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This paper reviews four commonly-usedmicrowave radiative transfermodels that take different electromagnetic
approaches to simulate snow brightness temperature (TB): the Dense Media Radiative Transfer - Multi-Layer
model (DMRT-ML), the Dense Media Radiative Transfer - Quasi-Crystalline Approximation Mie scattering of
Sticky spheres (DMRT-QMS), the Helsinki University of Technology n-Layers model (HUT-nlayers) and the Mi-
crowave EmissionModel of Layered Snowpacks (MEMLS). Using the same extensively measured physical snow-
pack properties, we compared the simulated TB at 11, 19 and 37GHz from these fourmodels. The analysis focuses
on the impact of using different types ofmeasured snowmicrostructuremetrics in the simulations. In addition to
density, snow microstructure is defined for each snow layer by grain optical diameter (Do) and stickiness for
DMRT-ML and DMRT-QMS,mean grain geometrical maximum extent (Dmax) for HUT n-layers and the exponen-
tial correlation length forMEMLS. Thesemetricswere derived from either in-situmeasurements of snow specific
surface area (SSA) ormacrophotos of grain sizes (Dmax), assuming non-sticky spheres for the DMRTmodels. Sim-
ulated TB sensitivity analysis using the same inputs shows relatively consistent TB behavior as a function of Do
and density variations for the vertical polarization (maximum deviation of 18 K and 27 K, respectively), while
some divergences appear in simulated variations for the polarization ratio (PR). Comparisons with ground-
based radiometricmeasurements show that the simulations based on snow SSAmeasurements have to be scaled
with a model-specific factor of Do in order to minimize the root mean square error (RMSE) between measured
and simulated TB. Results using in-situ grain size measurements (SSA or Dmax, depending on the model) give a
mean TB RMSE (19 and 37 GHz) of the order of 16–26 K, which is similar for all models when the snow micro-
structure metrics are scaled. However, the MEMLS model converges to better results when driven by the corre-
lation length estimated from in-situ SSAmeasurements rather than Dmaxmeasurements. On a practical level, this
paper shows that the SSA parameter, a snow property that is easy to retrieve in-situ, appears to be the most rel-
evant parameter for characterizing snow microstructure, despite the need for a scaling factor.

© 2017 Elsevier Inc. All rights reserved.
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1. Introduction

In snow remote sensing, a better parameterization of the radiative
transfer models (RTM) for simulating snow microwave emission im-
proves our ability to retrieve snowpack characteristics from space-
borne observations. Snow microstructure metrics are the main input
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parameter of the microwave RTM (e.g. Rutter et al., 2009) and its char-
acterization can strongly impact the retrievals from microwave emis-
sion measurements for snow monitoring (e.g. Mätzler, 1994;
Armstrong and Brodzik, 2002; Kelly et al., 2003; Mätzler et al., 2006;
Löwe and Picard, 2015). Thus, given that the available models that are
well-defined in the literature and commonly used for snow remote
sensing are defined by different snow microstructure parameteriza-
tions, a review appears essential. We consider here the following four
models: the Dense Media Radiative Transfer- Multi layers (DMRT-ML)
model (Picard et al., 2013), the Dense Radiative Transfer Model -
Quasi-Crystalline Approximation (QCA)Mie scattering of Sticky spheres
(DMRT-QMS) model (Chang et al., 2014), the multi-layer Helsinki
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University of Technology model (HUT-nlayers) (Lemmetyinen et al.,
2010a), and the Microwave Emission Model of Layered Snowpacks
(MEMLS) (Proksch et al., 2016; Wiesmann and Mätzler, 1999; Mätzler
andWiesmann, 1999). Several aspects of thesemodels are based on dif-
ferent electromagnetic theories or semi-empirical approaches (multiple
scattering and absorption coefficient computations, for example), and
they are often driven by sets of different measured inputs for snow
grain metrics, such as snow specific surface area (SSA), correlation
length or snow grain geometrical extent obtained from visual analysis.

Tedesco and Kim (2006) compared earlier simplified single-layer
versions of the DMRT, HUT and MEMLS models based on the snow
grainmetric given by visual inspection (average size over the snowpack
depth of representative small, medium, and large grains in each layer
measured using a microscope). MEMLS and HUT-nlayers were com-
pared by Lemmetyinen et al. (2010b) and Pan et al. (2016). DMRT the-
ory and IBA were also recently compared and analyzed (Löwe and
Picard, 2015), while Roy et al. (2013) compared DMRT-ML and HUT-
nlayers. Sandells et al. (2016) compared DMRT-ML, HUT-nlayers and
MEMLS models considering only the optical diameter generated by
snow models. But the four multi-layer models considered were never
compared together using coincident sets of measured snow properties.
The main challenge in comparing these RTM models is that the input
snow microstructure parameters differ in each model and are in some
cases difficult or impossible to measure in the field. Three different
snow microstructure representations are considered in these models:
optical diameter (Do) and stickiness for DMRT-ML and -QMS, correla-
tion length (pc) for MEMLS and maximum geometrical extent (Dmax)
for HUT-nlayers. Consequently, some hypotheses are needed for their
estimation allowing coherent intercomparison of models (Löwe and
Picard, 2015). For example, it was previously shown that the optical di-
ameter derived from the SSAneeds to be scaled by a factor in order to be
in agreement with measurements when considering DMRT-ML with
non-sticky medium (Brucker et al. 2011; Roy et al., 2013; Montpetit et
al., 2013; Picard et al. 2014; Dupont et al., 2014). As the physical aspects
of each model had already been extensively analyzed, we put the em-
phasis in this paper on comparing the models with surface-based mea-
sured brightness temperature (TB). The objective is to compare the
simulations using the same in-situ measurements of improved snow
parameterization, which had never been done.

This paper briefly recalls the main basic fundamentals of these four
models and more specifically the different grain size definitions in-
volved (Section 2). After presenting datasets and snow microstructure
measurement methods (Section 3), we first compare the four models
using a synthetic snowpack to perform a sensitivity analysis (Section
4.1), and we then compare the simulated TB using sets of measured
snow properties against measurements of surface-based radiometric
TB at 11, 19 and 37 GHz (Section 4.3).

2. Models and their respective snowmicrostructure metric

A synthesismatrix of the fourmodels considered in this study is pre-
sented in Table 1. These models are all publicly available (thus specific
details of their implementations can be known) and are extensively de-
scribed in the references given in Table 1. Readers are invited to consult
these references for detailed descriptions of the models, which are
based on conceptually different approaches for computing snow elec-
tromagnetic properties and radiation transfer in the multi-layers of
the snowpack. In this paper, all the simulations were performed using
the recommended configuration for DMRT-ML and -QMS, the Improved
Born Approximation (IBA) (option 12) for MEMLS and the original ver-
sion of the extinction coefficient in HUT (see Table 1).

One of the main difficulties in snow radiative transfer is the param-
eterization of snow microstructure consisting of a high density of scat-
terers per unit of volume. DMRT-ML and -QMS consider the snow as a
collection of sticky spherical ice particles defined by their radius and
stickiness (Tsang and Kong, 2001; Tsang et al., 2007), while MEMLS
parameterizes snowmicrostructural properties by a secondorder statis-
tical function, the two-point correlation function, giving the mutual re-
lationships between two scatterers within a given volume, such as the
autocorrelation function (the exponential correlation length pex is gen-
erally used, see Section 2.2 below). HUT is based on empirical scattering
and extinction coefficients fitted with the observed maximum dimen-
sion of snow grains (Dmax), or more recently an effective grain size radi-
us (Kontu and Pulliainen, 2010). When using in-situ ground-based
measurements of snow microstructure parameterization, practical
comparison of these models requires hypotheses to retrieve and link
the different metrics. The metrics used in this study are briefly defined
below.

2.1. DMRT snow microstructure metric

DMRT-ML considers snow grains as spherical particles of ice defined
by their radius. Their position (clustering) is controlled by stickiness. For
snow having a wide range of grain shape, the radius of equivalent
spheres can be objectively defined by their optical radius (Ro), which
can always be derived from the SSA via the optical equivalent radius.
The snow SSA is the surface of the air/snow interface (S) per unit of
mass: M = ρsnowvolume: SSA = S/M = S/(ρicevolume) in m2 kg−1,
where ρice is the ice density (917 kg m−3). SSA measurements are de-
scribed in Section 3. For spheres or snow assimilated as sphere equiva-
lent (see the review paper by Domine et al., 2008), the optical radius
(Ro) is expressed as (Ro in mm, ρice in kg m−3 and SSA in m2 kg−1):

Ro ¼ 3:103=ðρice SSAÞ ð1Þ

Since any measurements can be used to estimate stickiness, Brucker
et al. (2011), Roy et al. (2013), Dupont et al. (2014) and Picard et al.
(2014), considering a non-sticky medium, have shown that Ro should
be multiplied by the scaling factor ϕDMRT when Ro is derived from SSA
measurements (R'o in mm):

R0o ¼ ϕDMRTRo ¼ 3:103ϕDMRT=ρice SSA ð2Þ

This scaling factor is discussed in Section 2.4. Roy et al. (2013) also
showed that the following relationship (inspired by Kontu and
Pulliainen, 2010) can be used for an effective optical radius of snow
grains derived from SSA measurements:

R”o mm½ � ¼ 1:1 1– expð−24:6:103= ρice SSAð Þ
h i

ð3Þ

The stickiness parameter (τ), used by DMRT theory (Tsang and
Kong, 2001), is inversely proportional to the contact adhesion between
spheres. It can be linked to the cohesion or to a degree of connectivity
between grains. Thus, for non-sticky spheres: τ = ∞; for snow with
clusters (aggregates) or grains with high strength of adhesion, τ de-
creases (for example τ = 1 to 0.2 or less). DMRT-ML uses the “short
range” approximation (Tsang and Kong, 2001) which implies that
grains and aggregates should remain small compared to the wave-
length. Roy et al. (2013) hypothesized that the needed scaling factor
(ϕDMRT) is related to the assumption of non-sticky spheres (τ = ∞)
and to the assumption ofmonodisperse grain size distribution. This scal-
ing factor is therefore a surrogate of the stickiness parameterwhich can-
not practically be measured in the field (see Löwe and Picard, 2015).

2.2. MEMLS snow microstructure metric

MEMLS uses the correlation length (pc) for describing snow micro-
structure, which is the slope of the spatial autocorrelation function at
the origin (i.e. the derivative of this function). This parameter might
be derived from micro-computed tomography measurements (micro-
CT) (Löwe et al., 2013) or by high-quality stereological method (see



Table 1
Comparison between basics of DMRT-ML/-QMS, MEMLS and HUT-nlayers models. See below for the definitions of terms.

Model DMRT-ML DMRT-QMS MEMLS (V3)a HUT-nlayers

Version V1.6 (with several options) V 0.1 IBA version Empirical version 2015
Physical principle Maxwell equations + several approximations considering a collection of densely packed

sticky spheres
Empirical relationships between micro-structure and scatt/abso/ext. coefficients and empirical relation for the
dependence of the polarization factors on volume fraction

Theory Dense Media Radiative Transfer Model (Shih et al. 1997) (Tsang et al., 2013) Improved Born Approxi-mation
(IBA)b (Mätzler,1998)

Empirical scattering coef.
(Weismann et al., 1998)

Semi-empirical relation

Typical range of
frequency

1–100 GHz

Approxi-mations
options

Recommended option Research option Quasi-Crystalline Approximation
(QCA) of Mie
scattering

• Combination of coherent and incoherent (scattering) reflection
between interface layers
• Coherence effect for thin ice layer

• Empirical scat. coef.
• Semi-empirical absorption coef.• QCA-CPc

• Rayleigh assumption
• Optional correction for
large particles (Grody,
2008)
• Mono-disperse sphere
radius
• No stickiness

• QCA-CP
• Rayleigh
assumption
• No large particles
• Poly- disperse (i.e.
Rayleigh
distribution)
• No stickiness

• IBA: option 12 • Different scattering coef.:
options 8,10,11

κe(1/m) = αf2Deff
2.8f κe(1/m) = β(f4Deff

6 )0.2g

• Optional stickiness
• Optional bubbly ice

• Optional stickiness • Ice without air bubble (pex = 0) • Ice as high density snow with Reff = 0

Snow
micro-structure
parametrizationd

Spheres defined by their radius (Ro) and their stickiness (τ) Correlation length (pc or pex) for 5 to 100 GHz, the model is defined by
the correlation length range from 0.05 up to 0.6 mm (Mätzler and
Wiesmann, 1999)

Grain geometrical extent (Dmax)
Grain effective diameter (Dmax,eff)

Liquid water content Wetness fractional volume of water with respect to
ice vol.

No Volumetric liquid water content W: 0 to about 0.15 Snow moisture (up to several %)

Radiative transfer
between layers

DISORTe (recommended 64 streams or more) DISORTe by eigenvalue-quadrature
analysis

2 or 6 streams 1 streams (empirical coef. for forward scatt
q = 0.96)

Fresnel reflection coef. for snow/snow and snow/atmosphere interfaces
Main ref. Picard et al. (2013)

Brucker et al. (2011)
Roy et al. (2013)
Dupont et al. (2014)

Chang et al. (2014)
Huang and Tsang (2012)
Liang et al. (2008)
Tsang et al. (2007)

Proksch et al. (2016)
Mätzler and Wiesmann (2014)
Wiesmann and Mätzler (1999)
Mätzler and Wiesmann (1999)
Wiesmann et al. (1998)
Mätzler (1994, 1997, 1998, 2004)
Schwank et al. (2014)

Lemmetyinen et al. (2010a)
Pulliainen et al. (1999)
Kontu and Pulliainen (2010)

Web site Open source GPL license
http://lgge.osug.fr/~picard/dmrtml/

http://web.eecs.umich.edu/~leutsang/
Available%20Resources.html

http://www.iapmw.unibe.ch/research/projects/snowtools/memls.html Upon request

a MEMLS Version 3 (2014) uses updated formulas for the dielectric constants of ice and water. An L-band version of MEMLS was used by Schwank et al. (2014), assuming a simplified one-layer snowpack.
b IBA: the Improved Born Approximation (IBA) (Mätzler, 1998) expresses the scattering coefficient in terms of the Fourier transform of the two-point correlation function.
c QCA: the quasi-crystalline approximation (QCA) consists of approximating the resolution of themultiple scattering calculation in a dense porous environment by regarding thismediumas a roughly crystalline structure, implying assumptions on

the position of two particles between them considered fixed. QCA-CP: QCA can be optionally improved by the so-called Coherent Potential (QCA-CP) (Tsang and Kong, 2001). The basic concept of the CP is to regard themedium near each scatterer as
an effectivemediumwith a uniformeffective scattering function of aggregates, which implies that the function remains constant in space. The CP approximation thusmakes it possible to solve the calculation of the coherent potential Green's operator
for multiple scattering (and in the QCA context in our case) assumed as constant in space.

d See text for the snow microstructure parameterization of each model.
e The Discrete Ordinate Method (DISORT) is used to numerically solve the radiative transfer equation (Jin, 1994).
f Extinction coefficient κe: α = 0.000415, relationship for 18–60 GHz, Hallikainen et al. (1987).
g Extinction coefficient κe: β = 0.461 Roy et al. (2004).
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Riche et al., 2012), but its rapid derivation from field measurements is
still difficult. Recently, Proksch et al. (2015) proposed a relationship be-
tween Snow-Micropen measurements and correlation length that has
not yet been validated for microwave emission applications.

Here, we first estimate the correlation length from the equivalent
sphere grain radius (Ro) as proposed by Mätzler (2002), following the
Debye relationship:

pc ¼ 4=3 Ro 1−νð Þ ð4Þ

where ν is the ice volume fraction: ν = ρsnow/ρice.
While there is no experimental relationship between simultaneous

measurements of pc (from micro-CT measurements) and SSA
measurements, Montpetit et al. (2013) showed that the following
relationship gives optimized simulated TB using MEMLS driven
with SSA measurements (p'c in mm, density in kg.m−3 and SSA in
m2 kg−1):

p
0
c mm½ � ¼ 4:103ϕMEMLS1–ν=ρice SSA ð5Þ

where ϕMEMLS is a scaling factor and SSA is measured in-situ. Through-
out this paper, grain size metrics (e.g. radius or pc, pex) will be
expressed in mm.

If the autocorrelation function is approximated (fitted) by an expo-
nential function of the form: exp.(−x/pex), one can derive the exponen-
tial correlation length pex. According to the type of snow, pex is different
from pc (Krol and Löwe, 2016;Matzler, 2002). Formicrowavemeasure-
ments, pex is generally preferred to pc, andMätzler (2002) found in gen-
eral that pex ≈ 0.75pc, giving from (1) and (4):

pex mm½ � ≈ Ro 1–νð Þ ¼ 3:103 1–νð Þ= ρice SSAð Þ ð6Þ

On the other hand, previous studies from Mätzler (1997) have
shown that pc is closer to the minimum characteristic extent of the
grain than related to the maximum geometrical particle extent.
Mätzler (2002) gives a series ofmeasurements of pc, pex and visually es-
timated grain size Dmax (defined below) for 20 samples of different
snow types showing the correspondence between these parameters.
Using these data, pex (or pc) can be expressed as a logarithmic function
of Dmax:

pex ¼ aþ b ln Dmaxð Þ for νNνth and DmaxND max;thin mm
pex ¼ Cstotherwise

ð7Þ

where νth andDmax,th are thresholds delimitating the range of validity of
the proposed model, and Cst is a constant for values below these
thresholds.

Using the Mätzler (2002) data, Durand et al. (2008) found that a =
0.18 and b = 0.09 for ν N 0.2 and Dmax N 0.125 mm, and that pex =
0.05 ± 0.017 mm otherwise.

2.3. HUT snow microstructure metric

HUT input is based on individual grain size. There are many ways to
describe the geometrical grain size of snow (Colbeck et al., 1990;
Lesaffre et al., 1997; Fierz et al., 2009). Among them, one can cite the cir-
cle (or ellipsoid) that better encompasses the snow grain; the equiva-
lent radius given by the ratio between projected grain area and its
perimeter; the mean convex radius of curvature; or the greatest extent
of the prevailing or characteristic grains: Dmax. The latter corresponds
to the maximum dimension of the “intermediate grain size” and has
long been a classical parameter routinely used to visually characterize
snow structure in the field (see Colbeck et al., 1990; Fierz et al., 2009).
The HUT model can be driven either directly by Dmax, or by an effective
grain diameter (Dmax,eff) derived from Dmax following the relationship
that minimized the differences betweenmeasured and simulated TB, as
proposed by Kontu and Pulliainen (2010) (see also Lemmetyinen et al.,
2010a, 2015; Pan et al., 2016):

D max;eff ¼ 1:5 1– exp −1:5 Dmaxð Þð Þ ð8Þ

where Dmax,eff and Dmax are in mm.
However, in this study, it appears that this relationship (Eq. (8)) for

estimating theDmax,eff does not give a good agreement, due to the lack of
convergence in the optimization. This results from the large digitized
Dmax measurement values obtained in this study (see Section 4.2), and
Eq. (8) leads to a unique Dmax,eff. In the model comparison (Section
4.3), we thus consider Dmax,eff = 0.5 Dmax, derived from an optimization
that reduces the difference between simulated andmeasured TB (meth-
od of Roy et al., 2013).

When SSA is measured, Roy et al. (2013) use Eq. (2), with a different
scaling factor (ϕHUT) relative to the effective grain size in HUT simula-
tions:

Doeff mm½ � ¼ 6:103ϕHUT= ρice SSAð Þ ð9Þ

All the ϕ factors (ϕDMRT, ϕMEMLS and ϕHUT) are further discussed in
Section 2.4. Field measurement methods for SSA and Dmax estimates
are presented in Section 3.

2.4. Scaling factors for the models driven by SSA measurements

The scaling factor ϕ depends upon the model considered and the
type of snow. The change in this scaling factor is linked to other micro-
structure parameters such as stickiness and to the fact that we assume a
monodisperse size distribution of snow grain (see the discussions in
Brucker et al., 2011; Roy et al., 2013 and Löwe and Picard, 2015). It can-
not be explained bymeasurement uncertainties (Roy et al., 2016). Löwe
and Picard (2015) theoretically demonstrate the need of grain size scal-
ing between the optical diameter and the equivalent sticky hard sphere
diameter. For DMRT-MLwith the assumption of non-sticky spheres, the
ϕ factor obtained varies from 2.3 to 3.5 depending on the type of snow
(Table 2). The amplitude of this factor may also partly be affected by er-
rors in snowmeasurements and possibly in the soil parameters. Precise
explanation of these differences in the ϕ factor needs further study but
is outside the scope of this paper. Here we used ϕ=3.3, 1.3 and 3.7, re-
spectively for DMRT-ML, MEMLS and HUT-nlayers (Table 2) in order to
compare the known optimized models when driven by SSA measure-
ments compared to simulations driven by Dmax measurements.

2.5. Radiative transfer model inputs

Apart from the snow microstructure parameterization, all other
input parameters required by the four models are the same for each
layer defined by its thickness, snow temperature and density. Here,
we only considered dry snow. An important contribution to snowpack
emission can emanate from the soil under the snowpack, in particular
at low frequencies. For the intercomparison in this study, we thus
used the same rough soil reflectivity model proposed by Wegmüller
and Mätzler (1999) (see the review of Montpetit et al., 2015a). At a
given frequency, the soil parameterization is defined by the soil/snow
interface reflectivity in horizontal polarization (ΓH) and vertical polari-
zation (ΓV) with the following equations for an incidence angle (θ)
lower than 60°:

ΓH ¼ ΓFresnelH exp − kσð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−0:1cosθ

p� �

ΓV ¼ ΓH cosθβ
ð10Þ

where k is the incident medium wave number (air or snow), ΓHFresnel is
the Fresnel reflectivity function which depends on the soil permittivity
(εsoil), σ is the soil roughness parameter and β is a scaling factor for de-
riving the reflectivity at vertical polarization from the computed



Table 2
Scaling factorϕ to be applied on the snowmicrostructuremetric derived from in-situ SSAmeasurements, as a function of the RTM considered and the type of snow. All SSAmeasurements
were derived from the DUFISSS's type approach (see Section 3.1), except *: the values depend upon the method used for retrieving SSA; and **: SSA retrieved from ASSAP device (see
details in the given references, last column).

Radiative transfer models Snow μstructure metrics Sites ϕ References

MEMLS p'c = 4.103 ϕ(1 − ν)/(ρice SSA) Eq. (5) Canada: Arctic, Subarctic, South Québec 1.3 Montpetit et al. (2013)
DMRT-ML (no stickiness) R'o = 3.103ϕ/(ρice SSA)

Eq. (2)
Dome C Antarctica 1.89, 2.5, 2.85* Brucker et al. (2011)
Dome C Antarctica 2.3** Picard et al. (2014)
Barnes Ice Cap Canada Arctic 3.5 Dupont et al. (2014)
Canada: Arctic, Subarctic, South Québec 3.3 Roy et al. (2013)

HUT-nlayers Roeff = 3.103ϕ/(ρice SSA)
Eq. (9)

Canada: Arctic, Subarctic, South Québec 3.7 Roy et al. (2013)
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reflectivity at horizontal polarization. Following Montpetit et al.
(2015b), we consider the optimized values of εsoileff , σeff and βeff parame-
ters for each frequency given in Table 3.

For comparisons between simulated TB and measurements, the
downwelling sky radiance reflected by the snowpack toward the radi-
ometer has to be taken into account (Montpetit et al., 2013;
Courtemanche et al., 2015; Roy et al., 2016). In each surface-based ra-
diometric measurement, the atmospheric contribution was calculated
using the atmospheric Millimeter-wave Propagation Model (MPM:
Liebe, 1989) implemented in the HUT snow emission model
(Pulliainen et al., 1999). The atmospheric model was driven with the
air temperature and precipitable water of the atmospheric layers
above the surface given by the 29 atmospheric layers of the North
American Regional Reanalysis (NARR) (Mesinger et al., 2006) for the
NARR pixel and time of measurements. Note that all the snowpits
were located in open areas where no vegetation could contribute to
the measured TB (see the discussion in Roy et al., 2016). We previously
validated this procedure against sky microwave measurements (see
Courtemanche et al., 2015).

3. Ground-based measurement dataset

3.1. Optical radius retrieved from SSA measurements using IRIS

A light short-wave infrared laser-based system measuring snow al-
bedo through an integrating sphere (InfraRed Integrating Sphere,
IRIS), similar to the system previously proposed by Gallet et al. (2009),
was used for SSA measurements (Montpetit et al., 2012). Relatively
good accuracy (12–15%) and reproducibility in SSA measurements are
obtained using the IRIS system on extracted samples. Gallet et al.
(2009) and Montpetit et al. (2012) describe in detail these devices
(Dual Frequency Integrating Sphere for Snow SSA: DUFISSS and IRIS, re-
spectively). Lambertian targets with known reflectance values
(spectralon: 0.06, 0.25 0.60, 0.79, and 0.98 at 1.33 μm)were used to cal-
ibrate the device before and after each series of measurements at each
site. From the reflectance, the SSA was calculated as described by
Montpetit et al. (2012). SSA measurements allow us to estimate the
mean optical radius of grain sizes of each layer (Eq.(1)), assuming that
all grains have the same size (monodisperse size distribution).

3.2. Dmax measurements using multidirectional lightingmacrophotos in the
shadow-box

Macrophotos of snow grain samples have been widely used in nu-
merous studies (e.g. Colbeck, 1990; Fierz et al., 2009). In order to
Table 3
Soil parameters considered for the three models (see Eq. (10)).

Frequency (GHz) εsoileff βeff σeff (cm)

11 3.18–0.006134j 1.08 0.19
19 3.42–0.00508j 0.72
37 4.47–0.32643j 0.42
improve geometrical snow grain parameterization, we developed an
optical system that uses, within an enclosed box (30 × 30 × 30 cm),
five light-emitting diodes that provide five-direction (nadir, N, E, S
and W) illumination of a gridded plate upon which snow grains are
placed (Fig. 1). Five photographs are taken successively for each illumi-
nated direction with a Nikon D40 fitted with a macro lens (Fig. 1). The
projected area of the grain is extracted from a first photograph with
the diode illuminating from nadir and the four other photographs
allow the digitization of the projected shadows. Knowing the angles of
illumination and the exact position of each grain on the gridded illumi-
nated plate, it is possible to calculate the height of the grain envelope
using the tangent illumination path corresponding to the projected
shadow in each direction. We thus derived a numerical height model
of each snow grain and reconstructed a 3D representation of the snow
grain envelope (Fig. 1). From this elevation model, one can derive mul-
tiple size parameters: Dmax, minor and major axis of the envelope ellip-
soid, projected area, mean height, maximum height and apparent
volume and surface area. All of these parameters are then averaged for
each sample. This device (called shadow-box) is very easy to handle
in the field, and improves the retrieval of a 3D representation of the
snow grains. It is also useful to characterize snow grain shapes and
types of extracted snow samples. Using calibrated spheres (steel balls
from 0.8 to 4.8 mm), the retrieval error (bias) on Dmax was estimated
of the order of 0.03 mm. The measurement protocol is as follows: we
gently cover the platewith separated grains of a snow sample extracted
from each snowpack layer (approximately every 3 cm over the
snowpit), and take the five consecutive macrophotos, including identi-
fications of the snowpit and layer.We then systematicallymanually dig-
itize the contour of all the grains on the plate to estimate themean Dmax

(2D) values for each snowpack layer. The shadows help to discriminate
individual grains in aggregates or when grains are stuck together.

3.3. Correlation length

Since no direct measurement of correlation length was carried out,
the values of correlation length (pc or pex) used as inputs for MEMLS
were estimated in three ways: (1) from the retrieved optical grain size
radius (SSA measurements) and the fractional volume (Debye relation-
ship, Eq. (5)) (hereafter labeled MEMLS_Do); (2) from the measured
values of mean Dmax grain size (2D shadow-box) and fractional volume
based on the Mätzler relationship (Durand et al., 2008) (hereafter la-
beled MEMLS_Dmax_pex); and (3) from pex based on the observed linear
relationship between pc andDmax shown in the results section (see Fig.
5) (hereafter labeled MEMLS_Dmax_lin).

3.4. TB measurements

All the measurements analyzed in this paper are those already used
before and are described in references given in Table 4. TB measure-
ments were taken for every snowpit at 10.67 (hereafter noted 11), 19
and 37 GHz in vertical polarization (V-pol) and horizontal polarization
(H-pol) at a height of approximately 2m above the surface using PR-se-
ries field radiometers (Radiometrics Corporation, Boulder, CO, USA) at



Fig. 1. Shadow-box. Snow grains placed on the plate are successively illuminated from four directions by four LEDs and by one LED from the nadir, producing five macrophotos (right),
from which a 3D envelope model of the grain can be retrieved after manual digitization of the shadows. The size of the grain shown is 7 mm.
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an incidence angle of 54°–55°, which is close to the measurement inci-
dence angle of the Advanced Microwave Scanning Radiometer - Earth
Observing System (AMSR-E) and Special Sensor Microwave Imager
(SSM/I) space-based sensors. The ellipsoidal footprint of measurements
at the snow surface was approximately 0.5 m × 0.65m. The radiometer
calibration was based on two measurements taken with the absorbing
foam Eccosorb© (CumingMicrowave Corporation, MA, USA) at the am-
bient temperature (i.e. warm reference) and another taken over a sur-
face of liquid nitrogen (i.e. cold reference) (Asmus and Grant, 1999;
Langlois, 2015). In theworst case,measurement error for the calibration
target was estimated at ±2 K. Ambient and cold point measurements
Table 4
Summary of the snow parameters of all sites analyzed in this study. Site name: CHxx cor-
responds to Churchill,MB sites (Roy et al., 2013;Montpetit et al., 2013); SIRSP4 and RoSP1
correspond to the southernQuébec sites, respectively to the SIRENE site at Sherbrooke, QC
and to the St-Romain, QC site (Roy et al., 2013); BJxx sites corresponds to the James Bay,
Nunavik, QC sites (subarctic sites) (Roy et al., 2016). The snowpits where an ice lens
was observed are identified (last column).

Site
name

Snow
depth
(m)

Tsnow
(K)

Density
(kg/m3)

Tsoil
(K)

Optical
radius
(mm)

Dmax
(mm)

Bulk p'c
(Eq.
(5))

Ice
lens

1 CH42 0.37 259.4 289.4 267.9 0.22 4.43 0.267
2 CH43 0.70 257.3 311.4 270.3 0.20 2.68 0.231
3 CH83 1.18 269.4 372.6 272.7 0.19 2.83 0.199
4 CH90 0.82 265.3 284.0 271.8 0.18 3.43 0.213
5 CH91 0.91 267.1 324.7 272.5 0.19 4.16 0.210
6 CH92 0.83 268.3 292.8 272.9 0.22 3.10 0.262
7 CH95 1.74 266.0 380.3 272.8 0.15 1.89 0.150
8 CH96 1.80 266.8 367.8 272.9 0.17 2.20 0.172
9 CH97 1.50 266.4 380.9 272.7 0.18 2.07 0.178
10 CH98 1.19 265.8 351.4 272.5 0.16 2.04 0.166
11 CH104 0.48 255.2 261.4 269.6 0.32 4.90 0.393
12 CH105 0.45 258.7 229.7 270.3 0.32 6.11 0.419
13 CH111 0.44 252.5 284.6 269.8 0.25 4.54 0.303
14 CH55 0.51 258.5 308.4 269.7 0.19 3.54 0.214
15 CH56 0.35 254.9 314.6 267.2 0.20 3.15 0.231
16 CH99 0.57 259.3 328.0 270.1 0.23 4.02 0.255
17 CH101 0.19 259.1 263.2 264.6 0.33 4.88 0.403
18 CH54 0.48 257.1 345.0 269.5 0.20 4.51 0.215 x
19 CH57 0.25 260.2 321.9 266.1 0.20 3.50 0.224
20 CH58 0.35 256.5 304.6 267.9 0.16 4.84 0.189 x
21 CH59 0.65 260.2 276.6 271.7 0.23 3.71 0.274 x
22 CH60 0.14 270.4 288.3 262.2 0.27 3.83 0.325 x
23 CH61 1.03 260.5 400.8 272.5 0.19 2.68 0.187
24 CH82 0.35 266.5 285.4 270.8 0.37 4.08 0.446
25 CH93 0.82 279.6 311.9 271.9 0.28 4.43 0.325 x
26 CH100 0.43 259.8 295.8 269.2 0.28 4.78 0.328 x
27 CH114 0.72 283.2 323.0 272.8 0.33 3.19 0.373 x
28 CH115 0.31 271.4 313.6 272.2 0.33 5.11 0.382
29 SIRSP4 0.33 271.5 245.9 273.0 0.14 3.07 0.173
30 RoSP1 0.47 269.4 179.2 273.5 0.08 1.05 0.107 x
31 BJjan1 0.51 266.8 284.9 271.5 0.16 3.07 0.191 x
32 BJfev2 0.66 265.8 245.1 273.1 0.18 2.01 0.229 x
from before and after the field campaign periods (typically separated
by five to ten days) were used to produce a final calibrated TB data set.

3.5. In-situ snow data

The snow data needed by the models were derived from in-situ
measurements in three northern Canadian regions. Table 4 provides
the data from the Arctic: Churchill (MB), the Subarctic region: James
Bay (QC), and southern regions of Québec: Sherbrooke (QC) and St-
Romain (QC). All sites were already well-described in the references
given in the Table 4. This database of 32 snowpits encompasses a wide
range of snow types (i.e. metamorphic processes and stratigraphy), typ-
ical of North American environments. For each site, profiles of snow
temperature, snow density, and snow microstructure were taken at a
vertical resolution of 3 or 5 cm in the footprint of the microwave radi-
ometers. The density was measured with a 185 cm3 density cutter,
and the samples were weighed with a 100 g Pesola light series scale
with an accuracy value of 1 g. The temperature was measured with a
Traceable 2000 digital temperature probe (±0.1 °C). The microstruc-
ture of each layer was defined with both SSA (optical radius) and Dmax

measurements, the latter using macrophotos (Shadow-box). In Table
4, we give the vertically averaged values of density, optical radius and
Dmax, weighted by the snow layer thicknesses and the derived bulk p'c
(from Eq. (5)) were also estimated (9th column). The stratigraphy
was examined at each site, and all ice lenses (or crusts), when present,
were identified andmeasured. Their densitywas notmeasured as this is
very difficult to properly sample. All themicrowave and snowmeasure-
ments were always synchronised in time. All these 32 sites (Table 4)
were used for model comparison.

4. Results

A sensitivity analysis is first performed to compare the four models
considered with the same inputs considering a synthetic snowpack
(Section 4.1). We then discuss the consistency between the grain size
measurements (Section 4.2), and we compare the simulations with
ground-based measurements (Section 4.3).

4.1. Sensitivity analysis of the three models

Based on an identical synthetic snowpack, we seek to illustrate
model sensitivity to three parameters: grain size (Fig. 2); density (Fig.
3); and ice lens in the snowpack (Fig. 4).

Fig. 2 shows the comparison between the 37 GHz brightness tem-
perature variations as a function of Do, using the four models in a very
simple synthetic case defined by one layer of 1 m thickness with a
mean uniform density of 250 kg m−3. The incidence angle of TB simula-
tions is 55°. All input parameters were the same for the fourmodels and
the different microstructure metrics were derived from the same initial



Fig. 2. TB variation at 37 GHz as a function of the optical diameter (Do) of grain size for the
four models. Top: TB at the vertical polarization; bottom: polarization ratio (H-pol/V-pol).
Simulations performed using Eq. (11) for the snow grain size definitions and the
Wegmüller and Mätzler (1999) soil model (Table 1); soil temperature = 273 K; soil
roughness = 0.19 cm, dielectric permittivity = 4.53 and the polarization reflectivity
factor beta = 1.1 (Montpetit et al., 2015a); snow density = 250 kg m−3; snow
depth = 1 m; snow temperature = 263 K; no stickiness and no ice lens. The incidence
angle of TB simulations is 55°.

Fig. 4. TB variation at 37 GHz as a function of an ice layer thickness (Dice) put on the top of
the snowpack for the four models (full lines: V-pol; dotted lines: H-pol). Snowpack and
soil properties are the same as in Figs. 2 and 3 (Do = 0.25 mm and density =
250 kg m−3). Ice lens density = 917 kg m−3 and ice lens temperature is the same as
snow temperature.

253A. Royer et al. / Remote Sensing of Environment 190 (2017) 247–259
grain parameter (Do) using Eqs. (2), (5) and (9). To define the optical
diameter of each model, we used the scaled factors defined in previous
analysis (see discussion in Section 4.2). These factors optimize the sim-
ulations compared to in-situ radiometric measurements for real snow-
packs. The relationships defining the microstructure metrics were
derived from Eqs. (2), (5) and (9), respectively for DMRT-ML (assuming
non-sticky spheres) (Roy et al., 2013), MEMLS-IBA (Montpetit et al.,
2013) and HUT (Roy et al., 2013). For DMRT-QMS, we used the same
Fig. 3. Same as Fig. 2, but for density (Do = 0.25 mm).
relationship as for DMRT-ML, and also assuming non-sticky spheres.
The comparison in Fig. 2 is thus performed using the following equa-
tions:

DMRT‐ML=‐QMS : D0o ¼ 3:3 Do
MEMLS : p

0
c ¼ 1:3 2=3ð Þ Do 1−νð Þ

HUT : Doeff ¼ 3:7 Do

8<
: ð11Þ

The results show that the TB simulated by the four models similarly
decrease with the grain size, as expected due to the high sensitivity of
microwave attenuation to grain size at 37 GHz. Using the scaling factors
for the input grain size metrics given in Eq. (11), the simulated TB V-pol
are close for Do around 0.5 mm and for Do b 0.2 (Fig. 2, top). However,
MEMLS TB values appear underestimated by 18 K compared to DMRT-
ML/-QMS around Do = 0.3 mm. Note that DMRT-ML is identical to
DMRT-QMS over thewhole analyzed range of Do, as we stay in the Ray-
leigh range (see Picard et al., 2013), and despite the different formula-
tion of the scattering coefficient. When the grain size becomes larger
(Do N0.6 mm, SSA b 11 m2 kg−1), the HUT-nlayers TB significantly de-
creases, because this model empirically considers multiple scattering
and is based on the 1-flux RT simplification, leading to underestimate
downward-propagated TB and thenupward reflected and backscattered
signal. Multiple scattering increasing with grain size tends to increase
the upward radiation, compensating for the TB attenuation.

The main polarization effects arise from reflections at layer inter-
faces, and are at their maximum near the Brewster angle (around 55°
at 37 GHz), leading to a significant decrease of the TB (H-pol) with inci-
dence angle, while TB V-pol is weakly independent of the incidence
angle. Fig. 2 (bottom) shows the Polarization Ratio (PR = TB H-pol/TB
V-pol) variations for the four models as a function of the optical grain
size simulated for a fixed incidence angle of 55°. DMRT-ML and
DMRT-QMS are also identical in this case. TheHUTmodel practically ne-
glects the scattering polarization variations with growing grain size,
while DMRT-ML/-QMS and MEMLS models show different trends in
PR variations with grain size. The MEMLS volume scattering in snow is
slightly sensitive to polarization (Wiesmann et al., 1998) with a weak
PR increase of 2% when the grain size increases between Do = 0.1 to
0.6 mm, while DMRT-ML/-QMS decreases by 4%, leading to a difference
of about 7% compared to MEMLS for grain sizes above 0.6 mm (Fig. 2,
bottom).

For a given fixed density, the polarization is modulated by 2 mecha-
nisms: snow scattering and interface reflection. As snow-air interface
reflections are similarly treated in each model (assuming Fresnel's



Fig. 5. Relationship between the correlation length derived from SSA and density
measurements (pc, calculated with Eq. 5, ϕ = 1) and the mean maximum geometrical
extent of the grains (Dmax) measured by digitized photographs of snow grains (each
point of this graph corresponds in average to 229 digitized grains per sample). The
dotted curve corresponds to the logarithmic relationship observed by Mätzler (2002).
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reflection) and because the density remains constant in these simula-
tions, the differences between the three types of models (DMRT-ML/-
QMS; HUT-nlayers and MEMLS) result from the differences in the
radiative transfer solution. As a matter of fact, polarization effects are
generated by volume scattering driven by the granular structure of the
medium, i.e. by a combined effect of snow grain size and density (see
Mätzler, 1997) and also of stickiness for DMRT-ML/-QMS (see Picard
et al., 2013). The observed differences in PR variations in Fig. 2 (bottom)
could thus likely governed by differences between the radiative transfer
processing of the diffuse scattering component of the signal. The results
for lower incidence angles (i.e. not Brewster) are similar.

We performed simulations (not shown) using a new model (in
progress, unpublished) using the same N-flux solver used in DMRT-
ML but which can compute scattering coefficients with either the
DMRT theory (as in DMRT-ML and DMRT-QMS) or IBA (as in MEMLS).
In both cases, assuming the same scattering theory, the results show a
decrease of the PR with increasing Do, while the MEMLS-IBA (6-flux)
shows an increase of the PR. This suggests that the radiative transfer
processing, specifically 6-flux versus N-flux, could be the cause of the
different behaviors observed in Fig. 2 (bottom), but further exploration
of the role of the solver is needed.

The patterns of TB variation with snow density show similar behav-
iors between models but at different amplitudes (Fig. 3). Here, Do is
considered constant and equal to 0.25 mm. Over the range of density
variation shown, below 400 kg m−3 (i.e. below 44% fractional volume),
at vertical polarization,DMRT-ML/-QMS shows a greater sensitivity,ΔTB
V-pol of 40 K for density from150 to 300 kgm−3, thanMEMLS andHUT
which vary slightly. For low snow density between 150 and 200 kgm−3

the four models are similar, but at a high snow density of 400 kg m−3,
the TB(V-pol) difference between DMRT-ML/-QMS and MEMLS is
28.5 K. (and 21.3 K at H polarization) (Fig. 3, top). For coarser grain
size (not shown), the differences in TB V-pol versus density variations
between models are amplified, due to the difference in scattering pro-
cessing in each model.

PR variations in relation to density show parallel trends (Fig. 3, bot-
tom), but the decrease in PR when density increases shows significant
differences in slope values for eachmodel (N2% difference at low densi-
ty for MEMLS and HUT compared to both DMRTmodels). For high den-
sities (near 400 kg m−3), this decrease is greater with DMRT-ML than
DMRT-QMS.

TB H-pol varies as a function of density change between interface
layers, mainly from reflection at the snow-air interface, and of snow
scattering (grain size). Since Fresnel reflection is considered here, sur-
face reflection depends on the snow dielectric constant and thus the
density. Assuming a constant grain size (as in Fig. 3), as density in-
creases, the reflection coefficient increases and TB H-pol decreases, lead-
ing to the decrease in PR (as TB V-pol is relatively constant at the
Brewster angle). In other words, where snowpack evolution features
slow metamorphism as is observed in Antarctica, PR clearly decreases
with density. This was shown by Picard et al. (2014) from surface-
based measurements at Dome Concordia (East Antarctica).
Champollion et al. (2013) also showed that the observed 2000–2010
AMSR-E PR increase was in agreement with the observed decreasing
surface snow density, also at Dome Concordia.

However, when the snowpack evolves during the winter through
various metamorphic processes (increasing grain size), increasing
layering (alternation of high- and low-density layers) and increasing
density processes, PR direction changes over time appear less clear.
Moreover, the surface roughness would produce a more diffuse scatter-
ing distribution, leading to weaker polarization, while ice layers or
wind-slab snow crusts lead to a significant degree of polarization (e.g.
Mätzler, 1994; Grenfell and Putkonen, 2008; Dolant et al., 2016). In
general, since surface density and state are the most important charac-
teristics influencing polarization, one expects a decrease in PRwith time
from snowfall. The DMRT simulations showed a PR decrease for both in-
creasing grain size and density processes in the synthetic cases
considered here (Figs. 2 and 3), while MEMLS and HUT show a PR de-
crease only as a function of increasing density.

The third sensitivity analysis (Fig. 4) shows the effect of a thin ice
layer put at the top of the snowpack for the four models. At V-pol,
there are almost no TB variations due to ice lens while TB H-pol is re-
duced by up to 65 K when an ice lens is introduced. The stronger de-
crease in H-pol (ice lens vs. no ice) compared to the one at V-pol
comes from the higher sensitivity to layer interface reflectivity at H-
pol. Note that, in Fig. 4, the differences in TB V-pol amplitudes between
models result from the configuration (Do and density) used for the sim-
ulations (see Figs. 2 and 3). Moreover, ice layer thickness variations
have no impact on TB variation, except when using the MEMLS model
for thin ice layers. Around Dice = 0.125 mm, MEMLS is as much as
43 K lower at H-pol than the DMRT and HUT models. This significant
TB decrease simulated by MEMLS for H polarization that appears for
ice thickness under λ/2 is due to the coherent reflection that dominates
the microwave behavior for layers of the size λ/4 (Weismann and
Mätzler, 1999). The DMRT-ML and HUT-nlayers models do not take
into account this attenuation effect of the quarter-wavelength reso-
nance. In practice, as the ice layer thickness spatially varies in the foot-
print of the sensor (Rutter et al., 2014), such effects are generally less
pronounced than in simulations, but can be clearly observed for thin
ice lenses on or in the snowpack (see Montpetit et al., 2013; Roy et al.,
2016).

4.2. Snow grain database comparison analysis

We analyzed 159 photographed plates from the 32 studied
snowpits, corresponding to a total of 36,384 digitized grainswith an av-
erage of 229 grains per plate. For each plate, we considered the mean
maximum dimension of all the grains on the plate (Dmax). For each cor-
responding layer, we alsomeasured the snow SSA and density. It is well
known that the relationship between Do and Dmax is not one-to-one
(see Langlois et al., 2010; Leppänen et al., 2015). However, in order to
evaluate the consistency of the datasets, Fig. 5 shows the relationship
between the calculated correlation length derived from SSA and density
measurements (Eq. (5),ϕ=1) and the correspondingmeanDmax for all
the samples. The results show that this relationship appears somewhat
scattered as expected, andmore linear rather than the logarithmic rela-
tionship suggested by Mätzler (2002). But note that, for the latter case
(for 20 samples), Dmax values were visually determined, whereas, in
our case, Dmax were derived from digitized contours. The digitization,
the very large number of data and also the computation of the mean
values (over hundreds of grains) could explain that our Dmax values
are different than those visually determined. The digitization of grain
size is considered as a more reproducible and more precise approach.
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We also considered (not shown) median values instead of arithmetic
means that did not give significant differences. On the other hand, the
correlation lengths in the Mätzler (2002) database were measured
(micro-CT) whereas we derived this parameter from SSA and density
measurements. The reason for the differences between these micro-
structuremetrics (Dmax, SSA, correlation length), discussed for example
by Löwe and Picard (2015), and whichmay also result from differences
in snow types (alpine, boreal, arctic), is beyond the scope of this paper.
This unique database (coincident values of Do, pc andDmax)was used to
provide specific inputs to drive each model considered in order to sim-
ulate the brightness temperatures.
Fig. 6. Scatterplot comparing simulated brightness temperatures against measurements for
represent sites that included ice lenses. a: DMRT, b: HUT_Do (right); c: MEMLS_Do; d: HUT_D
Values given in the figures correspond to the RMSE in Kelvin (reported in Table 6).
4.3. Model comparison using measured inputs

As DMRT-QMS is very similar to DMRT-ML, only three models are
considered in the following: DMRT-ML, HUT-nlayers and MEMLS. For
all the sites described in the Table 4, Fig. 6 compares the 3 model simu-
lations against surface-based measured brightness temperatures with
exactly the same soil parameters (Table 3), and for the snow micro-
structure metrics derived either from SSA or Dmax measurements.
DMRT-ML (Fig. 6a), HUT_Do (Fig. 6b) and MEMLS_Do (Fig. 6c) were
driven by the scaled optical diameter of snow grain derived from SSA
measurements. The HUT_Dmax simulations (Fig. 6d) were driven by
each frequency and polarization for all the sites (described in Table 4). Circled symbols
max; e: MEMLS_Dmax_pex; f: MEMLS_Dmax_lin. Input parameters are listed in Table 5.
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Dmax measurements using an optimized scaling factor (see Section 2).
Using Dmax measurements, two inputs were also considered for
MEMLS simulations: 1)MEMLS_Dmax_pex (Fig. 6e) based on theMätzler
relationship (Durand et al., 2008, Eq. (7), see Fig. 5); and 2)
MEMLS_Dmax_lin (Fig. 6f) based on the correlation length estimated
by the observed linear relationship shown in Fig. 5. These model inputs
are summarized in Table 5.

The root mean square errors (RMSE) and the biases are compared in
Table 6 and shown in Fig. 7 for the three frequencies (11, 19 and
37GHz) and each polarization. Note that the full set of input snowprop-
erties and 11 GHz radiometer measurements are only available for two
sites, hence, the analysis focuses on 19 and 37 GHz.

For the 32 analyzed snowpits, the overall results at 19 and 37GHz for
the 6 model configurations show mean bias values of the order of 6 K,
ranging from −10.8 to 16 K depending on the model, configuration
and frequency considered. The mean RMSE value is of the order of
20 K (19 GHz) and 24 K (37 GHz), ranging from 11.4 to 32.4 K. Large dif-
ferences in bias appear betweenmodels (MEMLSwith negative biases),
and no significant differences in bias or RMSE can be seen between po-
larizations. Note that except for HUT_Dmax (0.5 • Dmax), the models
were not specifically optimized for the new cases considered in this
study, since the used scaling factors were derived from previous publi-
cations over different sites.

MEMLS_Do seems to give slightly better results (mean RMSE of 14 K
and 19 K, respectively at 19 and 37 GHz, for both polarizations) relative
to other configurations and models (Figs. 6, 7, and Table 6). DMRT-ML
results show a mean RMSE of 21 K (19 GHz) and 23 K (37 GHz) in
this study, although we obtained better results for 45 other Arctic and
Subarctic snowpits with the same parameterization (mean RMSE of
10 K (19 GHz) and 12 K (at 37 GHz), see Roy et al., 2016). The HUT
model shows a lesser agreement at 37 GHz (mean RMSE of 30 K and
27 K respectively for the Do and Dmax configuration).

MEMLS tends to underestimate the TB at 37 GHz V-pol (negative
bias), while the other models tend to overestimate the simulated TB
(positive bias). This is in accordancewith the comparison using synthet-
ic snowpacks (see Fig. 2, top), showing lower MEMLS TB compared to
DMRT and HUT for a large range of grain sizes.

Among the three analyzed MEMLS versions, it appears that
MEMLS_Do performs best, compared to the Dmax-based simulations
(an average RMSE at 19 and 37 GHz of 16.6 K, 20 K and 22 K for respec-
tively the MEMLS_Do, _Dmax_lin and _Dmax_pex configurations). As ex-
pected, the HUT model provides a slightly lower RMSE when using
Dmax (23.6 K) compared to HUT_Do (26.5 K). Moreover, at 37 GHz,
DMRT using SSA appears better than the HUT model based on Dmax.
This confirms that the scaled SSA parameter is, in general, clearly better
than the Dmax parameter for describing snow grain size for microwave
radiometry no matter the MEMLS or DMRT-ML model.

We showed (Fig. 4) that, for the synthetic snowpack, ice lens thick-
ness within the snowpack could lead to significant differences in TB
among the models. Here, we accounted for the ice layer effects when
they were observed in the snowpack, and the comparison shown in
Fig. 6 does not exhibit systematic differences between snowpits with
ice layers (10 sites/32, see Table 4) and those without ice layers. This
first shows that ice layers can be adequately corrected for when their
presence and particularly their position within the snowpit is known
Table 5
Summary of the inputs used for the model simulations. The corresponding equations (Eq.) are

Model configuration Grain size measurements Input paramete

DMRT-ML SSA D'o = 6.103 3.3
MEMLS_Do SSA p'c = 4.103 1.3
MEMLS_Dmax_pex Dmax -pex = 0.18 +

-pex = 0.05 ±
MEMLS_Dmax_lin Dmax pc = 0.1069 Dm
HUT_Do SSA Doeff = 6.103 3
HUT_Dmax Dmax Dmax,eff = 0.5 D
(seeMontpetit et al., 2013; Roy et al., 2016), and secondly that ice layers
cannot explain the differences in RMSE between models.

In terms of linear regression between simulated and measured TB
(coefficient of determination R2 and slope of the regression), the
model comparison (Table 7) also highlights the differences between
models and configurations. Best results are obtained with DMRT-ML
andMEMLS_Do,with amean R2 of the order of 0.75–0.79 for the 4 chan-
nels (TB at 19 and 37 GHz and both polarizations). Results for these
models are better at 37 GHz and with a slope slightly N1, meaning
that the models underestimate low TB values at this frequency
(TB b ~170 K). Even if MEMLS_Dmax_lin is really better than
MEMLS_Dmax_pex for both R2 and slope parameters,MEMLS_Dmax_lin
performs less well thanMEMLS based on Do. The HUTmodel gives here
the worst agreement against measurements. Note that, in all cases
(Table 7), the TB H-pol values at 19 GHz show the lowest correlations,
likely due to non-optimized processing of stratification between the
snow layer interfaces, assumed specular, and for the soil-snow interface
(roughness, for example). The statistics at 11 GHz are not included be-
cause there are only 2measurements, but are included in the overall lin-
ear regression.

At last, we compared the simulated Polarization Ratio (PR H/V) at
37 GHz to the measured PR. The results show similar performance be-
tween the models (mean RMSE of 0.055). Also, we cannot conclude
about the effect of the grain size on the PR trend (as simulated in Fig.
2). This relates to the fact that the sites integrate a large range of density
and Do values, while Fig. 2 assumes a constant density when Do varies.

5. Discussion and conclusion

Over a large set of Arctic, Subarctic and boreal snow datasets, we de-
rived a unique comprehensive snow grain size metrics database. These
metrics were defined, on the one hand, by their specific surface area
(SSA, from IR reflectometry measurements), and, on the other hand,
for the same snow samples, by their mean maximum geometrical ex-
tent, called Dmax, obtained fromdigitizedmacrophotos of snow samples
at each layer. Here, we did not estimate Dmax size by visual inspection as
is generally done, because of the subjectivity of that approach. The dig-
itization of each snow grain distributed on a photographed plate is
thought to be a more robust and objective approach. This dataset
allowed us to compare ground-basedmeasurements of brightness tem-
peratures (TB) to the simulated TB using four models driven by their
specific metrics: DMRT-ML and -QMS with the optical diameter (Do)
derived from SSA measurements; the HUT model with Dmax; and the
MEMLSmodel driven by the correlation length which can be estimated
using both parameters (Do and Dmax). We also tested the HUT model
with Do, and we compared MEMLS simulations based on 2 different re-
lationships for correlation length estimation. A total of sixmodel config-
urations (Table 5) were thus analyzed (Figs. 6, 7, and Table 6).

Whatever themodel considered, the scatterplots between simulated
and measured TB show somewhat large scatters (Fig. 6) due to the in-
herent uncertainties on all the parameters that affect the emitted signal,
i.e. soil (temperature, dielectric permittivity and roughness), snow den-
sity stratification, snow temperature profile and snow grain size strati-
fication (Roy et al., 2016; Durand et al., 2008). The obtained root mean
square error between simulated and measured TB are in the same
explained in Section 2.

rs Eq. Fig.

/(ρiceSSA) 2 6a
(1 − ν)/(ρiceSSA) 6 6c
0.09 ln(Dmax) for ν N 0.2 and Dmax N 0.125 mm
0.017 otherwise

7 6e

ax Fig. 5 6f
.7/(ρiceSSA) 9 6b
max – 6d



Table 6
Bias (B) and RMSE (R) (K) between simulated andmeasured TBs for each frequency and polarization and for eachmodel driven by specific inputs (described in Table 5). Bold: minimum
bias and RMSE values of each line respectively (but not necessarily statistically significant).

Model DMRT-ML MEMLS HUT
Inputs Do ϕ = 3.3 Do ϕ = 1.3 Dmax_lin (Fig. 5) Dmax_pex Eq. (7) Do ϕ = 3.7 Dmax ϕ = 0.5

B R B R B R B R B R B R

11V 2.1 2.5 5.5 5.8 5.5 5.5 7.8 7.8 −2.1 2.4 −1.1 1.7
11H −7.3 7.5 −4.1 4.5 −3.9 4.9 −2.6 4.1 −10.0 10.3 −9.1 9.4
19V 16.0 19.4 0.1 11.4 6.2 14.5 15.0 18.2 13.8 18.7 13.6 17.8
19H 14.7 23.0 2.9 17.0 7.8 18.8 15.0 23.7 8.5 27.5 13.4 22.4
37V 11.0 25.3 −10.8 21.6 −10.8 26.7 −10.8 24.4 11.3 32.4 9.6 30.8
37H 7.5 20.1 −4.9 16.4 −3.3 19.9 9.0 21.4 8.5 27.5 6.7 23.4
All 7.3 16.3 −3.1 12.8 0.3 15.0 5.6 16.6 5.9 19.1 5.5 17.6
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range of values shown in previous studies that considered the same
models (Roy et al., 2016; Pan et al., 2016; Löwe and Picard, 2015; Roy
et al., 2013; Lemmetyinen et al., 2010b). The results analyzed here are
thus representative of errors commonly obtained for Arctic and Subarc-
tic snows with these models. But this is the first time that these models
were compared with their specific snow microstructure input data for
which they were defined. These results confirm first that each metric,
Do as well as pc and Dmax, must be scaled in order to minimize the
RMSE between simulated and measured TB. This aspect was discussed
and partly explained in previous papers (Löwe and Picard, 2015; Roy
et al., 2013; Kontu and Pulliainen, 2010). Secondly, the results show
that the snowmicrostructure metric based on Do appears to give better
results than themetric defined byDmax (Table 6). Thismay bedue to the
fact that microwave scattering is more directly related to Do than to
Dmax. Also, even if the shadow box used to measure Dmax, is more
Fig. 7. Comparison between the RMSE (top) and biases (bottom) for the 6
accurate than visual estimates, the Do value, derived from snow SSA
measurements, could give a better estimate of the effective mean size
over the grain size distribution per layer than the mean value of Dmax

measurements.
It is difficult to conclude on the performance of DMRT-ML, HUT and

MEMLS due to the large observed scatter on simulations, although the
MEMLS model appears here slightly better for the snowpits analyzed
in this study. We found a mean RMSE at high frequencies (19 and
37 GHz) of 16.6 K, 22.0 K and 23 K respectively for MEMLS_Do,
DMRT-ML and HUT_Dmax. However, as mentioned above, a specific op-
timization could have been made on the input parameters for each
model (on the ϕ scaling factors) that would have a different effect on
the models and change the results comparison. This scaling factor may
also depend on the types of snow, i.e. on metamorphism processes
and shape (see Löwe and Picard, 2015; Krol and Löwe, 2016). However,
model configurations. The corresponding values are given in Table 6.



Table 7
Comparison of linear regression parameters (coefficient of determination R2 and slope of the regression) for simulated and measured TB for the models shown in Fig. 6. All*: including
11 GHz at H-pol and V-pol.

Model DMRT-ML MEMLS HUT

Inputs Do ϕ = 3.3 Do ϕ = 1.3 Dmax_lin (Fig. 5) Dmax pex Eq. (7) Do ϕ = 3.7 Dmax ϕ = 0.5

R2 Slope R2 Slope R2 Slope R2 Slope R2 Slope R2 Slope

19V 0.30 0.53 0.52 0.95 0.29 0.64 0.46 0.20 0.14 0.24 0.11 0.19
19H 0.13 0.33 0.23 0.47 0.17 0.39 0.03 0.12 0.05 0.18 0.05 0.17
37V 0.63 1.07 0.72 1.04 0.45 0.78 0.31 0.29 0.13 0.34 0.19 0.43
37H 0.73 1.19 0.78 1.10 0.58 0.88 0.48 0.36 0.22 0.45 0.34 0.58
All* 0.75 1.10 0.79 1.06 0.69 0.98 0.63 0.70 0.51 0.73 0.55 0.76
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the comparison shown here between the four models using a synthetic
snowpack (Figs. 2, 3 and 4) clearly shows the intrinsic difference in ra-
diative transfer behavior as a function of grain size, density and ice lens
variations within the snowpack, in particular for the polarization ratio
(TB H-pol/TB V-pol).

In conclusion, to date, from a practical point of view using in-situ
measurements of snow properties, this paper shows that the SSA pa-
rameter appears to be the most relevant parameter for characterizing
snowmicrostructure, even if it must be scaled to be used for microwave
simulations. Snow tomography could give more precise microstructure
characterization but requires significant processing time.When suitably
scaled for each model (MEMLS and DMRT-ML), the SSA parameter pro-
duces the same order of error magnitude in simulated brightness tem-
perature. From a physical perspective, Löwe and Picard (2015)
showed that MEMLS and DMRT-ML are in fact very similar.
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