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A B S T R A C T

The use of time series analysis with moderate resolution satellite imagery is increasingly common, particularly
since the advent of freely available Landsat data. Dense time series analysis is providing new information on the
timing of landscape changes, as well as improving the quality and accuracy of information being derived from
remote sensing. Perhaps most importantly, time series analysis is expanding the kinds of land surface change that
can be monitored using remote sensing. In particular, more subtle changes in ecosystem health and condition
and related to land use dynamics are being monitored. The result is a paradigm shift away from change de-
tection, typically using two points in time, to monitoring, or an attempt to track change continuously in time.
This trend holds many benefits, including the promise of near real-time monitoring. Anticipated future trends
include more use of multiple sensors in monitoring activities, increased focus on the temporal accuracy of
results, applications over larger areas and operational usage of time series analysis.

1. Introduction

The use of time series of data in the analysis of remote sensing
images, particularly at Landsat-like spatial resolutions and finer, is a
relatively recent phenomenon that is leading to new and exciting cap-
abilities for monitoring land surface change. It is important to note that
change detection, in general, and use of time series data in remote
sensing have a long history. An early and excellent review of methods
for change detection dates back to 1989 (Singh, 1989) with other
outstanding later reviews (Jensen, 2005; Coppin et al., 2010), The use
of time series data started with early Advanced Very High Resolution
Radiometers (AVHRR) – see, for example Viovy et al., 1992; DeFries
and Hansen, 1995; Loveland et al., 1995, but has been more common
with MODIS imagery (see Friedl et al., 2002; Boschetti et al., 2009;
Verbesselt et al., 2010). That time series analysis with Landsat and finer
resolution sensors lagged that of MODIS is understandable from several
perspectives. First, MODIS produced datasets well organized for time
series analysis, with acquisitions binned to common grids, and com-
posited to remove the effects of clouds (Justice et al., 2002). Also, the
data were freely available for download from the web. The use of time
series analysis for Landsat data only came after the data were freely
available and the processing of the imagery became standardized.

Improvements in cloud and cloud shadow masking as well as automa-
tion of atmospheric correction also contributed (Wulder et al., 2012).

The publication of this special issue is a good time to take stock of
where we are as a remote sending community and where we may be
going with respect to time series analysis. This introductory paper to
the special issue is an attempt to elucidate some of the larger trends and
issues related to time series analysis. The articles (Table 1) in the special
issue serve as the examples and guides to the discussion of the changes
rippling through the community. The articles are diverse and include
investigations of dynamic conditions at seasonal and annual scales,
including long-term analyses, but many relate to significant shifts from
time series-based change detection to continuous monitoring.

2. Background and context

A short history of remote sensing of the land surface suggests that
the initial uses of remote sensing were for single-date mapping and then
the focus switched to multi-date image analysis and systematic change
detection (Hansen and Loveland, 2012; Zhu and Woodcock, 2014;
Hermosilla et al., 2015). The questions originally were, for example,
“where are the cities and how much of the landscape do they cover?”
and then became “where are the cities and how much have they grown
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over the past 10 years?” Implicitly, the mapping perspective assumes a
static landscape, or at least that a representation of that landscape at
any one time is useful (Singh, 1989). One might say that mapping is
“characterizing what exists at a particular place at a particular time.”
For change detection, the underlying assumption is that something is
different between two points in time, and the places where change has
occurred are the primary focus. In that case, change detection is
“finding the places where something has changed between two points
in time.” The emphasis on “two points in time” comes from the fact
that, overwhelmingly in remote sensing, change has been found by
comparing images of the same place from two different times (Coppin
et al., 2010). One can think of this as the “endpoints” approach to
change detection. The dates of the two images used become the end-
points of the time period in question. When stated this way, one
question that immediately emerges is what constitutes “change”.

In remote sensing, the nature of “change” tends to be defined de-
pending on the needs and interests of any particular study. Sometime
“change” means deforestation, or land cover change. In other cases,
“change” means a change in the health or condition of the vegetation,
such as when a pest infestation stresses trees in a forest. Looking
through any particular issue of Remote Sensing of Environment makes it
clear that many kinds of change are being detected using remote sen-
sing. Going forward, it may be useful to develop a set of terms to
characterize change in the context of remote sensing. It also helps il-
lustrate how remote sensing is evolving in terms of how it is used to
study “change”.

3. Trends in time series analysis of moderate resolution data

3.1. The nature of change

In reality, all things are changing all the time; it is the nature of life
and time. Some changes are more interesting and helpful to document
than others. For example, if the wind moves around sand grains on a
dune in the desert, one could argue that the dune is changing. However,
at any moment in time, the location of the individual sand grains might
not be terribly important and so knowing that they had moved slightly
would not be particularly helpful. Over time, if the whole dune mi-
grated, that would be useful information. In another example, an
orchard replaces a wheat field. Does this constitute a change? From the
perspective of land cover, it certainly constitutes a change as the land
cover changes from a grain crop to trees. From a land use perspective it
may not be an important change as both the wheat field and the
orchard are agricultural land uses. However, this change could be im-
portant from many other perspectives, from phenology to hydrology to
surface micrometeorology. The point is that context and perspective are
important in evaluating the relevance or importance of any particular
change. Other examples may prove useful. Ocean tides and even in-
dividual waves move the boundary between land and water constantly,
such that images (essentially instantaneous snapshots) collected at
different times are likely to have differences in the intertidal zone
(Wang et al., 2019). Whether or not this constitutes useful information,
or whether it is simply a noise factor in an analysis depends on context.
In studies of accretion in river deltas, the differences in images resulting
from tides would be a source of noise that could confuse the analysis.
Many other examples are possible, particularly in the context of

Table 1
Papers in time series analysis special issue.

Authors Paper titles

Arévalo P., Woodcock, C.E., Olofsson, P. Continuous monitoring of land change activities and post-disturbance dynamics from
Landsat time series: a test methodology for REDD+ reporting.

Bayat, B., van der Tol, C., Verhoef, W. Retrieval of land surface properties from an annual time series of Landsat TOA radiances
during a drought episode using coupled radiative transfer models.

Bell, T.W., Allen, J.G., Cavanaugh, K.C., Siegel, D.A. Three decades of variability in California's giant kelp forests from the Landsat satellites.
Brown, J., Tollerud, H., Barber, C., Zhou, Q., Dwyer, J., Vogelmann, J., Loveland, T.,

Woodcock, C., Stehman, S., Zhu, Z., Pengra, B., Smith, K., Xian, G, Horton, J.,
Auch, R., Sohl, T., Sayler, K., Gallant, A., Zelenak, D., Reker, R., Rover, J.

Lessons learned implementing an operational continuous United States national land
change monitoring capability: the Land Change Monitoring, Assessment, and Projection
(LCMAP) approach.

Bullock, E., Woodcock, C.E, Holden, C.E. Monitoring tropical forest degradation using spectral unmixing and Landsat time series
analysis.

Bullock, E., Woodcock, C.E., Olofsson, P. Improved change monitoring using an ensemble of time series algorithms.
Cunha, J., Nóbrega, R., Rufino, I., Erasmi, S., Galvão, C., Valente, F. Surface albedo as a proxy for land-cover clearing in seasonally dry forests: evidence from

the Brazilian Caatinga.
Deng, C., Zhu, Z Continuous subpixel monitoring of urban impervious surface using Landsat time series.
Fortin, J.A., Cardille, J.A., Perez, E. Multi-sensor detection of forest-cover change across 45 years in Mato Grosso, Brazil.
Griffiths, P., Nendel, C., Pickert, J., Postert, P. Towards national-scale characterization of grassland use intensity from integrated

Sentinel-2 and Landsat time series.
Jaafar, H.H., Ahmad, F. Time series trends of Landsat-based ET using automated calibration in METRIC and

SEBAL: the Bekaa Valley, Lebanon.
Koltunov, A., Ramirez, C.M., Ustin, S.L., Slaton, M., Haunreiter, E. eDaRT: the Ecosystem Disturbance and Recovery Tracker system for monitoring

landscape disturbances and their cumulative effects.
Lymburner, L., Bunting, B., Lucas, R., Scarth, P., Alam, I., Phillips, C., Ticehurst, C.,

Held, A.A.
Mapping the multi-decadal mangrove dynamics of the Australian coastline.

Nguyen, L.H., Joshi, D.R., Clay, D.E., Henebry, G.M. Characterizing land cover/land use from multiple years of Landsat and MODIS time
series: a novel approach using land surface phenology modeling and random forest
classifiers.

Pengra, B., Stehman, S., Horton, J., Dockter, D., Schroeder, T., Yang, Z., Cohen, W.B.,
Healey, S.P., Loveland, T.R.

Quality control and assessment of interpreter consistency of annual land cover reference
data in an operational national monitoring program.

Roy, D., Yan, L. Robust Landsat-based crop time series modelling.
Uhl, J.H., Leyk, S. Towards a novel backdating strategy for creating built-up land time series data using

contemporary spatial constraints.
Wang, X., Xiao, X., Zou, Z., Zhong, Q., Da, S., Li, B., Zhao, N., Chen, B., Li, X., Qin, Y.,

Dong, J., Doughty, R.B., Ma, J.
Tracking annual changes of coastal tidal flats in China during 1986–2016 through
analyses of Landsat images with Google Earth Engine.

Yang, Y., Hain, C., Noormets, A., Sun, G., Sun, S., Anderson, M., Wynne, R., Thomas,
V., Gao, F.

Investigating impacts of drought and disturbance on evapotranspiration over a forested
landscape in North Carolina, USA using high spatiotemporal resolution remotely sensed
data.

Zhu, Z., Cohen, W., Zhou, C., Yang, Z., Qiu, S., Zhang, J., Aljaddani, A.H. Continuous monitoring of land disturbance based on Landsat time series.
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agriculture. For example, the degree of water stress in a field at any
particular moment may be of little significance to someone interesting
in mapping cultivated areas or doing crop type inventories, but it is of
critical significance to a farmer.

There are a couple of different ways change can be instructively
parsed (Coppin et al., 2010). There are abrupt changes, such as change
caused by fire or a hail storm. At the other end of the spectrum are
gradual changes, such as succession in plant communities, or erosion
and depositional processes along a river meander. There are also many
kinds of change that fall in between. For example, growth of an urban
area does not happen abruptly, but it is also not a gradual change. It
might occur as a sequence of many small abrupt changes. While the
terms, “abrupt” and “gradual” may be difficult to pin down in terms of a
precise definition, they are clearly helpful as relative terms. It is easy to
see that remote sensing has been most useful for studying abrupt
changes, but is also helping monitor more gradual changes (Vogelmann
et al., 2016).

It can be instructive to differentiate transitional changes from con-
ditional changes. Transitional changes are due to a fundamental tran-
sition in the nature of a land surface. Cutting down trees, clearing the
land and erecting a building are clearly a transitional change. On the
other hand, water stress in an agricultural field is a conditional change,
or a change in condition at the surface.

There are many examples in the special issue that help illustrate
these ways of parsing the nature of change. Examples of transitional
change include: Arévalo et al. (2019) monitoring conversion of forests
to pasture; Cunha et al. (2019) reporting on the clearing of Brazilian
Caatinga dry forests; Fortin et al. (2019) investigating forest change in
the Mato Grasso region of Brazil; Lymburner et al. (2019) monitoring
the expansion of mangroves (a transition from open water to mangrove
forest); Deng and Zhu (2019) and Uhl and Leyk (2019) looking at urban
expansion patterns; and Bell et al. (2019) addressing changes in kelp
forests off the California coast. There are also examples of conditional
change. Bullock et al. (2019b) report on monitoring natural disturbance
and forest degradation. In this case the areas in question remain forests,
but the condition of the forest changes. A significant point is that time
series analysis is allowing for monitoring more subtle kinds of changes,
which are mostly conditional changes, and are increasingly used to
analyze land use characteristics in croplands (Roy and Yan, 2019) and
grasslands (Griffiths et al., 2019). From an operational, national-scale
land monitoring perspective, Brown et al. (2019) emphasize the value
of dense time series analysis to provide temporal patterns of change
across large regions, provide input into a wide range of environmental
studies, clarify the drivers of change, and provide more timely in-
formation for land managers.

Other studies address the analyses of surface properties rather than
the detection of particular transitions or changes. Bayat et al. (2019)
investigates drought-related seasonal vegetation dynamics in the Cali-
fornia Mediterranean grasslands. Jaafar and Ahmad (2019) use thermal
imagery to establish a long time series of evapotranspiration (ET) re-
trievals needed to understand water use and groundwater dynamics in
the Bekaa Valley of Lebanon.

3.2. Monitoring intervals

One dimension of the use of remote sensing that has changed with
time series analysis is the interval over which change is detected or
phenomena are assessed. For change detection, the conventional
“endpoints” approach, mentioned above, tended to select images at
least several years apart to look for change. The result was monitoring
over periods that sometimes stretched to as long as a decade. Using time
series analysis, the time interval for detecting change has shrunk con-
siderably, with most changes detected at an annual time interval or less.
As the time interval between observations used in time series becomes
smaller, we begin to move from away simply detecting change to more
continuous monitoring (for example, see Yang et al., 2019). This

movement towards monitoring has several implications and ad-
vantages. First, it will begin to allow more precise characterization of
the timing of changes. Second, the improved characterization of the
timing of change will advance our ability to determine the drivers of
change. Perhaps more importantly, it will begin to allow for monitoring
in near real-time with changes being detected very quickly after a new
satellite observation becomes available. The temporal definition of
“near real-time” is largely dependent on the nature of the processes
being monitored and the latency in access and analysis of the time
series inputs. For the purposes of the special issue and use of Landsat-
like observations, near real-time generally means in most instances
weeks. Some articles have goals that include operational near real-time
change, but recognize the inherent challenges (Brown et al., 2019;
Koltunov et al., 2019). Now that we have multiple Landsat and Sentinel
2 satellites in orbit and providing observations, it is now common to be
able to acquire observations every few days for most of the world (Li
and Roy, 2017). Griffiths et al. (2019), for example, show ways to
combine Landsat 8 and Sentinel 2 data for mapping land use patterns in
grasslands based on the analysis of intra-annual growth.

There are also benefits from longer time series; the Landsat archive
being an excellent example. Having data from longer time periods al-
lows for better characterization of trends and comparison of land dy-
namics now and in the past. The paper by Wang et al. (2019) is a good
example as they used a 30-year time series of Landsat data to study
trends in tidal flats and found important differences for the various
decades they studied. Although the Landsat time series is relied on, it is
important to note that most studies are limited to the use of the Landsat
4–8 record and do not incorporate the earlier Landsat 1–3 Multispectral
Scanner (MSS) archive. Significant challenges remain before the full
48 year Landsat record can be fully applied to time series investigations.

Regarding extending the satellite time series record, Bell et al.
(2019), stress that a time series longer than 34 years is needed to un-
derstand the connections between low frequency marine oscillations
and the subsequent cooling and warming cycles that affect kelp status.
Uhl and Leyk (2019) also argue that longer time series are needed to
address human settlement topics.

3.3. How observations are used

The approaches used in this special issue fall into several categories.
For change studies, there are those that use one good observation per
year or one good observation per season, and those that attempt to use
all available good observations in the time series analysis. Many of the
algorithms that rely on one good observation a year use some form of
image compositing to create the datasets that are then used in time
series analysis (e.g., Bell et al. (2019) study kelp, Cunha et al. (2019),
and Koltunov et al. (2019) forest change, and Brown et al. (2019) land
cover change). There are also studies that use dense time series to in-
vestigate phenomena within a single growing season (see Bayat et al.,
2019; Jaafar and Ahmad, 2019; Nguyen et al., 2019; Roy and Yan,
2019).

Other algorithms try to use many or all of the available observations
that do not have clouds, shadows (or sometimes snow) directly in the
time series analysis. Using all available observations has the advantage
of being able to study intra-annual dynamics and faster processes that
might only be visible during a limited period of time. Examples include
seasonal or growing season crop dynamics, and low intensity tropical
forest degradation where canopy gaps can close in a matter of a few
months. The paper by Griffiths et al. (2019) highlights how the com-
bination of harmonized Landsat 8 and Sentinel 2 data synthesized
through compositing at 10-day intervals can be used to study mowing
patterns in European grasslands. Sufficient valid observations are gen-
erally required and reliance on more noisy single observations rather
than on “best”-pixel approaches can result in lower quality time series
data.

Regardless of how observations are used, the need to select the best,

C.E. Woodcock, et al. Remote Sensing of Environment xxx (xxxx) xxxx

3



or least contaminated, pixels is central to almost every study in this
special issue. Cloud clearing, atmospheric correction, and gap filling,
are all important for time series datasets and in cases where such
analysis ready data quality cannot easily be provided from satellite
data, their use for dense time series analysis remains limited.

In some ways these two divergent approaches are more similar that
they might appear at first glance, as the compositing algorithms typi-
cally make use of many or all the available good observations when
selecting the best observations to represent a particular time period.

3.4. Algorithms

An interesting dimension in the special issue papers is the wide
variety of algorithms being used in time series analysis in remote sen-
sing. This variety is a healthy indication of continued innovation in
algorithm development, a trend we expect to continue for a long time. If
one considers the fact that there are new algorithms being developed
for image classification after more than 40 years of use in image clas-
sification in remote sensing, it is not hard to imagine a long period of
significant innovation in time series analysis (Zhu et al., 2019). The
same can be said about change detection using endpoints. There are a
couple of ways to differentiate algorithms that help illuminate the
variety of approaches being used in time series analysis. One distinction
relates to the stage at which change is found in the analysis process.
One set of approaches analyzes the individual images (or composites) to
make maps of the conditions at the time of the images (typically an-
nually), and then looks at those results for change. One example is
Lymburner et al. (2019) where a map for each year of mangrove extent
is made, and then change is identified by the changes between the
various years of the maps.

The alternative is to use the remote sensing time series of ob-
servations directly in the identification, or monitoring of change.
Arévalo et al. (2019) and Bullock et al. (2019b) showcase examples for
forest and land degradation, and Deng and Zhu (2019) demonstrate this
for sub-pixel urban impervious surfaces. Another is Koltunov et al.
(2019) in which a two-stage process is used to detect anomalies and
then characterize change. Fortin et al. (2019) use an interesting Baye-
sian method to compare sequences of land cover maps created from
disparate sources of imagery.

There are also new approaches to time series analysis presented in
the special issue. For example, Bullock et al. (2019a) combine multiple
time series approaches into a “hybrid” algorithm that takes advantage
of both online and offline algorithms.

An important trend is the variety of approaches used to handle the
large data volumes and vast processing resources required for dense
time series analysis. Cloud-based processing solutions closely linked to
the satellite data archives are increasingly becoming popular for scaling
from local case studies to larger area applications. Google Earth Engine
has enabled rapid learning and advances in time series studies because
of the unique and powerful capabilities it offers (see Bullock et al.,
2019b; Fortin et al., 2019; Uhl and Leyk, 2019). The special issue
contains novel local and national examples and experiences (e.g.,
Brown et al., 2019), but scaling such approaches for global scale ana-
lysis remains a challenge.

3.5. Sensors – and fusion of data from multiple sensors

The use of Landsat satellite time series data is most common among
the papers of the special issue. It is obvious that dense time series
analysis almost exclusively uses satellite sources with open data policies
and easy-to-use web-based access, as well as proper calibration and pre-
processing.

Multi-sensor fusion is addressed in some papers highlighting its
value for increasing the density of observations and the ability to study
higher-frequency land surface processes. In particular the combination
of Landsat and Sentinel data seems promising for the characterization

of changes and dynamics in higher detail and accuracy (Griffiths et al.,
2019). On the other hand multi-sensor approaches result in higher data
volumes and require algorithms to account for differences between
sensors that can complicate the analysis.

3.6. Reference data and accuracy analysis

The goal of more detailed and accurate information about land
dynamics using dense satellite time series requires the availability of
reference data for training and validation, and procedures for assessing
the accuracy of the results (Olofsson et al., 2014). The special issue
examples studying land changes emphasize that visual interpretation of
satellite data, sometimes augmented by selected available very high
resolution images, remains the most important reference data source
since other data sources (i.e., in-situ data/monitoring) are less available
or suitable (Pengra et al., 2019; Wang et al., 2019). The need for con-
sistent multi-year reference data is particularly challenging due to the
variability of source imagery and image quality over long time periods.
The increasing temporal detail provided by dense time series empha-
sizes that the accuracy of change not only relates to the question of
whether it was detected correctly, but also whether it was detected
correctly at the time it actually happened. There is naturally a time lag
between when something changes on the ground and when it is ob-
served and monitored with confidence from satellite data. With the
time between observations becoming smaller, the importance of the
temporal precision of the analysis versus the temporal detail of the time
series of satellite observations and the reference data requires specific
attention for accuracy analysis and building confidence in products and
any associated derived estimates. Considering the quality of reference
data for dense time series analysis remains an important challenge
(Pengra et al., 2019).

4. Conclusions and future directions

The papers in the special issue demonstrate a paradigm shift tran-
sitioning from change detection to monitoring with remote sensing. We
are moving from detecting large transitional changes to characterizing
land surface dynamics and trends along a continuous data stream of
time series observations. The density and rapid availability of ob-
servations helps to monitor the land surface in unprecedented detail
and increasingly in near-real time. This development underpins the
evolution of novel application fields beyond the traditional land cover
and change questions towards land use and land management, and
tracking complex spatial-temporal ecosystem dynamics and small-scale
degradation processes.

While admittedly speculative, there are a number of trends we ex-
pect to emerge or continue.

1. Global Applications. We expect that investigators will find ways to
productively scale time series analysis to global scales using mod-
erate resolution imagery, and that the programs will become op-
erational.

2. Temporal Accuracy. As the use of time series analysis matures, we
expect the collection of reference data and the analysis of the tem-
poral dimension of results to become better developed and more
commonly applied.

3. Multi-sensor Fusion. While multi-sensor fusion is now being em-
ployed in some applications, we expect it to become increasingly
prevalent and used effectively.

4. Near Real-time. Maybe the most exciting prospect is the use of time
series analysis to provide land managers information about land-
scape dynamics as they unfold.

5. Operational Applications. There may be any variety of application
domains, but time series analysis, and near real-time results in
particular, open new doors for operational applications, even in
areas like enforcement of statutes and treaties related to land use.
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