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Traditional field-based lithological mapping can be a time-consuming, costly and challenging endeavour
when large areas need to be investigated, where terrain is remote and difficult to access and where the
geology is highly variable over short distances. Consequently, rock units are often mapped at coarse-scales,
resulting in lithological maps that have generalised contacts which in many cases are inaccurately located.
Remote sensing data, such as aerial photographs and satellite imagery are commonly incorporated into
geological mapping programmes to obtain geological information that is best revealed by overhead
perspectives. However, spatial and spectral limitations of the imagery and dense vegetation cover can limit
the utility of traditional remote sensing products. The advent of Airborne Light Detection And Ranging
(LiDAR) as a remote sensing tool offers the potential to provide a novel solution to these problems because
accurate and high-resolution topographic data can be acquired in either forested or non-forested terrain,
allowing discrimination of individual rock types that typically have distinct topographic characteristics. This
study assesses the efficacy of airborne LiDAR as a tool for detailed lithological mapping in the upper section
of the Troodos ophiolite, Cyprus. Morphometric variables (including slope, curvature and surface roughness)
were derived from a 4 m digital terrain model in order to quantify the topographic characteristics of four
principal lithologies found in the area. An artificial neural network (the Kohonen Self-Organizing Map) was
then employed to classify the lithological units based upon these variables. The algorithm presented here
was used to generate a detailed lithological map which defines lithological contacts much more accurately
than the best existing geological map. In addition, a separate map of classification uncertainty highlights
potential follow-up targets for ground-based verification. The results of this study demonstrate the
significant potential of airborne LiDAR for lithological discrimination and rapid generation of detailed
lithological maps, as a contribution to conventional geological mapping programmes.
: +44 116 252 3918.
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1. Introduction

Geological mapping is traditionally carried out by employing field
strategies that are best suited to a specific area, including following
azimuthal traverses, cross-strike transects, stream sections, ridgetops,
bedrock contacts, or moving between individual isolated outcrops
(Barnes & Lisle, 2004). However, field mapping in complex and poorly
accessible terrain can be challenging, time-consumingand costly (Gad&
Kusky, 2007; Grunsky et al., 2009; Rogge et al., 2009). As a consequence,
lithologies are often mapped coarsely at reconnaissance (e.g.,
1:250,000) or more local scales (e.g., 1:50,000), potentially resulting
in geological simplifications and inaccuracies (Roy et al., 2009).

Remote sensing data including aerial photographs, and multi- and
hyperspectral imagery are also used for lithological mapping (e.g.,
Drury, 1987; Rothery, 1987; Van der Meer et al., 1997; Rowan & Mars,
2003; Bedini, 2009; Roy et al., 2009).Oneof theprimarybenefits of using
remote sensing data for lithological mapping is the ability to map areas
that are poorly accessible in the field. Although high-resolution aerial
photographs can be manually interpreted to help produce detailed
lithological maps, the visual discrimination and mapping of surface
materials can be subjective, difficult and time-consuming (Crouvi et al.,
2006). Multi- and hyperspectral imagery can be automatically classified
to rapidly generate lithological maps over large areas, but spatial and
spectral limitations of the data may affect the ability to resolve small
outcropsor discriminate unitswith similar spectral properties (Rowan&
Mars, 2003; Dong & Leblon, 2004). Dense vegetation cover, such as
forests, can also be a hindrance to both field and remote sensing
mapping techniques. While making field mapping logistically difficult,
dense vegetation also obscures the ground surface and conceals some of
the terrain attributes required for photogeological mapping. Addition-
ally, dense vegetationmay also obstruct or completelymask the spectral
signature of the underlying substrate (Carranza & Hale, 2002).
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Airborne Light Detection And Ranging (LiDAR) is an emerging
active remote sensing technique. It offers a potential solution for
overcoming the obscuring effects that dense vegetation has on
discrimination of groundmaterials, as it has the capability of acquiring
accurate and high-resolution (ca. 1–4 m) topographic data, even
through forest cover (Kraus & Pfeifer, 1998). This is important because
individual rock and soil types respond differently to surface processes,
such as weathering and erosion, based on their combined mineral-
ogical, petrological and textural characteristics, and thus they
typically have distinct topographic characteristics (Kühni & Pfiffner,
2001; Belt & Paxton, 2005). Laser reflections (or returns) from the
ground can be separated from vegetation returns to virtually deforest
the terrain, enabling the generation of digital terrain models (DTMs;
Haugerud & Harding, 2001). The ability to identify subtle topographic
features in high-resolution DTMs makes LiDAR an important tool for
geosciences research in both vegetated and non-vegetated terrains.
Previous geological applications of airborne LiDAR include fault
mapping (Harding & Berghoff, 2000; Haugerud et al., 2003; Prentice
et al., 2003; Cunningham et al., 2006), mapping and characterisation
of landslide morphology (McKean & Roering, 2004; Glenn et al., 2006)
and the characterisation of alluvial fan morphology (Staley et al.,
2006; Frankel & Dolan, 2007).

Lithological mapping using topographic data is highly dependent
upon the recognition of differences in the topographic characteristics
between lithologies. Despite its potential for detecting subtle topo-
graphic features in vegetated terrain, few studies have assessed the use
of airborne LiDAR for lithological mapping. Webster et al. (2006a,b)
visually identified subtle topographic differences in a LiDAR-derived
DTM and used these to help map three basalt flow units in Nova Scotia,
Canada. In comparison to other sources of topographic data, only the
LiDAR DTM had the resolution required to identify the subtle contacts
between the units. Wallace (2005) quantitatively discriminated three
distinct lithological units in the Sudbury Basin, Ontario, Canada, using
elevation and morphometric variables of slope and plan, profile,
Fig. 1. Location of the study area (dashed box) and simplified geology of the Troodos oph
minimumandmaximumcurvatures derived froma LiDARDTM. Several
lithological maps were also generated through the classification of
elevation and slopeusing anumber of conventional classifiers, including
the Maximum Likelihood Classification algorithm. In the same study
area, Wallace et al. (2006) used fractal dimension analysis to
discriminate three lithological units according to differences in
topographic roughness. These studies demonstrate the potential of
airborne LiDAR for both qualitative and quantitative lithological
discrimination and mapping in areas with relatively simple lithological
distributions. The use of airborne LiDAR for mapping in more
geologically complex terrain, where the spatial distribution of litholo-
gies is more heterogeneous and distinction of different rock units is
potentially problematic in itself, has not been demonstrated.

The aim of this study is to assess the efficacy of airborne LiDAR for
the detailed lithological mapping of a section of the Troodos ophiolite,
Cyprus. Given the lithological heterogeneity of the study area, the
intention was to develop a semi-automated algorithm to increase the
speed and objectivity of the mapping process in comparison to
traditional field surveys and visual image interpretation. The
algorithm is based on the identification and classification of an
optimal set of morphometric variables that were chosen for their
ability to discriminate four principal lithological units within the
study area. The mapping performance of this algorithm is assessed
using conventional classification accuracy statistics and is spatially
revealed by mapping the classification uncertainty.

2. Study area

The Troodos ophiolite has long been recognised as an uplifted slice
of oceanic crust and mantle that was created through sea-floor
spreading (Gass, 1968; Moores & Vine, 1971). Forming the central
region of the eastern Mediterranean island of Cyprus, the ophiolite
displays a dome-like structure centred on Mt. Olympus (1952 m;
Fig. 1). The ophiolite stratigraphy includes a mantle sequence
iolite. Digital geology was provided by the Geological Survey Department of Cyprus.
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consisting of harzburgites, dunites and a serpentinite diapir exposed
at the highest elevations. Along the north slope of the range, the
mantle sequence is stratigraphically overlain by a largely gabbroic
plutonic complex, a sheeted dyke complex, extrusive lavas and
oceanic sediments (Varga & Moores, 1985).

The study area is located on the northern flank of the Troodos
ophiolite (Fig. 1) and comprises a 16 km2areawith topographic relief on
the order of 200 m. The area has a complex landscape in terms of
geology and both natural and anthropogenic influences on topography.
The area consists of four main lithological units— the Basal Group lavas
and dykes, pillow lavas (Upper and Lower), Lefkara Formation chalky
marls and alluvium–colluvium. Conventional field and photogeological
mapping, together with some ambiguity in defining the units, is
apparently responsible for some considerable differences between the
two existing geological maps of this study area (Fig. 2). Despite having a
coarser scale, the 1:250,000-scale map is the most recent version and
considered to be the most geologically accurate.

Stratigraphically, the Basal Group is the lowest unit in the study
area. This unit represents a transition from the underlying sheeted
dyke complex (100% dykes) to the overlying pillow lavas. Consisting
of both dykes and screens of pillow lavas, the definition of the Basal
Group is somewhat subjective. In general, it contains at least 50%
dykes, but more commonly has a dyke abundance of 80–90% dykes
(Bear, 1960). Typical Basal Group outcrops can usually be identified in
the field according to their relatively high topography and steep relief
(Fig. 3a).

The pillow lavas are divided into the Upper Pillow Lavas and the
Lower Pillow Lavas according to mineralogy, colour and dyke
abundance (Wilson 1959; Gass, 1960). However, this division is difficult
to apply in the field (Govett & Pantazis, 1971) and an unconformable or
transitional boundary between the two lava units has led to uncertainty
over this division (Boyle & Robertson, 1984). Due to this ambiguity, the
pillow lavas are treated as one unit in this study. In the field, pillow lava
terrain is characterised by undulating, hummocky topography (Fig. 3b).
Accurate mapping of this unit is crucial to volcanogenic massive
sulphide (VMS) mineral exploration on Cyprus, as the Troodos VMS
deposits are predominantly confined to the pillow lavas (Constantinou,
1980).

Two types of sedimentary cover are present within the study area:
the Lefkara Formation and alluvium–colluvium. The Lefkara Formation
represents part of the early oceanic sedimentation that was deposited
during the late Cretaceous to early Miocene (Kähler & Stow, 1998). This
formation, which comprises marls, chalks and cherts, directly overlays
pillow lavas to form gently rolling hills (Fig. 3c). Alluvium–colluvium
refers to Quaternary sediments, such as sand, silts, soils and gravels that
Fig. 2. Existing geological maps of the study area shown in Fig. 1. (a) 1:250,000 and (b)
Department of Cyprus. M — Mathiati mine and A — Agia Varvara Lefkosias.
were deposited fluvially or through local erosion. Alluvial–colluvial
cover is characterised by its relatively flat and smooth topography
(Fig. 3d), which regularly fills depressions in pillow lava terrain.
Alluvial–colluvial cover is frequently exploited for agricultural purposes
throughout the study area.

Major anthropogenic features are quite scarce and include the
Mathiati VMS mine with spoil tips and the village of Agia Varvara
Lefkosias in the north (see Fig. 2). Land disturbances due to
agricultural activity are confined to alluvial–colluvial areas and
although these occur throughout the study area, they are most
commonly found in the north-west. The study area has a semi-arid
environment and vegetation cover is relatively dense andwidespread,
resulting in only small areas of completely exposed rock outcrops.
Vegetation cover consists of crops, patchy forests, shrubbery, grasses
and lichen. The combination of variable geology, vegetation cover and
land-use makes this a particularly complex area for evaluating the
application of airborne LiDAR to lithological mapping.
3. Airborne LiDAR data and pre-processing

3.1. Data acquisition

Airborne LiDAR data were acquired on the 14th of May, 2005 by the
Natural Environment Research Council Airborne Research and Survey
Facility (NERC ARSF). The survey was undertaken at an average flying
altitude of 2550 m above sea level, using a Dornier aircraft mounted
with an Optech ALTM-3033 system. The aircraft–ground distance
ranged between 2100 and 2300 m due to topographic relief within
the study area.Operatingwith a laser pulse repetition rate of 33 kHz and
half-scan angle of ±19.4° on either side of the nadir, approximately
7,600,000 pointswere acquired for the study areawith an average point
density of 0.48 m−2. The dataset contains point data from five
overlapping flight lines, each with a swath width of 1400–1500 m and
an overlap of 20%–50% between adjacent swaths.

Initial data processing was undertaken by the Unit for Landscape
Modelling at the University of Cambridge, UK. This involved combining
Global Positioning System (GPS) data with the aircraft orientation —

recorded using an Inertial Navigation System (INS) — to determine the
3-dimensional coordinates of each laser return (Wehr & Lohr, 1999).
The LiDAR point data were delivered as ASCII files containing the x–y–z
coordinates and intensity valuesof allfirst and last returns in theWGS84
Universal Transverse Mercator (UTM) zone 36-North coordinate
system. Information regarding the absolute accuracy of the processed
point datawas not provided, however the relative vertical accuracywas
1:31,680-scale maps adapted from the digital geology provided by Geological Survey



Fig. 3. Field photographs showing the four main lithological units: (a) Basal Group, (b) pillow lavas, (c) quarry exposure of the Lefkara Formation overlying pillow lavas (LF and PL,
respectively) and (d) alluvium–colluvium (AC).
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found to be less than 8 cmas determined from the standard deviation of
returns from a flat water surface (Glenn et al., 2006).

3.2. Digital terrain model (DTM) generation

The LiDAR dataset originally contained returns from both ground
and non-ground objects, such as trees and buildings. In order to
generate a DTM it is necessary to remove all non-ground features from
the dataset. Point data were classified as either ground or non-ground
returns using a triangulated irregular network (TIN) densification
algorithm (Axelsson, 2000), implemented in the TerraScan software
(www.terrasolid.fi/en). This algorithm iteratively classifies returns as
either ground or non-ground according to angle and distance
thresholds applied to TIN facets. Due to the relatively high degree of
topographic variability within the study area, the data in individual
flight lines were classified separately. In each case the classification
parameters and thresholds were determined experimentally. The
maximum terrain angle and iteration distance threshold were kept
constant throughout, at 88° and 1.40 m, respectively. The appropriate
maximum building size and iteration angle threshold were found to
be more scene-dependent. In general, the maximum building size and
iteration angle varied from 20 m and 14° for flight lines dominated by
relatively high relief, to 60 m and 6° for flight lines acquired over
relatively flat terrain. To verify the results of the classification process,
several cross-sections were extracted from each flight line and
inspected to ensure the point data were assigned to the correct
return class. Wherever necessary, misclassified points were manually
re-assigned to the correct class. Following classification, non-ground
returnswere discarded, while points classified as ground returns were
used in the generation of the DTM.

The accuracy of gridded LiDAR data products is affected by the
choice of interpolation algorithm and spatial resolution (Smith et al.,
2005; Palamara et al., 2007; Bater & Coops, 2009). It is therefore
important to select an appropriate algorithm and resolution in order
to avoid errors in the DTM having a significant effect on subsequent
morphometric analysis. To determine the most appropriate algorithm
and resolution, DTMs were generated at 1, 2, 3, 4 and 5 m resolutions
using a range of popular interpolation algorithms. The interpolation
algorithms evaluated were inverse distance weighted, block kriging,
nearest neighbour, cubic polynomial, modified Shepard's and trian-
gulation with linear interpolation. Interpolation errors associated
with each algorithm and resolution were assessed quantitatively
using statistics generated through split-sample validation (Smith
et al., 2005). This involved the random selection and omission of
approximately 9% of the ground returns, while the remaining 91%
were used to generate DTMs. The residuals between all omitted data
points and their predicted values in the DTMwere calculated and used
to generate interpolation error statistics, such as the mean error
(indicating the magnitude and direction of any bias) and mean
absolute error (Bater & Coops, 2009). The DTMs were also visually
inspected for interpolation artefacts (e.g., null and spurious eleva-
tions) using shaded relief images with varying illumination directions
and vertical exaggeration. The DTM generation, alongwith both visual
and quantitative interpolation analyses were all undertaken using
Surfer 8.0 (Golden Software, Inc.).

The split-sample validation results showed that all of the interpo-
lation algorithms tended to underestimate the actual elevation (mean
errors ranging from −0.10 m to −0.12 m), with the exception of the
triangulation with linear interpolation which slightly overestimated
elevation (mean errors ranging from 0.01 m to 0.04 m). Mean absolute
errors were generally consistent between the interpolation algorithms
and spatial resolutions (ranging from 0.23 m to 0.28 m), except for the
triangulation with linear interpolation algorithm for which mean
absolute error increased significantly with increasing spatial resolution
(from 0.23 m at 1 m resolution to 0.49 m at 5 m).

During visual inspection, a “ridge and trough” pattern was observed
in all DTMs at the extreme edges of areas where adjacent flight lines
overlap. Cross-sectional profiles extracted from the flight lines revealed
that elevation exhibited an upward concavity errorwith increasing scan
angle towards the edges of swaths— a phenomenon often referred to as
“smiley face error” (Lohani&Mason, 2005). Suchparabolic vertical error
has been attributed to vertical beammisalignment or systematic range
errors (Latypov, 2005). The observed DTM artefact is generated when
data frommultipleflight lines aremergedandmeasurements from large

http://www.terrasolid.fi/en
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scan angles do not coincide with corresponding measurements from
smaller scan angles. The effect of the “ridge and trough” artefact on the
quantitative analysis was isolated by recalculating the split-sample
error statistics using only a subset of residuals selected from outside the
areas of overlap (corresponding to∼3%of the total ground returns). As a
result, mean errors were reduced to underestimations of between
0.01 m and 0.03 m for all interpolation algorithms except triangulation
with linear interpolation, for which the overestimation increased to
between 0.02 m and 0.09 m. Also, the choice of interpolation algorithm
was found to have a greater effect on mean absolute errors than the
spatial resolution, again with the exception of triangulation with linear
interpolation. Nevertheless, the mean absolute error showed a
significant decrease in all cases when calculated using residuals from
outside the areas of overlap. Kriging, modified Shepard's and cubic
polynomial interpolation resulted in the smallest mean absolute errors
(ranging from 0.09 m to 0.13 m for all resolutions), followed by the
inverse distanceweighted and nearest neighbour algorithms (0.15 m to
0.17 m). Triangulation with linear interpolation was the worst
performing algorithm, with mean absolute error increasing from
0.12 m at 1 m resolution to 0.43 m at 5 m.

As the “ridge and trough” pattern was solely confined to the areas
of overlap where the point density is greater, it was possible to almost
completely eradicate this artefact from the DTMs using a simple
point-spacing based filter prior to interpolation. The filter discarded
the point with the highest elevation (i.e., the point most affected by
“smiley face error”) when multiple ground returns were present
within a given radius. The size of the radius was chosen so that the
filter only operated on data points within the areas of overlap (in this
case a point spacing ≤2 m). In addition to removing this artefact, the
filter also generates a dataset with a globally uniform point density.
The most appropriate interpolation algorithm and spatial resolution
for the final DTMwas selected as that which minimised the mean and
mean absolute errors, and the appearance of interpolation artefacts in
the DTM. Consequently, 100% of the ground returns were used to
generate the final DTM at a spatial resolution of 4 m, by applying the
point-spacing filter prior to interpolation with the kriging algorithm.
4. Methods

The efficacy of airborne LiDAR topographic data for detailed
lithological mapping is assessed using the methodological approach
presented in Fig. 4. Following the generation of the DTM, the method
consists of five major steps, which are discussed in the following
section.
Fig. 4. Flow diagram presenting the methodological approach implemented t
4.1. Training and validation data

Two independent sets of pixels were selected for the purpose of
training and validating the results of the algorithm developed herein.
Using knowledge of the study area, QuickBird imagery (0.70 m
resolution) and the existing geological maps, four training areas
(i.e., regions of interest; ROIs) were carefully selected in ENVI 4.3
(Research Systems, Inc.) to represent the four lithological classes. All
pixels located within these four training areas were included in the
training dataset. The validation pixels were selected using a random
stratified sampling protocol to ensure that each class was represented
proportionately and to avoid spatial autocorrelation within the
dataset (Chini et al., 2008; Pacifici et al., 2009). To do this, several
ROIs were identified for each lithological class in the same way as that
used to identify the training areas. Validation pixels were then
randomly sampled from these according to the total area of the ROIs
associated with each lithological class. Table 1 shows the number of
pixels, the equivalent area and the proportion of the study area
selected for each lithological class for use in training and validation. In
order to determine their effect on the mapping performance, it was
decided not to mask-out or treat anthropogenic features as a separate
class.

4.2. Morphometric variables

The correlation between lithology and topography that is apparent
in the field is also clearly evident in the 4 m DTM of the study area
(Fig. 5). In order to automatically classify and map lithology using
LiDAR data, it is first necessary to numerically quantify the
topographic characteristics of the lithologies using variables that
enable adequate discrimination. After considering the observed
topographic characteristics, seven candidate morphometric variables
were derived from the DTM for this purpose (Table 2).

Morphometric variables like slope, plan and profile curvature are
typical examples of basic first and second order derivatives of
elevation. These three variables were derived using a standard routine
in ENVI 4.3, which calculates the derivatives from a quadratic surface
fitted to elevations within a moving window (or kernel) that is passed
over the DTM (Wood, 1996). Absolute values of plan and profile
curvature were used to avoid an alternating pattern of convexity and
concavity in highly undulating such as that of the pillow lavas.
Morphometric variables such as these are scale-dependent; therefore,
in order to identify the most suitable scales for maximum lithological
discrimination, each variable was derived using fifteen different
moving window sizes ranging from 3×3 pixels (12 m×12 m) to
o assess the efficacy of airborne LiDAR for detailed lithological mapping.



Table 1
Number of pixels, the equivalent area and the proportion of the study area (PS) selected
for each lithological class for training and validation purposes.

Lithological class Training Validation

Pixels Area (m2) PS (%) Pixels Area (m2) PS (%)

Alluvium–colluvium 1712 27,392 0.17 4087 65,392 0.40
Basal Group 1780 28,480 0.18 3200 51,200 0.32
Lefkara Formation 2769 44,304 0.27 2451 39,216 0.24
Pillow lavas 3095 49,520 0.31 3208 51,328 0.32

Table 2
Candidate morphometric variables for lithological discrimination.

Morphometric variable Description Optimal moving
window size
(pixels)

Slope (°) Magnitude of the steepest gradient 15×15
Relief (m) Elevation range within a given area 3×3
|Profile curvature| (1/m) Absolute value of vertical curvature

component in aspect direction
21×21

|Plan curvature| (1/m) Absolute value of horizontal
curvature component in
aspect direction

31×31

Slope roughness (°) Standard deviation of slope 31×31
Residual roughness (m) Standard deviation of

residual topography
3×3

Hypsometric integral Elevation distribution within
a given area

11×11
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31×31 pixels (124 m×124 m). Moving window sizes were limited to
31×31 pixels as larger windows were found to reflect more regional-
scale topographic information, rather than the local-scale information
which is more relevant to detailed lithological discrimination.

Relief, hypsometric integral and the two LiDAR-derived measures
of surface roughness were derived in Surfer 8.0. Hypsometry describes
the elevation distribution within a given area (Strahler, 1952) and can
be estimated using the hypsometric integral (Pike & Wilson, 1971).
The hypsometric integral (HI) is calculated as:

HI =
hmean−hmin

hmax−hmin
ð1Þ

where hmean, hmin and hmax are the average, minimum and maximum
elevations within a moving window, respectively. This hypsometric
integral variable was also derived atmultiple scales using the same set
of fifteen moving window sizes detailed above.

Surface roughness can be measured using the standard deviation
of slope within a moving window (Frankel & Dolan, 2007). This
variable — referred to here as slope roughness — was derived at
multiple scales by first determining slope within a 3×3 pixel window
(i.e., 12 m×12 m) and then calculating the standard deviation of slope
within each of the fifteen moving windows. The second measure of
surface roughness (known here as residual roughness) is defined as
the standard deviation of residual topography (Cavalli et al., 2008).
First, a 100 m mean DTM was created by smoothing the 4 m DTM
using a 25×25 pixel moving average filter. A residual topographic
Fig. 5. Shaded relief DTM of the study area displaying the distinct topographic characteristics
surface was then calculated by subtracting the 100 mmean DTM from
the 4 m DTM. Finally, the standard deviation of this residual
topographic surface was calculated within each of the fifteen different
sized moving windows.

In general, good discrimination and classification performance
relies upon homogeneity within classes and dissimilarity between
classes (Li et al., 2009). The morphometric homogeneity of the
lithologies can be maximised by identifying the optimal scale for each
candidate variable. The optimal scales can be determined statistically
by identifying themovingwindow sizes whichminimise the spread of
morphometric data within the training areas (Prima et al., 2006).
Here, using the standard deviation of each training area as a measure
of its spread, the most suitable moving window size for each
candidate variable was defined as that which minimised the average
data spreadwithin the training areas. More specifically, for each of the
fifteen moving window sizes, the standard deviations within each of
the four training areas were calculated and then averaged. The
moving window size resulting in the smallest average was deemed to
represent the most suitable scale for that variable. This procedure was
applied separately to each candidate variable, thus enabling multi-
scale topographic information to be utilised. The optimal moving
window size for each candidate variable is shown in Table 2.
of: (a) alluvium–colluvium, (b) Basal Group, (c) Lefkara Formation and (d) pillow lavas.
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4.3. Variable selection

Classification using all available variables might not necessarily
produce the highest mapping accuracy. Some of these variables may be
highly correlated, noisy, redundant or irrelevant (Pacifici et al., 2009).
Better classification results may be achieved when such input variables
are discarded and classification is performed using a smaller set of
informative variables (Kavzoglu&Mather, 2002; Verikas&Bacauskiene,
2002). An optimal set of variables can be determined independently of
the classification algorithm, based on statistical criteria such as class
separability (the filter approach), or in conjunction with the chosen
classifier (the wrapper approach). Despite using a non-parametric
classifier, a filter approach was adopted as this enabled an exhaustive
evaluation of all possible variable combinations to be conducted more
efficiently than with a wrapper approach.

The number of candidate variables was initially reduced by
identifying and discarding linearly correlated and therefore redun-
dant variables through the calculation of Pearson's Product Moment
Correlation Coefficients. The optimal set of variables for lithological
discrimination was then determined from the remaining candidates
through class separability analysis (Dong & Leblon, 2004). To do this,
the morphometric separability between pairs of lithological classes
(i.e., training areas) was calculated for every combination of two or
more variables using the Jeffries–Matusita (JM) distance (Richards,
1994). For four lithologies, there are six possible pairs of classes and
therefore six JM distances for each combination of variables. The JM
distance ranges from 0 to 2, with class pairs being inseparable for JM
distances of 0 but completely separable for distances close to 2. The
combination of variables resulting in both the largest minimum and
largest average JM distances is selected as the optimum for lithological
discrimination.

4.4. Classification

A lithological map was generated using the optimal set of
morphometric variables as inputs to a topologically preserving
artificial neural network classifier: the Kohonen Self-Organizing
Map (SOM) (Kohonen, 1982, 2001). Artificial neural networks possess
many advantages over conventional statistical classifiers, since they
are non-parametric, robust in handling noisy data and can learn
complex patterns (Ji, 2000). Applications of the SOM to remote
sensing data include land-use classification (Ji, 2000; Bagan et al.,
2005; Jianwen & Bagan, 2005), lithological mapping (Mather et al.,
1998; Bedini, 2009) and geomorphometric feature analysis (Ehsani &
Quiel, 2008a,b).

The SOM network consists of an input layer and an output layer.
The input layer contains one neuron for each of the input variables,
whereas the output layer is a two-dimensional array of neurons.
Neurons in the output layer are connected to those in the input layer
via synaptic weights. Random synaptic weights, ranging from 0 to 1,
are initially assigned to the output neurons. These weights are then
adjusted during learning to best describe patterns in the input data
(Mather et al., 1998). Network learning is an iterative process and
involves two stages: unsupervised coarse tuning and supervised fine
tuning. The SOMalgorithm in IDRISI Andeswas used in this study (Li &
Eastman, 2006).

An input vector (a pixel in morphometric space) is represented by
the vector x={x1, x2…, xn}, where n is the number of input variables
(and input neurons) used in the classification. During coarse tuning,
input vectors are presented to the network and in each case the
output neuron with the minimum Euclidean distance between its
weight vector and the input vector is selected as the winner:

winner = arg min
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

i=1
ðxiðtÞ−wjiðtÞÞ2

s !
ð2Þ
where xi(t) is the input to neuron i at iteration t, and wji(t) is the
synaptic weight connecting output neuron j to the input neuron i at
iteration t. The weight vector of the winner and output neurons
within a neighbourhood of radius γ of the winner are then adjusted in
the direction of the input vector:

wjiðt + 1Þ = wjiðtÞ + αðtÞ½xiðtÞ−wjiðtÞ� ð3Þ

wherewji(t+1) is the adjusted weight and α(t) is the learning rate at
iteration t. The weights of neurons outside the neighbourhood remain
unadjusted. The learning rate decreases gradually during the coarse
tuning stage from an initial learning rate (αmax) to a final learning rate
(αmin), after the total number of iterations (tmax):

αðtÞ = αmax
αmin

αmax

� �
t

tmax : ð4Þ

Similarly, the radius of the neighbourhood also decreases steadily
during the coarse tuning stage:

γðtÞ = γmax
γmin

γmax

� �
t

tmax : ð5Þ

A large initial neighbourhood is usually chosen, resulting in
widespread adjustments to the weight vectors of neurons in the
output layer. As learning progresses, γ decreases until the weight of
only the winning neuron is adjusted.

The SOM network parameters used in this study are based on
experimentation guided using the existing literature (e.g., Ji, 2000;
Jianwen & Bagan, 2005; Bedini, 2009). An output layer consisting of
10×10 neurons was chosen, with αmax=0.05, αmin=0.01 and
γmax=12. Coarse tuning was performed using all input vectors,
therefore tmax was equal to the number of pixels in each input variable
image (i.e., 1,012,841 iterations). Prior to learning, the input variables
were normalised to the range 0–1 using a logistic (softmax) function.
This function performs a nearly linear transformation on most of the
data while also acting to reduce the influence of any outliers in each
variable (Priddy & Keller, 2005). Normalisation increases the learning
efficiency and also ensures that the input variable with the largest
range does not dominate the calculation of the Euclidean distances
and the organisation of the output layer (Ehsani & Quiel, 2008a).

Before fine tuning commences, neurons in the output layer must
be preliminarily labelled using input vectors with known class
identities. To achieve this, pixels from the training areas were
presented to the coarsely tuned network and in each case the output
neuron with the closest matching weights was triggered. Output
neurons were labelled according to the training pixel class they were
triggered bymost frequently— a procedure known asmajority voting.

Fine tuning was performed using the type-one Learning Vector
Quantization (LVQ1) algorithm (Kohonen, 1990). The aim of fine
tuning is to improve the classification accuracy by defining the class
boundaries in the output layer more precisely. Pixels within the
training areas were again presented to the SOM and the output
neuron with the minimum Euclidean distance between a training
pixel and its weight vector was selected as the Best Matching Unit
(BMU). The weights of the BMU were adjusted accordingly:

wcðt + 1Þ = wcðtÞ + δðtÞ½xiðtÞ−wcðtÞ�; if x iscorrectly labelled ð6Þ

wcðt + 1Þ = wcðtÞ−δðtÞ½xiðtÞ−wcðtÞ�; if x is incorrectlylabelled ð7Þ

wiðt + 1Þ = wiðtÞ; if i ≠ c ð8Þ

where wc is the weight vector of the BMU, wc(t+1) is the adjusted
BMU weight vector and δ(t) is a scalar gain term, which decreases
with each iteration like the learning rate during coarse tuning.
Consequently, if the class identity of a training pixel matches the label
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of its BMU, the weight vector of the BMU is adjusted in the direction of
the training vector, but is moved away if not. Fine tuning was
performed using δmax=0.005, which decreases to δmin=0.001 after
200 iterations. Output neurons were re-labelled following fine tuning.
In order to classify lithology, all input vectors were presented again to
the trained network and assigned the class identity of their
corresponding BMU.

4.5. Accuracy assessment

The classification accuracy was assessed by determining the
overall (OA), user's (UA) and producer's (PA) accuracies and the
Kappa coefficient (K) from a confusion matrix (Congalton, 1991). The
OA is the percentage of validation pixels correctly classified, whereas
the UA and PA detail the commission and omission errors,
respectively. The K is considered a more reliable measure of
classification accuracy because, unlike the OA, it takes into account
the possibility of agreements occurring by chance in a random
classification (Brown et al., 1998; Pignatti et al., 2009).

In addition to the lithological map, a second map was generated to
analyse the spatial context of classification uncertainties. To do this,
the degree of commitment that each pixel has to its assigned
lithological class was determined using the SOM Commitment
(SOM-C) (Li & Eastman, in press). Calculated from the triggering
proportion of classes on output neurons during labelling, SOM-C
essentially provides an indication of classification uncertainty. Values
range from 0 to 1, with SOM-C values close to 1 indicating little
uncertainty in the class identity of a pixel, whereas values close to 0
indicate high classification uncertainty.

5. Results and discussion

5.1. Variable selection for lithological discrimination

The Pearson's Product Moment Correlation Coefficients revealed
that the relief variable was highly linearly correlated (rN0.80) with
both the slope and the residual roughness variables. Also, slope
roughness showed moderate-to-high positive correlation (rN0.54)
with almost all candidate variables. Consequently, the relief and slope
Fig. 6. Minimum and average separability (JM distance) for combinations of the slope (s), a
hypsometric integral (h) variables.
roughness variables were deemed to be redundant and discarded,
reducing the number of candidate variables from seven to five.

Minimum and average JM distances for pairs of lithological classes
were computed for all twenty-six combinations of two or more of the
five remaining candidate variables (Fig. 6). The minimum and average
JMdistances are generally smallestwhen separability is calculatedusing
only pairs of variables and increases when additional variables are
included. The slope variable appears to have the greatest influence on
the separability, since its exclusion results in at least a 20% and 50%
decrease in the minimum and average JM distances, respectively. In
terms of the pair-wise class separability, the Lefkara Formation and
pillow lavas were consistently the least separable lithological units and
were responsible for the minimum JM distance for almost all variable
combinations. The lack of morphometric separability between these
twounits can be attributed to their stratigraphic relationship, where the
Lefkara Formation has beendeposited directly on topof the pillow lavas.
This results in the Lefkara Formation displaying some topographic
characteristics of the subdued pillow lava terrain that it drapes.
Conversely, the Basal Group and alluvium–colluviumwere consistently
the most separable units with JM distances typically exceeding 1.90.
Such separability is expected due to their contrasting topographic
characteristics. Large JM distances were also usually observed between
alluvium–colluvium and both the pillow lavas and Lefkara Formation.

The combination which includes all five remaining candidate
variables is the optimum for lithological discrimination, as this
combination resulted in both the largest minimum and largest
average JM distances (1.20 and 1.69, respectively). Furthermore,
this combination of variables results in the largest JM distances for all
six pairs of classes. For this optimal combination, the Lefkara
Formation and pillow lavas were the least separable lithologies,
followed successively by the Lefkara Formation and Basal Group (JM
distance of 1.22), pillow lavas and Basal Group (1.70) and alluvium–

colluvium vs. all other units (all with JM distances of 2.00). The
relative importance of each variable to the separability of lithologies
was evaluated by examining the decrease in the JM distances after
each variable was removed (Table 3). Removing the slope variable
produced the largest decrease in the JM distances for all six pairs of
lithological classes and the minimum and mean JM distances. This
suggests that slope contributes most to the separability of the
lithologies in the study area. Apparently, absolute plan curvature is
bsolute profile curvature (pr), absolute plan curvature (pl), residual roughness (r) and



Table 3
The relative importance of variables to the separability of lithologies, determined by
individually removing each variable from the pair-wise JM distance calculations.

Variable removed JM distance

LF vs.
PL

LF vs.
BG

PL vs.
BG

LF vs.
AC

PL vs.
AC

BG vs.
AC

Min. Mean

None 1.20 1.22 1.70 2.00 2.00 2.00 1.20 1.69
Slope 0.27 0.50 0.41 1.92 1.95 1.94 0.27 1.17
|Profile curvature| 1.17 1.14 1.67 2.00 1.99 2.00 1.14 1.66
|Plan curvature| 0.81 1.02 1.59 2.00 1.99 2.00 0.81 1.57
Residual roughness 1.09 1.10 1.67 2.00 1.97 2.00 1.09 1.64
Hypsometric integral 1.05 1.13 1.65 2.00 1.99 2.00 1.05 1.64

LF, Lefkara Formation; PL, pillow lavas; BG, Basal Group; AC, alluvium–colluvium.
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also an important variable; particularly for separating the morpho-
metric characteristics of the Lefkara Formation, Basal Group and
pillow lavas. The absolute profile curvature variable is arguably the
least important as its removal resulted in the smallest decrease in the
minimum, mean and the majority of pair-wise JM distances.
Removing the residual roughness and hypsometric integral variables
produced a similar decrease in all JM distances, suggesting that these
are of equal importance. This optimal set of morphometric variables—
slope, absolute profile curvature, absolute plan curvature, residual
roughness and the hypsometric integral (Fig. 7) — was subsequently
used in the classification stage.

5.2. Lithological mapping and accuracy assessment

A lithological map displaying the four principal units and a SOM-C
map, indicating the classification uncertainty, were generated using
Fig. 7. Optimal set of (normalised) morphometric variables selected as inputs to the SOM class
roughness and (e) hypsometric integral.
the LiDAR-derived topographic data (Fig. 8). Following classification, a
small amount of noise in the classified image was reduced using a
3×3 mode filter.

The accuracy of the lithological map was assessed using the
validation pixels and the results were summarised using a confusion
matrix (Table 4). The lithological map has an overall accuracy of 65.4%
and a K of 0.53. Alluvium–colluvium is the best mapped unit with a
producer's accuracy of 87.9% and a user's accuracy of 98.8%, while the
Lefkara Formation was mapped with the least accuracy. A good
producer's classification accuracy was achieved for the pillow lavas
(66.8%), however more than 50% of all validation pixels mapped as
pillow lavas actually belong to other classes. Only 50.4% of Basal Group
validation pixels were mapped correctly, but with a commission error
of just 29.7%. The most classification confusion occurs between the
Lefkara Formation, pillow lavas and Basal Group, which corroborates
the results of the separability analysis. Although the majority of this
confusion can be explained by their stratigraphic relationships or
natural deviations from the typical topographic characteristics of each
unit, anthropogenic activity is also responsible for a significant
component. An obvious example of this can be found proximal to
the Mathiati mine and spoil tips where the natural topographic
characteristics have been destroyed, leading to misclassification
(Fig. 8).

Through comparison with the QuickBird imagery, it is clear that
the algorithm is capable of defining lithological contacts more
accurately than the best existing geological map (Fig. 9). Furthermore,
the algorithm can be used to generate a more detailed lithological
map by identifying lithologies in areas that have not been mapped
previously. The SOM-C map is useful for highlighting areas of
uncertainty in the lithological map. In general, SOM-C values less
ification: (a) slope, (b) absolute profile curvature, (c) absolute plan curvature, (d) residual



Fig. 8. (a) Lithological map of the study area generated using LiDAR-derived topographic
data. The dashed black box indicates the spatial extent of Fig. 9. (b) SOM-Cmap depicting
classification uncertainty.
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than 0.75 correspond to areas with a high degree of classification
uncertainty, as clearly illustrated by the portion of Lefkara Formation
incorrectly classified as pillow lavas (Fig. 9). In this particular case, the
confusion is related to the difficulty in detecting the ground beneath
some types of low-lying vegetation using airborne LiDAR. The class
containing SOM-C values of 0–0.7 consists solely of SOM-C values of 0.
These values are due to unlabelled neurons in the output layer which
Table 4
Confusion matrix for SOM classification using the optimal set of morphometric variables.

Mapped as Validation data

Alluvium–

colluvium
Basal
Group

Lefkara
Formation

Pillow
lavas

Row
total

User's
accuracy (%)

Alluvium–colluvium 3594 1 30 11 3636 98.8
Basal Group 0 1614 299 383 2296 70.3
Lefkara Formation 2 816 1114 672 2604 42.8
Pillow lavas 491 769 1008 2142 4410 48.6
Column total 4087 3200 2451 3208
Producer's accuracy (%) 87.9 50.4 45.4 66.8

Overall accuracy=65.4%.
K=0.53.
were not triggered by any of the training pixels (Li & Eastman, in
press). For the purpose of classification, unlabelled neurons were
assigned class labels using a minimum distance auxiliary labelling
algorithm (Li & Eastman, 2006), resulting in no unclassified pixels in
the lithological map. Pixels in the lithological mapwith corresponding
SOM-C values of 0 do not necessarily possess a higher degree of
uncertainty than pixels associated with larger SOM-C values. The
uncertainty of pixels classified using the auxiliary labelling algorithm
is case specific. Examples where such SOM-C values correspond to
both correct and incorrect classification are evident throughout the
study area and therefore each case should be considered individually.
Frequent misclassifications occurring at the contacts between
agricultural alluvium–colluvium and upstanding Lefkara Formation
outcrops are highlighted by SOM-C values of 0. Ploughing proximal to
the contacts is responsible for pixels with atypical topographic
characteristics, which results in them being incorrectly classified as
pillow lavas through the auxiliary labelling algorithm.

The accuracy of the lithological map produced in this study is
higher than the accuracies reported by Wallace (2005) who
investigated an area with a simpler lithological outcrop pattern. In
contrast to Wallace's (2005) study, our analysis involves a larger
number of morphometric variables and a more complex classification
algorithm. In addition, the distribution of the pillow lavas, Basal Group
and overlying sediments is more complex because they are separated
by low-angle contacts and are differentially eroded. Therefore, there is
no simple strike-belt pattern. Given the geological complexity and
anthropogenic factors affecting the topography in this study area, we
consider the results of our algorithm to be good. Additionally, the
algorithm was implemented using minimal a priori knowledge of the
spatial distribution of each lithological unit. However, highermapping
accuracies can be achieved using more a priori knowledge. Doubling
the total number of training pixels (to approximately 2% of the total
number of pixels within the study area) increases the overall accuracy
to 67.3% and K to 0.56 when the same SOM network parameters are
used. The ability to produce good mapping results given limited
knowledge regarding the spatial distribution of units makes this
algorithm particularly relevant to mapping relatively unexplored
terrain.

6. Conclusions

This study assesses the efficacy of airborne LiDAR topographic data
for detailed lithological mapping of a geologically complex area of the
Troodos ophiolite, Cyprus. Typical topographic characteristics associ-
ated with each of the lithologies were recognised in a 4 m LiDAR DTM
and quantified using a morphometric approach. An optimal set of
morphometric variables for lithological discriminationwere identified
and used in conjunction with a SOM classifier to produce a lithological
map. The resulting map achieved an overall accuracy of 65.4% and a K
of 0.53, which is considered good given the complexity of the study
area and the lack of a priori knowledge. The lithological map is more
detailed than the best existing geological map and the lithological
contacts are more accurately defined. The results of this study
demonstrate the significant potential of airborne LiDAR as a tool for
generating detailed lithological maps over large areas of either
forested or non-forested terrain, where conventional methods are of
limited use. Furthermore, the SOM-C map highlights areas with high
classification uncertainty, therefore providing information regarding
follow-up targets for efficient ground-based verification.

Further studies are required to assess whether improvements in
the lithological mapping accuracy can be made through the
integration of airborne LiDAR data with high-resolution multispectral
imagery. It is anticipated that the multispectral imagery will help to
reduce misclassification in non-vegetated areas where the natural
topographic characteristics of the various rock types have been
destroyed by anthropogenic activity.



Fig. 9. Detailed view of the mapping performance for the area shown in Fig. 8. (a) QuickBird image, (b) lithological map generated using LiDAR-derived topographic data and (c) SOM-C
map. The white dashed line represents the pillow lava–Lefkara Formation contact from the 1:250,000-scale geological map in Fig. 2a.
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The detailed lithological map generated in this study represents a
valuable aid to VMS mineral exploration in the Troodos ophiolite
because the mapped distribution of potential host rocks is now much
better resolved than on previous maps. In addition, the efficacy of this
algorithm extends to other geological settings where lithology and
topography are positively correlated, with exciting implications beyond
mineral exploration. In particular, the relative ease with which
basement rocks and sedimentary cover can be discriminated at high-
resolution could be useful in all terrains from open ground to densely
forested landscapes for: 1) identifying local areas for groundwater
extraction, 2) locatingareaswithenhanced agricultural potential, and3)
for general infrastructure planning where it is important to know
construction site substrates. Thus themethodspresentedheremayhave
widespread utility for a range of applications, especially in areas of
mixed basement and sedimentary cover exposure.
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