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Abstract

This paper presents an appraisal of satellite imagery types and texture measures for identifying and delineating settlements in four

Districts of Kenya chosen to represent the variation in human ecology across the country. Landsat Thematic Mapper (TM) and Japanese Earth

Resources Satellite-1 (JERS-1) synthetic aperture radar (SAR) imagery of the four districts were obtained and supervised per-pixel

classifications of image combinations tested for their efficacy at settlement delineation. Additional data layers including human population

census data, land cover, and locations of medical facilities, villages, schools and market centres were used for training site identification and

validation. For each district, the most accurate approach was determined through the best correspondence with known settlement and non-

settlement pixels. The resulting settlement maps will be used in combination with census data to produce medium spatial resolution

population maps for improved public health planning in Kenya.
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1. Introduction

Ninety percent of projected global urbanization will be

concentrated in low-income countries (United Nations,

2002). In Africa 38% of the 784 million inhabitants were

urban dwellers in 2000. This is estimated to increase to

55% by 2030 as virtually all of this population doubling

will be concentrated in urban areas (United Nations,

2002). The profound development and epidemiological

impacts of these changes are increasingly being realised

(Harpham, 1997; McMichael, 2000; Prothero, 2001).

Urban dwellers face a very different set of health risks

compared to their rural counterparts (Tatem & Hay, 2004).

In Sub-Saharan Africa (SSA) for example, urban residents

are more at risk from directly transmitted diseases such as
0034-4257/$ - see front matter D 2004 Published by Elsevier Inc.

doi:10.1016/j.rse.2004.06.014

* Corresponding author. Tel.: +44 1865 271262.

E-mail address: andy.tatem@zoo.ox.ac.uk (A.J. Tatem).
tuberculosis (Banerjee et al., 1999; Floyd et al., 2002) and

human immunodeficiency virus (HIV) (Abebe et al.,

2003; Lagarde et al., 2003; Mhalu & Lyamuya, 1996)

as well as certain vector-borne diseases such as dengue

fever (Lines et al., 1994), but contrastingly are around 10

times less likely to receive a malaria-infected mosquito

bite (Hay et al., 2000; Robert et al., 2003) and have

significantly better access to health care facilities (Noor et

al., 2003). Planning for the health consequences of

urbanization in the countries of SSA relies on the

provision of information and maps of settlement location,

size and distribution. Whilst high-income countries often

have mapping resources at their disposal to define and

delineate settlements for such public health planning and

management, this is often not the case for low-income

regions of the world.

Satellite remote sensing offers a cheap and effective

solution to mapping settlements and monitoring urban-

ization at a range of spatial scales. From continental scale
ent 93 (2004) 42–52



Fig. 1. Map showing location of the four districts on a malaria endemicity

map of Kenya (Craig et al., 1999).

Table 1

Features of each of the four study districts

District Area

(km2)

Population No. of

Government

of Kenya

health

facilities

Malaria ecology

Bondo 960 238,780 21 Perennial, intense

Kisii/Gucha 1310 952,725 44 Highland, acutely

seasonal

Kwale 8295 496,133 50 Seasonal, intense

Makueni 8266 771,545 59 Semi-arid, acutely

seasonal
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urban land use mapping using Advanced Very High

Resolution Radiometer (AVHRR), Moderate Resolution

Imaging Spectrometer (MODIS) and night-time imagery

(Civco et al., 2002; Imhoff et al., 1997; Schneider et al.,

2003; Vogelmann et al., 1998), to medium-scale regional

settlement mapping and classification using Landsat The-

matic Mapper (TM), Systeme Pour L’Observation de la

Terre (SPOT) High Resolution Visible (HRV) and Earth

Resources Satellite (ERS) 1/2 (Baraldi & Parmiggiani,

2000; Dell’Acqua & Gamba, 2003; Forster, 1983), down

to the recent wave of settlement-scale studies using fine

spatial resolution (Giada et al., 2003; Quartulli & Tupin,

2003; Roth, 2003; Tatem et al., 2001a,b), there now exist

well-documented approaches for settlement delineation,

classification and validation at all scales, reviewed in

(Tatem & Hay, 2004). Few attempts have been made to

use satellite sensor imagery in combination with census data

to produce global and continental population maps (Land-

scan: Dobson et al., 2003, 2000; UNEP GRID: Deichmann,

1996; GPW 2.0: Deichmann et al., 2001). However, the

administrative level of input census data for SSA is so

coarse that population estimates at an administrative level

fine enough to facilitate effective public health management

can be inaccurate. The scarcity of reliable data for map

validation and the difficulty in obtaining other data such as

census statistics are cited as the main obstacles to settlement

mapping in the region.
2. Study aims

The research detailed in this paper forms part of a larger

project aimed at extending the application of GIS and

remote sensing technology to the quantification of human

population distribution to allow more accurate malaria risk

mapping and disease burden estimation across Africa. The

findings of this study will therefore form an important input

to this research and be used to scale up settlement maps and

subsequently population maps to Kenya level. This study

hence has two main aims:

! Assess the utility of both multispectral and radar

imagery, along with derived texture layers, in producing

settlement maps across four contrasting Kenyan districts

at a spatial scale fine enough to facilitate application in

public health management.

! Use the findings to inform on which methods to use in

genarating Kenya-wide settlement maps.

Investigations into appropriate spatial scales for human

population mapping in terms of public health management

in SSA are ongoing (Hay et al., 2004; Noor et al., 2004;

Noor et al., 2003), therefore this study is directed at

producing settlement maps at as fine a spatial scale as

possible computationally, to allow for flexibility in future

population map production.

2.1. Study areas and data

2.1.1. The districts

Four study districts were chosen to represent the full

range of land cover and use types, topography, climate,

settlement distribution and public health requirements found

in Kenya. Fig. 1 shows the location of the four districts on a

malaria endemicity map of Kenya (Craig et al., 1999), and

Table 1 lists the features of each.

2.1.2. Data

Orthorectified Landsat 5 TM 30 m spatial resolution

imagery in six spectral bands were acquired for each

district (the coarse-spatial resolution thermal infrared band



Table 2

Satellite imagery specifications and features

District Number of

Landsat

TM scenes

required

Date of

each Landsat

TM scene

Number of

JERS-1

SAR scenes

required

Date of

each JERS-1

SAR scene

Bondo 1 Mar 1995 5 Jan 1996

Kisii/

Gucha

4 Jan–Mar 1995 4 Jan 1996

Kwale 4 Jan–Feb 1995 15 Jan–Feb

1996

Makueni 4 Jan–Feb 1995 16 Jun 1996
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was excluded). Japanese Earth Resources Satellite 1

(JERS-1) Synthetic Aperture Radar (SAR) 12.5 m spatial

resolution imagery (processed to level 2.1) of wavelength

0.24 m was also acquired. Table 2 shows the number of

individual scenes required to cover each district and the

date each were taken on. For Kenya (1996) JERS-1 SAR

coverage was the most recently available, and therefore

Landsat TM of a similar time period was obtained to

match this. The Landsat TM imagery was then atmospheri-

cally corrected (Richter, 1990), but no high-resolution

DEMs of the districts were available for topographic

correction of the imagery sets. For each district, the

component Landsat TM and JERS-1 SAR images were

mosaiced together using Erdas Imaginek version 8.6

(ERDAS, 2002) to create single TM and SAR images for

each district. Each image was then georegistered using

Erdas Imaginek to vector polygon enumeration area

images of their respective district (Noor et al., 2003).

Rather than risk valuable information loss and complica-

tions in texture measure derivation by resampling the SAR

imagery to the spatial resolution of the Landsat TM

imagery, nearest neighbour resampling was used to upscale

the Landsat imagery to the spatial resolution of the JERS-1

SAR data. Within the Landsat TM images, approximately

8% of the Makueni image, and approximately 5% of the

Kwale image contained cloud cover. Fig. 2(i) and (ii) show

the Landsat TM and JERS-1 SAR images of Bondo

District, respectively.
Fig. 2. (i) Landsat TM RGB image of whole of Bondo with enumeration area adm

enumeration area administrative unit boundaries overlain. (iii) Segmentation map
Data for map validation were a set of vector points and

ancillary data for each district collected through ground

survey in 2001 and 2002 using a GPS (Noor et al., 2003).

These included the locations of health facilities, market

centres, schools, villages and selected households. In

addition, 1999 census data at the enumeration area level

were secured for each district (Hay et al., 2004). Vector

layers of roads, rivers, dams and swamps were also

available and are described elsewhere (Noor et al., 2003,

2004). For classifier training on those parts of the imagery

not covered by settlement land use, three different land

cover maps of Kenya were obtained, so that specific land

covers could be identified. These were the global 1 km land

cover classification (Hansen et al., 2000), the FAO Afri-

cover map for Kenya (FAO, 2003) and an Africover-

derived spatially aggregated land cover database (FAO,

2003).

2.2. Methodology

2.2.1. Classifier

Although the principal aim of the study was to assess

the utility of various combinations of satellite sensor

imagery in producing accurate settlement maps, an initial

testing of parametric, non-parametric, per-pixel and super-

resolution classifiers was carried out to ensure an effective

classifier would be used in the major part of the study. The

classifiers tested included minimum distance (ERDAS,

2002), Mahalanobis distance (ERDAS, 2002) and max-

imum likelihood (Chan et al., 2001; Stefanov et al., 2001).

Additionally, a feed-forward artificial neural network with

two hidden layers using the back-propagation learning rule

(Kavzoglu & Mather, 2003; Paola & Schowengerdt,

1995a) was tested, along with a Hopfield neural net-

work-based superresolution algorithm (Tatem et al.,

2001a,b, 2003) run on the output of an area estimation

neural network (Lewis et al., 1998).

The classifier judged to be most effective was used to

produce settlement maps for each district. For the district of

Bondo, which has areas of distinctly differing land covers,
inistrative unit boundaries overlain. (ii) SAR image of whole of Bondo with

for per-parcel classification.



Table 3

Band combinations assessed for settlement mapping

Band combination

SAR

LSAT

TEXTURE

SAR+TEXTURE

LSAT+TEXTURE

SAR+LSAT

SAR+LSAT+TEXTURE

SAR=JERS-1 SAR; LSAT=Landsat TM; TEXTURE=JERS-1 SAR-derived

texture measures.
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consequently resulting in differing signature mixing at the

edge of settlements, a pre-classification segmentation was

also evaluated. This involved firstly the application of an

image segmentation algorithm (Ruefenacht et al., 2003) to

all image layers. The algorithm was used to segment the

district of Bondo into five spectrally unique and spatially

contiguous zones. A map of these zones is shown in Fig.

2(iii). Separate training and classification was then carried

out within each zone. To test the utility of each image type,

seven combinations were tested for each district (see Table 3

for details).

2.2.2. Training area selection

For each of the four districts, the point data on market

centres, health facilities and schools were utilised in the

identification of settlement training sites, and census data

were used as a check to ensure a settlement had indeed

been identified. As a further test, the spectral signature,

radar return and texture statistics of each settlement

training site were then compared to those of other known

settlements to ensure representative statistics had been

extracted. The various land cover maps obtained were

then used in combination with the census data and GIS

layers to identify representative training samples for all

non-settlement areas of the four districts. Training samples

were only selected where all three land cover maps were

in agreement with each other and the census and GIS

data, to minimise error and its propagation through the

methodology. This process was undertaken three times in

order to provide alternative sets of training data to test the

stability of classifiers.
Table 4

Accuracy statistics for each classifier type

OA(%) K

Minimum distance 81.3 0.626

Mahalanobis distance 90.3 0.811

Maximum likelihood 94.5 0.892

Artificial neural network 97.6 0.957

Hopfield network superresolution 97.8 0.961

OA=overall percentage correct, K=kappa, C=error of commission, O=error of om
2.2.3. Texture measures

For each JERS-1 SAR district image, eight texture

feature images calculated from the grey level cooccurrence

matrix (GLCM) method (Haralick, 1979; Haralick et al.,

1973) were produced; mean, variance, contrast, homoge-

neity, dissimilarity, correlation, entropy and angular second

moment (Baraldi & Parmiggiani, 1995; Haralick et al.,

1973). Mean and variance are measured in terms of the

GLCM, contrast measures local spatial frequency and

homogeneity results in large values when the elements of

the GLCM are concentrated on the main diagonal (i.e.,

spatially similar). Dissimilarity measures local contrasts,

correlation examines GLCM similarities, while entropy

measures image disorder and angular second moment

indicates local uniformity. After initial exploratory analysis

on average settlement sizes and following work on urban

areas using similar spatial resolution imagery and texture, a

7�7 moving window size was used (Zhang et al., 2003).

2.2.4. Accuracy assessment

The ground-collected set of points was used as the

principal source of settlement mapping assessment. These

points were taken to represent locations of settlements to

validate the accuracy with which each classification

identified settlement pixels. In addition to these, the same

points were used in combination with the land cover maps,

census data and visible Landsat TM bands to identify an

equal set of non-settlement points for each district. Half of

these points were located on the edge of known settlements

to assess the accuracy by which the settlement maps had

delineated the extent of settlements. Buffer areas around

known settlements were identified and points were ran-

domly selected from within these. The other half were

located in areas clearly at a distance from settlements to

assess whether the predicted settlement maps had identified

false areas of settlement. Non-settlement areas were

identified and again points were randomly selected from

within these.

Given the variation in populations and number of

settlements in each district, the numbers of validation points

for each district, excluding those falling under cloud cover

in the Landsat TM imagery, were as follows: Bondo: 606

points; KisiiGucha: 222 points; Makueni: 144 points;

Kwale: 94 points. The satellite sensor image-derived
Settlement Non-settlement

C(%) O(%) C(%) O(%)

21.3 24.8 24.8 21.3

12.6 15.2 15.2 12.6

5.0 4.3 4.1 5.0

2.2 1.9 1.9 2.2

0.8 2.0 2.0 0.9

ission.



Table 5

Accuracy statistics of each band combination and classification type

Band combination Bondo Kisii/Gucha Makueni Kwale

OA (%) K OA (%) K OA (%) K OA (%) K

Full image classification

SAR 44.77 �0.111 26.68 �0.476 31.53 �0.362 66.6 0.433

LSAT 90.38 0.806 89.53 0.792 73.79 0.415 83.54 0.69

TEXTURE 47.61 0.005 64.59 0.31 55.6 0.111 73.32 0.442

SAR+TEXTURE 58.1 0.164 38.29 �0.234 38.22 �0.184 75.16 0.523

LSAT+TEXTURE 92.22 0.821 82.15 0.662 74.51 0.477 87.33 0.8

LSAT+SAR 92.78 0.851 74.85 0.498 75.55 0.502 95.2 0.906

SAR+LSAT+TEXTURE 97.6 0.957 79.94 0.599 79.37 0.576 95.78 0.921

Pre-segmented classification

SAR 52.34 0.044 n/a n/a n/a n/a n/a n/a

LSAT 91.3 0.842 n/a n/a n/a n/a n/a n/a

TEXTURE 59.12 0.17 n/a n/a n/a n/a n/a n/a

SAR+TEXTURE 62.13 0.34 n/a n/a n/a n/a n/a n/a

LSAT+TEXTURE 92.96 0.857 n/a n/a n/a n/a n/a n/a

LSAT+SAR 94.85 0.893 n/a n/a n/a n/a n/a n/a

SAR+LSAT+TEXTURE 98.52 0.974 n/a n/a n/a n/a n/a n/a

OA=overall accuracy, K=kappa.
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settlement maps were binary encoded into settlement/non-

settlement pixels and the vector-point validation datasets

were used to extract pixels for each district and measures of

accuracy were calculated. Health facilities were found to be

on average 400 m from settlement centres, so any pixels

predicted as containing a settlement within this distance of a

health facility validation point were counted as correct.

Accuracy assessment measures included errors of omission

and commission, overall percentage correct (Campbell,

1996) and Kappa (Ma & Redmond, 1995). Finally, a visual

comparison between 1999 enumeration area census counts

and settlement maps was made to check for any obvious

inaccuracies. To test prediction stability, each classifier was

tested on three sets of training data and accuracy assessed

using the data described above. The three sets of accuracy

statistics were then averaged to provide a set of overall

accuracy statistics.
3. Results

Mahalanobis distance, minimum distance, maximum

likelihood, artificial neural network and superresolution

classification for Bondo were undertaken on all image types
Table 6

Errors of commission (C) and omission (O) for the four settlement maps

where the validation points were most accurately classified

Settlement Non-settlement

C(%) O(%) C(%) O(%)

Bondo 1.7 1.8 1.8 1.7

Kisii/Gucha 11.0 14.3 12.8 12.2

Makueni 18.1 16.6 16.6 18.1

Kwale 6.8 0.0 0.0 7.9
combined three times, using different training data each

time. The results are shown in Table 4, and from these the

artificial neural network approach was identified for use in

the remaining part of the study.

Supervised neural network classification was carried out

on the band combinations detailed in Table 3, both for the

entirety of all four districts and within the segmented zones

of Bondo shown in Fig. 2(iii). This was undertaken three

times for each band combination, using a different set of

training data each time to test classifier stability. The

averaged results of accuracy assessment of each band

combination’s predicted settlement map are shown in Table

5, with the errors of commission and omission figures for

the most accurate classification of each district in Table 6.

No significant difference was found between accuracy

statistics output from stability testing. Fig. 3 shows an area

of Bondo from JERS-1 SAR imagery and Landsat TM red,

green and blue bands, compared to the validation points,

census data and predicted most accurate settlement map. For

Bondo, the Landsat TM, JERS-1 SAR and texture combi-

nation of layers using the pre-segmented classification was

found to most closely correspond to the validation points,

with a Kappa value of 0.964. For Kisii/Gucha, the results

differed, with the classification of just the Landsat TM

imagery proving most accurate, classifying 86.5% of the

verification points correctly. The verification points of both

Makueni and Kwale were most accurately mapped using all

available image sources, with kappa values of 0.569 and

0.915, respectively.
4. Discussion

The principal aim of the study was to assess the utility of

various combinations of satellite sensor imagery in produc-



Fig. 3. Close-up view of an area of Bondo with enumeration area administrative unit boundaries overlain with: (i) Landsat TM RGB image, (ii) JERS-1 SAR

image, (iii) Population density derived from 1999 census map of the area, (iv) Hosp/Mkt points for same area, (v) Predicted settlement map of the area.
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ing accurate settlement maps, so testing of classifiers was

restricted to one image combination for Bondo (the district

with most land cover and topographical variation) and

discussion here is kept brief. Supervised classification is not

typically the process of choice in large area land cover or

land use classifications due to the requirement for signifi-

cant amounts of training data (Bauer et al., 1994), but the

comprehensive set of ground-collected data available

removed this constraint.

Table 4 shows that the superresolution algorithm

produced the most accurate results, but the large increase

in imagery size it produces at a spatial scale likely to be

overly fine for public health purposes means such an

approach is likely to be impractical when extending this

study Kenya-wide. However, as computing power continues

to grow it may find future application. The neural network

proved the most accurate of the remaining classifiers,
possibly due to the heterogeneous nature of settlements

leading to multimodal responses, something that neural

networks are better able to cope with than parametric

classifiers that assume unimodal normally distributed class

response. Therefore, the sole use of a feed-forward neural

network classifier, accurately applied in other settlement

mapping studies (Kanellopoulos et al., 1992; Paola &

Schowengerdt, 1995b) ensured that the maps produced

using each image combination could be compared quanti-

tatively, thus not detracting from the overall focus of the

paper. Preliminary testing found a perceptron architecture

with two hidden layers to be most accurate for settlement

mapping, although as other studies have found (e.g., Ardo et

al., 1997) little difference in results were exhibited with

other architectures.

Many studies have shown the benefit of applying texture

algorithms to SAR imagery in order to extract further land
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cover information (Arzandeh & Wang, 2002; Dekker, 2003;

Gong et al., 1992; Karathanassi et al., 2000; Marceau et al.,

1990), an approach currently underutilised in image

classification (Franklin & Wulder, 2002). The methodology

adopted for this study aimed to assess whether the addition

of JERS-1 SAR derived textural information could increase

settlement mapping accuracy. Several methods for image

texture quantification exist (Carr & de Miranda, 1998;

Dekker, 2003; Laine & Fan, 1993), but those based on the

grey-level co-occurrence matrix (GLCM) have often been

found to be most effective for satellite sensor imagery

(Baraldi & Parmiggiani, 1995; Haralick et al., 1973; Zhang

et al., 2003). Recent texture studies have also shown that the

highest classification accuracies are achieved with the

inclusion of the maximum number of texture layers

available (Dekker, 2003; Zhang et al., 2003). This, along

with combinations of Landsat TM bands was explored

briefly for Bondo, but findings showed that the loss of even

a single texture measure or TM band proved detrimental to

mapping accuracy.

The individual benefits of medium-spatial resolution

multispectral imagery, SAR imagery and SAR-derived

texture measures for settlement mapping have been widely

extolled (e.g., Dell’Acqua & Gamba, 2003; Forster, 1980;

Henderson & Xia, 1999; Iisaka & Hegedus, 1982; Yuan et

al., 1997), but very few studies have attempted to quantify

the potential accuracy gains from combining each (e.g.,

Lichtenegger et al., 1991; Toll, 1985), and no studies of note

have examined their potential in SSA. The benefits to
Fig. 4. (i) Close-up view of a small Kisii/Gucha settlement located in a mountainou

It is visible in RGB Landsat TM bands, but invisible in SAR image next to it. (

region, surrounded by fields. It is invisible in RGB Landsat bands, but visible i

overlain on each).
settlement mapping of combining these different layers are

amply demonstrated in Fig. 4 where the strengths and

weaknesses of each are highlighted. Small settlements of

grass-roofed houses surrounded by grassland are impossible

to identify solely by multispectral imagery, whereas the high

radar return from such regularly shaped objects is detect-

able, a benefit of radar imagery also noted in other studies

(Henderson & Xia, 1997; Lo, 1984, 1986). In contrast,

settlements on steep slopes surrounded by forest prove

difficult to isolate using SAR imagery alone, but produce

enough of a spectral reflectance difference with their

surroundings to be clearly delineated by a classifier using

multispectral data. In addition, texture measures can add

further discriminating layers of information.

For Bondo, Table 5 demonstrates that while solely

Landsat TM imagery produces excellent results in classify-

ing over 90% of the verification points correctly, the

addition of extra layers of information in the form of SAR

backscatter and SAR-derived texture measures enables the

classifier to improve further on these results. Additional

improvements are also witnessed when segmenting the

imagery and classifying within each segment. The varying

land cover zones of Bondo mean that each group of

settlements have distinct reflectance and backscatter sig-

natures where mixing with the surrounding land covers

occur at the settlement edge. Segmentation by land cover

zone therefore allows the classifier to more clearly identify

settlement pixels in feature space. Kisii/Gucha by contrast

does not exhibit the high levels of accuracy as Bondo does
s region at the base of a valley, connected by a northwest to southeast road.

ii) Close-up view of a small Kwale settlement located in a flat agricultural

n SAR image next to it (enumeration area administrative unit boundaries
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in correctly classifying the verification points. The use of

just Landsat TM imagery produces the largest overall

percentage correct and Kappa value, probably due to the

mountainous nature of the district. The varying topography

and lack of a high spatial resolution DEM to correct for the

effects this has on the SAR imagery and derived texture

layers results in these imagery layers being a hindrance in

settlement mapping, rather than the help they were in

relatively flat Bondo. Makueni represented the toughest

challenge of the four districts, covering such a wide range of

topographies, land covers and land uses, in addition to being

sparsely populated. Whereas settlements make up a rela-

tively large proportion of the land cover in Bondo, Kwale

and Kisii/Gucha, many of them large enough to provide an

excellent array of training pixels and most with consistently

similar spectral reflectance characteristics, this was not the

case in Makueni. The sparsely scattered settlements, each

small enough to be made up almost entirely of pixels of

mixed spectral reflectance from the various surrounding

land covers, made identification of a unique dsettlementT
reflectance signature very difficult, consequently leading to

lower accuracy figures than the three other districts.

Nevertheless, the use of all three types of imagery again

proved to be the most accurate in classifying the verification

points, with a kappa value of 0.569. Kwale produced a

similar result, where combing Landsat TM, SAR and texture

successfully mapped 95.74% of the verification points. The

settlement error of omission of 0% showed also that all the

settlement verification points were classified correctly.

Finally, although the low number of validation points for

Kwale may have inflated accuracy results, the flat top-

ography of the district is reflected in the large percentage

correct and kappa values when using solely SAR or texture

layers, an indication of the potential benefits to the other

districts of using topographically corrected SAR imagery.

In sum, the results clearly demonstrate that the combi-

nation of medium spatial resolution multispectral satellite

imagery with similar scale SAR imagery and derived texture

layers is effective in identifying and mapping settlements at

medium-scale spatial resolution across the diverse land-

scapes of Kenya.

4.1. Future work

The natural continuation of this study is to utilise the

findings and recommendations made here to extend to a

settlement map of Kenya. Results indicate that accurate

settlement maps can be produced using Landsat TM and

JERS-1 SAR imagery, however, certain combinations

appear to be more suited to certain topographies. This fact,

and the success of the pre-segmented map of Bondo,

suggests that any attempt to map settlements at Kenya level

should be based on an initial division of the country into

zones of similar topography, land cover, land use and

settlement density. This could be achieved for example, by

application of the spatial–spectral segmentation algorithm
utilised in this paper on a countrywide DEM, coarse spatial

resolution satellite imagery (e.g., MODIS) and road density

layers. Results indicate that unless topographically corrected

SAR imagery can be obtained, its application in Kenya-

wide settlement mapping should be restricted to non-

mountainous zones.

Extension to a Kenya level settlement map will require

expansion from the 13 Landsat TM scenes and 40 JERS-1

SAR scenes used in this study to 35 Landsat and 360 SAR

scenes. Although this will be technically challenging, it is

well within modern processing and computing capabilities,

as recent large-scale studies have shown (De Grandi et al.,

2000; Franklin & Wulder, 2002; Fuller et al., 1994; Siqueira

et al., 2003). Once a substantial imagery archive for Kenya

is built up, future work may show that Advanced Space-

borne Thermal Emission and Reflection Radiometer

(ASTER) imagery (Fujisada, 1994) represents a feasible

finer spatial resolution substitute for Landsat TM imagery.

Ideally, the application of a combination of very high spatial

resolution imagery, such as that from IKONOS (Tanaka &

Sugimura, 2001), Quickbird (Volpe & Rossi, 2003) or

TerraSAR (Roth, 2003), to settlement mapping across

Kenya would increase confidence with which settlements

could be identified and delineated, but such an approach is

both technically and financially prohibitive.

This study forms the starting point of a larger project

aimed at quantifying human population distribution initially

in Kenya, but ultimately across Africa, to increase the

accuracy of malaria risk maps and disease burden estimates.

This will be achieved by extending the findings of this work

to produce settlement maps as input, along with other GIS

and recent census information, to population mapping

models (e.g., Deichmann, 1996; Deichmann et al., 2001;

Eicher & Brewer, 2001; Langford, 2003; Tobler, 1979;

Wright, 1936), and by investigating appropriate spatial

scales for public health planning (Hay et al., 2004; Noor et

al., 2003). The fine spatial resolution of these efforts will be

more appropriate to the scale of human population and

disease processes and an order of magnitude finer than

previous attempts (Deichmann, 1996; Deichmann et al.,

2001; Dobson et al., 2003, 2000; Sutton et al., 2001; Sutton,

2003). Furthermore, high spatial resolution human popula-

tion distribution maps will help facilitate many of the wider

aspirations of those involved in public health research

across Africa with respect to commodity needs estimation,

health service and intervention equity issues and some basic

analyses on the efficacy of delivery mechanisms for control

services.
5. Conclusions

Planning for the health consequences of urbanization in

the countries of SSA relies on the provision of fine spatial

resolution information and maps of settlement location, size

and distribution. The scarcity of reliable map validation data
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has meant that previous attempts at settlement and

population maps in the region have been at too coarse a

spatial resolution to facilitate effective public health

management. Equally, this fact has meant that settlement

mapping from satellite imagery has simply not been

attempted, in an area of the world where its need is greatest.

Here, for the first time sufficient ground data has been

obtained to assess approaches to settlement mapping across

the unique landscapes of Kenya. This paper has presented

an appraisal of the efficacy of two types of satellite imagery

and derived texture layers in identifying and mapping

settlements across four contrasting Kenyan districts. Results

demonstrate that the combination of medium spatial

resolution multispectral satellite imagery with similar scale

SAR imagery and derived texture layers is effective in

identifying and delineating settlements across Kenya, and

that a neural network is an accurate approach to derive these

maps. Information at such a scale has never before been

produced, and will provide not only a valuable input to

population mapping models designed for public health

applications, but a valuable starting point for many other

studies across SSA.
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