables as they are selected (Hudak et al., 2006). Thus, the selection of the 
six predictors was independent from the other LiDAR metrics and the 
different modelling options, yet reaching several convergences. 

Minimizing the number of meaningful predictors that describe various 
aspects of the forest structures is an important consideration (Hudak 
et al., 2006; Asner and Mascaro, 2014; Vincent et al., 2014; Bouvier 
et al., 2015; Valbuena et al., 2017b), and our selection of six predictors 
to allow model comparison (Table 2) was a compromise balance be
tween model error and overfitting that worked well for all the options. 
The results obtained in variable selection are as valuable as the accuracy 
assessment itself, since it shows convergences between some areas of the 
forest and discrepancies between opposing FSTs. They also show which 
FSTs influence more the general model, with effects both in the overall 
error but also biasi effects in the areas of the forest that had a lower 
influence in the composition of the general model. Cover metrics were 
important in all models but more predominant in oligophotic areas. The 
variance of LiDAR return heights was only selected in the uneven sized 
structures and euphotic/open canopy areas. Different height percentiles 
were influential in different FST-specific models, with the median (50th 
height percentile) being important in the even sized and oligophotic 
structures, and higher percentiles (70th or 99th, representing dominant 

Fig. 8. Observed vs predicted aboveground biomass (Mg∙ha− 1) plots of the kNN imputation method using specific models for (a) oligophotic areas/closed canopies 
and (b) euphotic areas/open canopies and their combination for the (c) whole data. The red line represents 1:1 correspondence and the black line shows linear 
regression fit between observed and predicted values. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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trees) becoming selected in the uneven sized structure and euphotic 
areas (Adnan et al., 2017). Most importantly, the variables selected in 
the general model were highly influenced by the even-sized areas of the 
forest, with both models presenting large similarities (Table 2), which is 
a good explanation for the results observed in the accuracy assessment, 
since the general model showed lesser error in those areas and high 
levels of biasness in the remaining FSTs. All these demonstrate the su
periority of obtaining FST-specific models to predict forest AGB from 
LiDAR, as opposed to approaches seeking a single model valid for all 
forest areas. 

4.4. Comparison of the aboveground biomass predicted in the whole data 
without stratification and each pre-stratified FSTs 

In addition to the typical statistics employed to evaluate the quality 
of AGB predictions, namely MD and RMSD (Van Aardt et al., 2008; 
Kankare et al., 2013; Straub et al., 2013; Räty et al., 2018), we also 
employed an evaluation of the inflation of error in cross-validation (the 
SSR) and hypothesis test of 1:1 correspondence between observed and 
predicted AGB to enhance the reliability of our resulting models (Val
buena et al., 2017b). Considering the results obtained for whole dataset 
with either alternative, the 37.4 Mg∙ha− 1 RMSD of the general model 
(Table 3), was improved by the FST-specific model approaches, reaching 
34.9 Mg∙ha− 1 (Table 4a), and 33.2 Mg∙ha− 1 (Table 4b). Considering 
results obtained by FST, all figures also show improvements, even and 
even-sized areas where RMSDs improved from the 37.1 Mg∙ha− 1 

(Table 3) to 34.6 Mg∙ha− 1 (Table 4a), with only a slight increase in MD. 
This is very important, as otherwise result in FST-wise MDs for the 
general model showed bias effects in the highly structured forest areas. 
This is explained by the higher influence that even-sized areas had in the 
general model, possibly because LiDAR metrics have a larger explana
tory capacity for AGB in these areas, thus showing potential harmful 
consequences in AGB modelling approaches neglecting the effects of 
forest structure. While the accuracies in AGB prediction improved only 
moderately in the FST-specific models as compared to the general 
model, the differences observed in the selection of airborne LiDAR 
predictors in each model can be critical, as they can produce biased 
results at specific areas of the forest. We thus encourage the prior clas
sification into different FSTs for selecting the most relevant LiDAR 
predictors at each area of the forest, which besides of improving the 
estimation of AGB could provide important ecological insights on forest 
dynamics such as regeneration (Valbuena et al., 2013), self-thinning 
(Coomes and Allen, 2007) or productivity (Bourdier et al., 2016), and 
reduce the sampling efforts needed for a given level of accuracy (Papa 
et al., 2020), assisting in better forest inventory, management and 
planning (Næsset, 2002; Maltamo et al., 2015). Thus, the improved AGB 

prediction approach is suitable for purposes such as quantification of 
carbon stock for REDD activities for a large forest area, but also for a 
better forest management, planning and understanding of the natural 
dynamics within a large forest area. 

5. Conclusions 

Our results demonstrate the superiority of obtaining FST-specific 
models to predict forest AGB from LiDAR, as opposed to approaches 
seeking a single model valid for all forest areas. We recommend the use 
of LiDAR information to pre-stratify the forest area prior to the field 
campaign, so that forest data acquisition can be tailored to the structural 
characteristics of the area. In order to determine these structural char
acteristics, we defended the use of GC above the use of FHD, being less 
computationally demanding but also conceptually better. Appendix A 
provides a mathematical framework for determining maximum entropy 
in 3D remote sensing datasets based on the GC of theoretical continuous 
distributions, intended to replace FHD as entropy measure in one- 
dimensional LiDAR vertical profiles (1D), with extensions to higher 
order dimensions bi- or three-dimensional (2D or 3D). 
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Appendix A. Proofs for maximum entropy thresholds corresponding to GCX ¼ 0.33 and GCX2 ¼ 0.50 

Let X be a random variable taking values in the set of positive numbers, and E[X] its expectation. Let fX(x) and FX(x) be their probability density 
function (p.d.f.) and cumulative distribution function (c.d.f.), respectively, and further let FX

− 1(p) be the quantile function (inverse of the c.d.f.; its 
generalized definition is FX

− 1(p) = inf {x : p ≤ F(x)}). The Lorenz curve LX(p) specifies the accumulated proportion of the total of X that is attributed to a 
given accumulated share of the population ordered by increasing X. Thus, the Lorenz curve provides a mapping from interval [0,1] to interval [0,1], 
where the domain includes the proportion from the ordered population and the codomain the share of X. The Lorenz curve can be written as 

LX(p) =
∫ p

0 F− 1(t)dt
E[X]

, for 0 ≤ p ≤ 1 (A.1) 

The Gini coefficient is the twice area between the Lorenz curve and the diagonal line LX(p) = p, which is thus assessed with the integral: 

GCX = 1 − 2
∫ 1

0
LX(p)dp (A.2) 

The Lorenz curve for aX for a positive constant a is the same as that of X. Therefore the Lorenz curve and Gini coefficient have the property of being 
invariant under linear scaling of X by a positive constant. 

In applications using the distribution LiDAR heights X = H, the Lorenz curve LH(p) specifies the proportion of total accumulated heights at the 100p 
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% of lower (or higher) vertical strata. In forest science, from the distribution of tree diameters X = D, the Lorenz curve LD(p) gives the proportion of 
total accumulated diameters for the 100p % smallest (or largest) trees. It is however more common to use variables which are logical to accumulate, 
such as basal area X = BA or above-ground biomass X = AGB, as it is more useful to know the proportion of basal area or biomass accumulated from for 
the 100p % smallest (or largest) trees. These variables are however never measured directly, and instead derived from a transformation of D or H, or 
both (Mehtätalo and Lappi, 2020). The following proofs demonstrate: (1) the threshold GCX = 0.33 denotes maximum entropy for unidimensional 
measures, i.e. D or H; and (2) that this value of maximum entropy for D derives into GCX2 = 0.50 for the transformed variable Z = X2, namely the bi- 
dimensional measure BA, as it was empirically devised in Valbuena et al. (2012). 

Proofs for the Lorenz curve and Gini Coefficient of a uniformly distributed variable (maximum entropy). 
The continuous uniform distribution U(xmax,xmin) has equal probability density for any u-length interval [x,x + u] within the range X ∈ [xmin, 

xmax]. It has the maximum entropy among all continuous distributions which have the same range (Sung and Bera, 2009). Thus, for a given range θ =
xmax − xmin and a given number of strata θ/u considered, the uniform distribution yields the maximum value of Shannon’s (1848) entropy index 
(Valbuena et al., 2012). In applications using LIDAR heights, this is a vertical profile showing even proportions for all strata, yielding a maximum value 
for McArthur and McArthur’s (1961) foliage height diversity, with xmin = 0 being the ground level and xmax = θ being the maximum height of 
vegetation. 

The continuous uniform distribution X~U(0,θ) has the p.d.f.: 

fX(x; θ) =

⎧
⎨

⎩

1
/θ, for 0 ≤ x ≤ θ

0, otherwise
(A.3) 

The c.d.f. is: 

FX(x; θ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, for x < 0

x/θ, for 0 ≤ x ≤ θ

1, for θ ≤ x

(A.4) 

The quantile function and expected value are: 

F− 1
X (p) = θp (A.5)  

E[X]( = μ) = θ
2

(A.6) 

Substituting these in Eq. (A.1), the Lorenz curve becomes (Fig. A1): 

LX(p) =
∫ p

0 θt dt
θ/2

=
θp2/2
θ/2

= p2 (A.7) 

And thus, substituting in Eq. (A.2), the Gini coefficient of a uniform distribution becomes: 

GCX = 1 − 2
∫ 1

0
p2dp = 1 −

2
3
=

1
3

(A.8) 

Hence, any variable X that has the minimum of zero and is distributed evenly along all its values, such as D or H, would have GCX = 0.33, which 
thus is the value of Gini Coefficient which corresponds to maximum entropy.

Fig. A1. Lorenz curves of maximum entropy for X, and its transformed variable Z ∝ X2.  

Proofs for the Lorenz curve and Gini Coefficient of the second power of uniformly distributed variable. 
Next, we will proceed to deduce the Lorenz curves LBA(p) and Gini coefficient GCBA values for basal areas that derive from this situation of 

maximum entropy in the distribution of tree diameters. The basal area is directly calculated from a transformation of the diameters BA = aD2. As per 
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the scale-invariability property of Lorenz curves the scalar a can be further disregarded, and thus we now consider the Lorenz curve and Gini co
efficient of transformation Z = X2 when X~U(0,θ). 

The c.d.f. and p.d.f of the transformed variable are: 

FX2 (z; θ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, for z ≤ 0
̅̅
z

√
/θ, for 0 ≤ z ≤ θ2

1, for z ≥ θ2

(A.9)  

fX2 (z; θ) =

⎧
⎪⎨

⎪⎩

1
2θ

̅̅
z

√ , for 0 ≤ z ≤ θ2

0, otherwise
(A.10) 

Thus, the quantile function and expected value of Z are: 

F− 1
X2 (p) = θ2p2 (A.11)  

E
[
X2] =

θ2

3
(A.12) 

Substituting these in Eq. (A.1), the Lorenz curve becomes (Fig. A1): 

LX2 (p) =
∫ p

0 θ2t2 dt
θ2/3

=
θ2p3/3
θ2/3

= p3 (A.13) 

And thus, substituting in Eq. (A.2), the Gini coefficient of a uniform distribution becomes: 

GC = 1 − 2
∫ 1

0
p3dp = 1 −

2
4
=

1
2

(A.14) 

Hence, for any variable Z ∝ X2 that is proportional to the second power of X, such as of BA is to D, the GCX2 = 0.50 corresponds to the maximum 
entropy of X. 
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