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One of the difficulties in analyzing the ocean signal provided by satellite ocean color sensors is that it is
strongly polluted by atmospheric contributions, which should be removed by an atmospheric correction
process.
We propose a new methodology, based on spectral optimization in the near-infrared, to simultaneously es-
timate the contributions generated by atmospheric signals and oceanic particles, which is valid for case-1
and case-2 waters. This approach, denoted NeuroVaria, combines a neural network to model the radiative
transfer with a variational algorithm for the spectral inversion.
NeuroVaria was applied to MERIS data recorded between August 2003 and September 2005 over the Adriatic
Sea, off the Venice Lagoon, for which, in situ measurements of the water-leaving reflectance and aerosol op-
tical thickness were available. We present comparisons between the results obtained using NeuroVaria and
the MERIS second reprocessing (Megs7.4), and those derived from in situ measurements. We show that
NeuroVaria achieves better estimations of the aerosol optical properties, and improves the atmospheric cor-
rection for case-2 waters. Using MERIS multi-spectral images, it was thus possible to detect typical features of
the Po River discharge into the northern Adriatic, as well as suspended sediments due to the shoaling of wind
waves on their approach to the seashore shallow waters.

© 2012 Elsevier Inc. All rights reserved.
1. Introduction

Since 1997, several ocean-color sensors, such as SeaWiFS (NASA's
Sea-viewing Wide Field-of-view Sensor), MODIS (Moderate Resolution
Imaging Spectroradiometer), the French CNES's POLDER (Polarized and
Directionality of the Earth's Reflectance), and MERIS (the European
Space Agency's Medium Resolution Imaging Spectrometer), have been
launched on satellites. Theyweremainly designed to analyze the optical
properties of case-1 waters, which depend on the intrinsic properties of
thewater itself and those of the phytoplankton and the other associated
constituents (Morel & Prieur, 1977). On the contrary, the optical proper-
ties of case-2waters (which aremainly coastal) are characterized by the
presence in the water of colored, dissolved organic matter and
suspended particulate matter whose concentrations are uncorrelated
with those of phytoplankton. The case-2 waters present characteristics
that make them difficult to analyze (Sathyendranath, 2000). The first is
that they are highly variable in space and time. The sensors should pres-
ent a good spatial resolution and an adequate sampling frequency. For
that purpose, we only considered multispectral imagers that have a
good coverage (one image every 2–3 days) and an adequate spatial res-
olution (1 km for MODIS, 300 m for MERIS). The second characteristic
l. Jussieu, Paris 75005, France.
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is that the optical properties are much more variable for case-2 waters
than for case-1 waters. Therefore, the sensor should provide a large
number of spectral bands of good spectral quality. It has been shown
(Ruddick et al., 2006) that some useful assumptions can be made in
the near-infrared part of the signal. This property was widely used in
this paper. This explains why the algorithm presented in this paper
uses measurements from the sensor MERIS that have 5 bands in the
near-infrared (versus 3 bands for MODIS).

In the case of satellite sensors, the orbiting radiometer measures
the solar flux reflected by the ocean and the atmosphere. In order to
estimate the oceanic components (e.g. the chlorophyll-a linked to
phytoplankton) or the inherent optical properties (IOP) of the ocean
(e.g. marine absorption and scattering coefficients), a critical step in
the processing of top-of-the-atmosphere (TOA) measurements is
the so-called atmospheric correction. This involves the removal of the
atmospheric contribution to the recorded signal, in order to determine
the contribution of the ocean alone. Classical methods of atmospheric
correction (Antoine & Morel, 1999; Gordon, 1997) are based on the as-
sumption that the ocean is “black” in the NIR band (e.g. λ>700 nm)
after the removal of the sun glint, that is the signal recorded by the sat-
ellite in this band is due to the atmosphere alone. For case-2 waters,
this assumption is no longer valid, because the presence of suspended
particulate matter can have a strong impact on the return signal at NIR
wavelengths. More suitable algorithms have been developed, in order
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Table 1
Central wavelengths of the MERIS sensor (rounded).

λ (nm)

Visible Near-infrared (NIR)

412 443 490 510 560 620 665 681 709 754 779 865 885
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to apply atmospheric correctionswhich take the specificity of case-2wa-
ters into account (Doerffer & Schiller, 2007). An iterative algorithm, re-
ferred to as the bright pixel atmospheric correction (BPAC) proposed
byMoore et al. (1999), has been implemented in theMERIS ground seg-
ment. Similar approaches were proposed for the SeaWiFS sensor (Bailey
et al., 2010; Ruddick et al., 2000). Another method doing a direct inver-
sion of the multi-spectral TAO signal by using specific neural networks
has been presented in Schroeder et al. (2007).

In the present paper we propose an algorithm based on the spec-
tral matching principle, which uses five near-infrared wavelengths to
perform the atmospheric correction for case-2 waters. This algorithm,
denoted NeuroVaria, makes use of a general multi-dimensional ap-
proach that simultaneously optimizes the atmospheric and oceanic
signals in the NIR. The atmospheric contribution retrieved in the
NIR is then extrapolated to visible wavelengths, in order to process
the atmospheric correction and to derive water-leaving reflectances
at visible wavelengths.

Global spectralmatching techniques have already beenused to solve
similar problems in ocean-color image processing, such as atmospheric
correction in the presence of absorbing aerosols (Banzon et al., 2004;
Brajard et al., 2006; Chomko & Gordon, 2001; Jamet et al., 2005;
Moulin et al., 2001). They have also been applied to highly regionalized
data reduction processes (Frette et al., 1998). A spectral optimization al-
gorithm (SOA) was proposed by Kuchinke et al. (2009) for retrieving
bio-optical parameters in case-2 waters. Although SOA and NeuroVaria
are similar in principle, they present some differences: (i) NeuroVaria
also performs an atmospheric correction, whereas SOA only aims at re-
trieving water constituents, such as chlorophyll-a; (ii) NeuroVaria opti-
mizes all the parameters simultaneously, whereas SOA performs a
multi-step procedure similar to that of the standard algorithm;
(iii) NeuroVaria makes no regional assumptions, whereas in SOA
the wavelength dependence of the oceanic signal should be speci-
fied a priori; (iv) the mathematical treatment used in the two algo-
rithms is very different.

In the present paper, we propose a general approach to process-
ing case-2 water images. To calibrate NeuroVaria, we used synthetic
data generated with a standard optical model, together with various
radiative-transfer calculations. The synthetic data were stored in
large datasets referred to as Look-up-tables (LUT). NeuroVaria was
then applied to MERIS images of the Adriatic Sea. Finally, in situ mea-
surements were used to validate the retrieved images. In the first
section of this paper, we present the full set of data: synthetic LUT,
MERIS images, and in situ measurements. The second section de-
scribes the NeuroVaria algorithm. The third section presents the re-
sults and the validation of the method. Section 3 is devoted to a
discussion and Section 4 presents some conclusions.

1.1. Data

NeuroVaria used three distinct datasets: (i) a synthetic dataset
containing the optical parameters and computedwith a radiative trans-
fer code (Deuzé et al., 1989) to calibrate the algorithm; (ii) an image
dataset extracted from MERIS imagery to which the NeuroVaria algo-
rithm was applied; and (iii) an in situ dataset to validate the results.

1.1.1. The synthetic dataset
The optical quantity computed by the radiative transfer model is

the TOA reflectance ρtoa(λ), defined by:

ρtoa λ; θsð Þ ¼ π � Ltoa λ; θsð Þ
E0 λð Þ � cos θsð Þ

where Ltoa(λ) is the radiance measured by the radiometer, E0(λ) is
the extra-atmospheric solar irradiance corrected for the Sun–Earth
distance and θs is the zenith solar angle. The signal is corrected for
ozone absorption, and a standard sea-level atmospheric pressure of
1013.25 hPa is assumed.

The reflectance signal can be expanded in a simplified form
(Gordon, 1997):

ρtoa λ; θs; θv;Δφð Þ ¼ ρA λ; θs; θv;Δφð Þ þ T λ; θs; θvð Þ � ρw λð Þ ð1Þ

where ρtoa is the top-of-the-atmosphere reflectance, ρA is the atmo-
spheric reflectance (which is classically decomposed into three terms:
the Rayleigh reflectance, ρr; the aerosol reflectance, ρa; and the coupled
Rayleigh–aerosol reflectance, ρra), ρw is the water-leaving reflec-
tance, T is the total atmospheric transmittance (both upward and
downward), θs is the zenith solar angle, θv is the zenith viewing
angle, Δ∅ is the azimuth difference angle, and λ is the central
wavelength.

In this paper, the effect of white caps due to weak winds is
neglected in the studied region, which is considered as a test case,
but could be added without any loss of generality of the algorithm.
The glitter contribution is not taken into account, so the algorithm
can only invert non-glint pixels that are determined from the relative
positions of the sensor and the sun.

In order to process the images presented in Section 1.1.2, we gen-
erated synthetic atmospheric look-up tables (LUTs) for ρA and T using
the 13 central wavelengths of MERIS (see Table 1), and an oceanic
LUT for ρw using only the 5 NIR wavelengths.

Atmospheric LUTs: LUT-A and LUT-T. The successive order radiative-
transfer code (Deuzé et al., 1989) was used to generate the two atmo-
spheric LUTs: LUT-A for ρA and LUT-T for T. These datasets depend
mainly on the optical properties of the aerosols. Table 2 presents the dif-
ferent configurations used to generate LUT-A and LUT-T. A Junge power
law was used to represent the size distribution of the aerosols. Note
that, for this initial version of the case-2 water algorithm, the aerosols
are restricted to the non-absorbing type, meaning that the single scat-
tering albedo is: ωo=1. The choice of aerosol models is discussed in
Section 4.1 and a sensitivity study is presented in Appendix A.

The oceanic dataset LUT-O. The remote water-leaving reflectance ρw is
expressed by (Ruddick et al., 2006):

ρw λð Þ ¼ R� aw λ0ð Þ
aw λð Þ �

λ
λ0

� �−γ
ð2Þ

where λ0 is a reference wavelength, R is a simplified notation for
ρw(λ0), aw is the absorption by the water and γ is a shape parameter
that depends on the size of the particles (Lee, 2003). Values of aw
were taken from Pope and Fry (1997) and Kou et al. (1993). In this
work, λ0 is equal to 709 nm.

This expression is valid in the near-infrared bands (e.g.λ>700 nm).
Some approximations and assumptions were made (Ruddick et al.,
2006). The absorption by other constituents than the water itself is as-
sumed to be negligible, which has an effect less than 1% on ρw in the
spectral range 700 nm–900 nm. The temperature and salinity depen-
dency, which can lead to an error of 9% at 740 nm for a 12 °C difference
in temperature, is also neglected. Finally, this expression should be
modified for extremely clear waters (ρw(780)b0.0001) and for ex-
tremely turbid waters (ρw(780)>0.1). Modeling clear waters is not rel-
evant in an atmospheric correction process and extremely turbid



Table 2
Description of LUT-A.

Parameter Values Notes

Atmospheric pressure 1013.25 hPa
Wind speed, ws 3 m/s and 7.2 m/s
Refractive index, m 1.35
θs, θv From 0° to 60° 24 Gauss quadrature angles
Δϕ From 0° to 180° 25 regularly spaced values
AOTa τ at 550 nm, From 0 to 1 11 regularly spaced values
Junge size parameter, ν From 2.5 to 5.5 31 regularly spaced values
Wavelengths From 412 nm to 885 nm 13 values (see Table 1)

a AOT is the Atmospheric Optical Thickness.

Table 3
Measured values at the AAOT site from August 2003 to November 2005.

Parameter Min. value Max. value Average Standard deviation

ρw(412) 3.80×10−3 3.05×10−2 1.49×10−2 6.7×10−3

ρw(443) 6.20×10−3 3.86×10−2 1.90×10−2 8.4×10−3

ρw(490) 9.10×10−3 4.76×10−2 2.60×10−2 1.1×10−2

ρw(560) 1.07×10−2 5.51×10−2 2.35×10−2 1.1×10−2

τ(870) 1.03×10−2 0.22 6.37×10−2 5.48×10−2

α(555,870) 0.10 2.08 1.37 0.54
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waters are beyond the scope of this paper. Therefore, Eq. (2) is expected
to be valid in a large variety of situations. It should be noted that the
model was made using simplified hypotheses, none of which made
any use of a priori knowledge of the studied region.

Using Eq. (2), realistic water-leaving reflectances can be simulated
with a dependence on two parameters only: an intensity parameter,
R; and a shape parameter, γ. A reference table LUT-O for ρw(λ)
(λ>700 nm) is generated with R values ranging from 0 to 0.09 and
γ values from −0.2 to 2.2. The range of parameter values has been
adjusted according to the International Ocean Colour Coordinating
Group (IOCCG) recommendations (Lee, 2003).

1.1.2. The satellite dataset
The NeuroVaria algorithm, which is described in detail in Section 2,

was used to process spatial reduced resolution images measured by
the Medium Resolution Imaging Spectrometer (MERIS), which is a
multi spectral radiometer carried by the Envisat satellite, launched in
2002 by the European Space Agency (ESA). The radiometric measure-
ments were corrected for ozone absorption, and a correction was
made so that a standard atmospheric pressure of 1013.25 hPa could be
assumed. Our study focused on images taken in the northern Adriatic
Sea (44°N–46°N, 12°E–14°E), between August 2003 and November
2005. In order to avoid glitter contamination, we considered only the
left-hand sides of the images. Finally, pixels identified by MERIS as
being GLINT_RISK, SUSPECT, BRIGHT, COASTLINE, or INVALID were ex-
cluded from the dataset. Following these selection criteria, only 39 im-
ages were retained.

1.1.3. The in situ dataset
TheAcqua Alta Oceanographic Tower (AAOT), built in 1970, is situat-

ed 8 nautical miles off the Venice Lagoon (45.314°N, 12.508°E) and has
been used to provide data for the Coastal Atmosphere and Sea Time Se-
ries (CoASTS). This region is characterized by both case-2 and case-1
water types (Berthon & Zibordi, 2007; D'Alimonte et al., 2007). To vali-
date theNeuroVaria atmospheric correction,we focused on opticalmea-
surements of normalized water-leaving reflectances, and on the aerosol
optical thickness given by the CIMEL radiometer (Zibordi et al., 2006a).
These measurements were made in the context of the AERONET‐OC
(AErosol RObotic NETwork‐Ocean Color) program (Zibordi et al., 2006b)
(http://aeronet.gsfc.nasa.gov/new_web/ocean_color.html). The in situ
dataset was extracted by the toolkit developed in the MERMAID (MERis
MAtchup In situ Database) project. The normalized water-leaving reflec-
tance is computed as (Gordon, 1997):

ρwN λð Þ ¼ π � LwN λð Þ
E0 λð Þ ð3Þ

where Ε0 is the extraterrestrial solar irradiance, LwN is the normalized
water radiance and λ the central wavelength.

Table 3 shows the range of values applicable to the parameters
used in this paper, between August 2003 and November 2005. Since
the selected data needed to be matched with each of the 39 selected
MERIS images, a total of 39 measurements could be used in the
validation. The Angstrom coefficient α was computed using the fol-
lowing expression:

α λi;λj

� �
¼ − log

τ λið Þ
τ λj

� �
0
@

1
A= log

λi

λj

 !
ð4Þ

For an aerosol-free atmosphere, this coefficient has a negligible in-
fluence on the atmospheric reflectance spectrum, so that α is com-
puted only for τ(870)>0.05 in the following.

2. Application of NeuroVaria to case-2 waters

The NeuroVaria algorithm was first developed to provide accurate
atmospheric corrections in all atmospheric situations, including cases
with absorbing aerosols (Brajard et al., 2006) whose optical proper-
ties cannot be solely deduced from the near-infrared part of the sig-
nal. The first important characteristic of NeuroVaria is that it makes
a multispectral optimization, by taking into account simultaneously
several spectral bands to estimate several optical properties. On the
contrary, standard algorithms perform a series of unidimensional cal-
culations. Therefore, NeuroVaria allows the inverse problem to be
solved in cases for which the atmospheric and oceanic contributions
cannot be determined separately from specific spectral bands. That
is why a first use of NeuroVaria was to perform atmospheric correc-
tion with absorbing aerosol whose optical properties mainly depend
on the visible part of the signal (λb700 nm). This characteristic is
used in the present work to estimate simultaneously oceanic and
aerosol parameters in the near-infrared part of the signal. A major ad-
vantage of NeuroVaria is its ability to process a variational inversion,
using a second-order gradient-descent algorithm well adapted for es-
timating a large number of parameters of a complex model. It relies
on the same theory as that used for variational data assimilation ap-
plied in operational meteorology and which has been well developed
in the last three decades (Talagrand & Courtier, 1987). In the present
case, the control parameters are the aerosol (ν and τ) and oceanic
(R and γ) optical parameters, the model is the radiative-transfer
code and the outputs are the water-leaving reflectances at several
wavelengths.

The algorithmminimizes a cost function J (described in Section2.4) by
adjusting the relevant atmospheric and oceanic parameters (ν,τ, R,γ), the
so-called control parameters. J describes the difference between the
satellite measurement and a simulated reflectance computed using
Eq. (1), together with the specifications of the LUT-O, LUT-A and
LUT-T datasets. Fig. 1 describes the complete process, followed by
the variational inversion. The various considerations needed to cali-
brate NeuroVaria are described in the following. Appendix B gives an
overview of more operational aspects of NeuroVaria.

2.1. The multilayer perceptrons

Fig. 1 shows that an important step in the inversion procedure is
the simulation of reflectances by the direct model. This simulation is
made by the successive order radiative-transfer code, which implies
lengthy and costly computations. An efficient way to overcome this

http://aeronet.gsfc.nasa.gov/new_web/ocean_color.html


Fig. 1. Schematic diagram of the variational inversion. The italic numbers refer to the label of the subsection where the step of the variational inversion is detailed.
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difficulty is to model this code by an MLP (multi-layer perceptron),
which is a specific class of artificial neural networks dedicated to
the modeling of non-linear functions. MLPs are continuous differen-
tiable functions, well suited to representing the direct model in var-
iational estimations. Artificial neural networks have also been
successfully applied to the modeling of inverse functions in geo-
physical applications (Thiria et al., 1993). In the present work,
MLPswere also used to estimate a first-guess value of the aerosol pa-
rameters τ and ν by inverting the satellite sensor measurements. A
brief introduction to these mathematical objects is given in the
following.

AnMLP is a set of elementary functions (here, a sigmoid function) that
are combined using connections associated with different weights. It has
been shown that MLPs are universal, non-linear interpolators; i.e. that
they can approximate any continuous function (Bishop, 1995). The ele-
mentary functions are the so-called neurons. In the present problem,
we used multilayered networks formed by several layers of neurons.
Multilayered architecture has one layer receiving input, one layer broad-
casting output and one or more intermediate layers (the hidden layers)
situated in between.

The sizes of the input and the output layers are determined by the
size of the problem itself. The values of the weights of the connection
and the number of hidden neurons (i.e. number of neurons in the
hidden layers) are determined after an optimization procedure, the
so-called learning phase. This optimization is made using a dataset
containing representative samples of the input/output values of the
neural network. At the end of this learning phase, the MLP can be
used to simulate any output, from an input belonging to the range
of validity defined during the learning phase. It produces a differen-
tiable function with respect to the input of the neural network.
Fig. 2. Representation of the twoMLPs computing the first guess values of the retrieved
parameters and used to initiate the inversion. The architecture and performance of
these MLPs are presented in Table 4.
2.2. The first guess

To initiate the inversion procedure, a first estimation of the control
parameters is needed. The first guess has to be sufficiently close to the
true value to improve the efficiency of the minimizing procedure and
the accuracy of the finally retrieved values.

To a first order, we assumed that the aerosol parameters τ and ν
could be estimated independently, using the top-of-the-atmosphere
reflectance spectrum in the near-infrared. The oceanic contribution,
which is non-negligible in case-2 waters, is fixed to a median value
corresponding to average case-2 waters. The intensity parameter R
is set to 0.001 and a common value is used for the shape parameter
γ (γ=1) (Sydor et al., 2002). Following the methodology described
by Jamet et al. (2004), τ and ν were estimated with MLPs. These
two MLPs are shown in Fig. 2.

During this phase, these two MLPs estimating τ and ν, the
so-called MLP-TAU andMLP-NU, were learned separately using a sub-
set of the previously described LUTs. A training dataset of 150 000
simulations of ρtoa was randomly extracted from the LUT-A and
LUT-T datasets. Table 4 provides the description, architecture and
performance of these MLP, computed from a dataset of 20 000 sam-
ples, all of which were independent of the training dataset. It should
be noted that the performance of the estimation of ν was computed
for τ>0.05. For τb0.05, the aerosol model was assumed to have neg-
ligible influence, and ν was set to 4.
2.3. The direct model

The direct model (radiative-transfer equations) used in the cost
function J (see Fig. 1) is represented by two other MLPs modeling
the different terms of Eq. (1). One is dedicated to the simulation of
ρA (denoted by MLP-A) and the other to T (MLP-T). A sub-dataset of
150000 values of ρA (respectively T) was randomly extracted from
LUT-A (respectively LUT-T), in order to calibrate MLP-A (respectively
MLP-T). The resulting MLPs are shown in Fig. 3.

An independent dataset of 20 000 elements was used to evaluate
the performance of these MLPs. Table 5 provides their description, ar-
chitecture and performance. The performance of these MLPs was
highlighted for wavelengths corresponding to the near-infrared part
of the signal, since the minimization was performed only in the
near-infrared (709 nm–885 nm). The performance for visible wave-
lengths (λb700 nm) was given here to evaluate the accuracy of the
extrapolation done in a second step described in Section 2.6.

The associated errors were also computed for each of the MERIS
wavelengths. It can be seen that there is no correlation between the
MLP errors andwavelength. TheMLPs are assumed to be sufficiently ac-
curate to correctly simulate the radiative-transfer process. The use of
MLPs to simulate the direct model is a major originality of NeuroVaria,
as compared with other spectral matching algorithms. Such an ap-
proach enables a quick simulation of the direct model, associated with
any atmospheric situation corresponding to the range of values covered
by the LUT.

2.4. The cost function

The theory of variational data assimilation is based on theminimiza-
tion of a cost function, which represents the a posteriori error of the re-
trieved control parameters. In the present case, the expression of this
cost function is:

J τ;υ;R;γð Þ ¼
X5
i¼1

si ρmes
toa λið Þ−ρsim

toa λi; τ;υ;R;γð Þ
h i2 þ βτ τ−τ0

� �2
þβυ υ−υ0

� �2 þ βR R−R0
� �2 þ βγ γ−γ0

� �2 ð5Þ

image of Fig.�2


Table 4
Description of MLP-TAU and MLP-NU.

MLP MLP-TAU MLP-NU

Inputs (8 neurons) ρtoa(709,754,779,865,885),θs,θv,dφ
Output (1 neuron) τ0 ν0

Number of hidden layers 2 2
Size of the 1st hidden layer 30 30
Size of the 2nd hidden layer 25 25
RMSa 1.58×10−2 3.79×10−2

Relative errorb 2.77% 0.6%
r2c 1.0 1.0

a Root mean square error.
b Relative error.
c Correlation coefficient.

Table 5
Description of MLP-A and MLP-T.

MLP MLP-A MLP-T

Inputs θs,θv,Δϕ,λ ,τ,ν θ,λ ,τ,ν
Output ρatm T
Number of hidden layers 2 1
Size of the 1st hidden layer 28 16
Size of the 2nd hidden layer 34 –

RMSa for λ≥708 nm 1.43×10−3 6.9×10−4

Relative errorb for λ≥708 nm 1.11% 0.04%
r2c 0.998 1.0

RMS (rel. err.) RMS (rel. err.)
λ=709 nm 1.4×10−3 (1.1%) 6.3×10−4 (0.04%)
λ=754 nm 1.5×10−3 (1.0%) 4.8×10−4 (0.04%)
λ=779 nm 1.5×10−3 (1.1%) 5.2×10−4 (0.03%)
λ=865 nm 1.2×10−3 (1.2%) 9.7×10−4 (0.04%)
λ=885 nm 1.4×10−3 (1.2%) 7.4×10−4 (0.04%)
λ=412 nm to 681 nm (visible) 1.8×10−3 (0.8%) 6.9×10−4 (0.04%)

a Root mean square error.
b Relative error.
c Correlation coefficient.
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where τ0, ν0, R0 and γ0 are the first-guess values for the parameters
τ, ν, R and γ determined in Section 2.2, and λi represents the five
near-infrared wavelengths given in Table 1.

The first term of J represents the error with respect to the observa-
tions of ρtoa, whereas the β terms represent the errors with respect to
the background values of the control parameters. Note that, in this
case, the notion of “error in the observations” includes several realities:
the error of the sensor itself, the error of the model used (type of aero-
sols, bio-optical model, ancillary parameters) and the error in the nu-
merical simulation of the model. In the present case, we assumed the
sensor errors to be small in comparison to the errors produced by the
model and the numerical simulation. The weight coefficients si (respec-
tivelyβx) are the diagonal terms of the inverse of the variance–covariance
matrix of the errors on the observation (respectively on the background).
With this simplifying formulation, this matrix is diagonal, implying that
the errors are uncorrelated. In this time independent problem, we identi-
fied the background terms with the first guesses.

The purpose of the present paper is to show that, even in the pres-
ence of errors in the radiative transfer model, the inversion method-
ology can substantially improve the atmospheric correction. Table 6
summarizes the weighting coefficients we used, which were deter-
mined taking into account the expected accuracy of the first guess,
the direct simulation (Tables 4, 5), and the outcome of experiments
run with synthetic data. Fundamentally, the coefficients s and β de-
termine the relative importance of the model terms of the cost func-
tion with respect to the background terms. Coefficients s, which are
the most important in this study, are used to adjust the control param-
eters so as to constrain the simulated observations to fit the actual ones.
The coefficients β are used to ensure that the retrieved parameters stay
close to the background values, which are assumed to be close to the
true values. This criterion is particularly important for the estimation
of the parameters τ and ν, which are accurately initialized with MLPs
(see Section 2.2). Note that, even if there are no a priori values for the
oceanic parameters, the coefficients β are not zero (since this would
correspond to the case for which there is no a priori knowledge). In
this particular case, the two coefficients βR and βν are used as regulari-
zation terms: in some situations (e.g. case-1 waters), the sensitivity of
Fig. 3. Representation of the two MLPs used to simulate the direct model. The architec-
ture and performance of these MLPs are provided in Table 5.
ρtoa in the NIR to R and γ is very low, such that there is no objective cri-
terion for the estimation of these parameters. In order to ensure that
very small numerical errors in the calculation of the gradient have no
impact on the retrieval of R and γ, the coefficients βR and βγ are used
in this case to constrain the control parameters to be close to their initial
values (R=0.001 and γ=1), throughout the inversion process.

2.5. The adjoint code

The aim of the NeuroVaria algorithm is to determine a set of con-
trol parameters (τ,ν,R,γ) that minimizes J. For this, a necessary condi-
tion is to verify that:

∇J τ;υ;R;γð Þ ¼ 0:

where the derivate of J with respect to a control parameter x (x being
τ,ν,R or γ) is:

∂J
∂x ¼ 2

X5
i¼1

si
∂ρsim

toa λi; xð Þ
∂x ρmes

toa λið Þ−ρsim
toa λi; xð Þ

h i
þ 2βx x−x0

� �
ð6Þ

In practice, minimizing algorithms uses the gradient (Eq. 6) of J to
adjust the control parameters. The key step in this process is the cal-
culation of the expression:

M� ρmes
toa −ρsim

toa

� �
¼ ∂ρsim

toa λi; xð Þ
∂x ρmes

toa λið Þ−ρsim
toa λi; xð Þ

h i
ð7Þ

where M* is referred to as the adjoint model.
The theoretical basis of the computation of the adjoint of a code is

described in Talagrand and Courtier (1987) in the context of data as-
similation. Here, the computation of the adjoint code of the MLPs in
Eq. (7) was done by using the classical gradient back-propagation al-
gorithm for MLPs (Bishop, 1995) together with a specific software
tool called YAO (Badran et al., 2008) which makes this procedure
semi-automatic. One of the advantages of combining the use of
Table 6
Values of the weighting parameters in the cost function.

Parameter value σa λ Parameter value σa

s1 2×105 2.2×10−3 709 βτ 100 0.1
s2 2×105 2.2×10−3 754 βν 10 0.3
s3 2×105 2.2×10−3 779 βR 0.1 3.2
s4 2×105 2.2×10−3 865 βγ 0.1 3.2
s5 2×105 2.2×10−3 885

a Standard deviation of the error (inverse of the parameter value).
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MLPs with variational inversion is that it relies on this simplified pro-
cedure to calculate the adjoint model.

2.6. The minimizing procedure

Parameter adjustment is achieved with the help of a minimizing al-
gorithmprovided by the French research agency INRIA (Institut Nation-
al de Recherche en Informatique et en Automatique). This algorithm,
named M2QN1, takes parameter boundaries into account and uses the
BFGS (Broyden–Fletcher–Goldfarb–Shanno) formula at each iteration
(Gilbert & Lemaréchal, 1989). After this iterative process, NeuroVaria
produces optimized control parameters τopt, νopt, Ropt and γopt, in addi-
tion to various intermediate ones such as ρatm, ρw in the near-infrared
bands. After this first process, the quantities ρatm and T are calculated
at each visible wavelength (412–560 nm) using MLP-A and MLP-T
(Fig. 3) starting from the geometry and the two aerosol parameters
τopt and νopt. The expected accuracy of this computation is given in
Table 5 (last line). Thewater-leaving reflectance for visiblewavelengths
is then computed using Eq. (1):

ρw λð Þ ¼ ρmes
toa λ; θs; θv;Δφð Þ−ρA λ; θs; θv;Δφð Þ

T θs; θvð Þ ð8Þ

3. Results

3.1. Results from a MERIS image

To illustrate the performance of NeuroVaria for case-2waters, we se-
lected twoMERIS images, taken on 13 August 2002 and 16 August 2002.
During this period, the River Po discharged absorbent dissolved sub-
stances and sediments into the Adriatic Sea, which had an impact on
the water-leaving reflectance. Since the seawater beyond the river
delta is typical of case-2waters, it provides a good test for theNeuroVaria
algorithm. In Fig. 4 the different regions of interest discussed in the
Fig. 4. Location of the different regions of interest. The box defin
following, are shown together with the location of the Venice observa-
tion tower (AAOT).

Fig. 5 shows the NeuroVaria retrievals on 13 August 2002, com-
pared with those produced by the second MERIS reprocessing,
Megs7.4, for three parameters: the water-leaving reflectances at
490 nm and 709 nm, which are direct outputs from the atmospheric
correction, and the aerosol optical thickness, which provides an indi-
cation of the aerosol concentration in the atmosphere. The level-2
flags LAND, CLOUD, ICE_HAZE, HIGH_GLINT, MEDIUM_GLINT were
applied.

According to the two algorithms, the analyzed satellite images
correspond to a relatively clear day, with very few aerosols, except
for some regions near to 13°E (Fig. 4, location A on 13 August
2002), which may have corresponded to the presence of thin clouds.
These two days therefore provide a relatively simple test for the pro-
cessing of case-2 water algorithms.

Firstly, theMegs7.4MERIS retrieval produces some unrealistic noisy
patterns of water-leaving reflectances at 490 nm and 709 nm (Fig. 4:
location B on 13 August 2002), which are typical of MERIS level-2 prod-
ucts and do not exist in the NeuroVaria products. Secondly, some of the
MERIS water reflectances appear to be correlated with the aerosol opti-
cal thickness, which generally indicates a weakness in the atmospheric
correction (Fig. 4: location C on 13 August 2002). These correlations do
not exist, or aremuchweaker, in theNeuroVariaρw(490) image. Finally,
we notice that, in the lower left part of the ρw(490) images (Fig. 5), both
algorithms give very low values for ρw(490), corresponding to the very
absorbant waters resulting from the discharge of the River Po into the
Adriatic Sea. The NeuroVaria retrieval shows a well-identified pattern,
which could be the signature of an oceanic eddy associated with an in-
stability of the buoyancy flow produced by the River Po discharge
into the Adriatic, as reported by Umgiesser and Bergamasco (2002)
and Kourafalou (2001). Patterns of ρw(490) in the Po delta for the
13 (Fig. 5) and 16 August obtained with the NeuroVaria processing
are well visible and coherent (Fig. 6), but those obtained with the
Megs7.4 MERIS are very different and less visible, which could indi-
cate a failure in the atmospheric correction of the latter. Correlations
ed the region used for the time-series presented in Fig. 10.
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Fig. 5. MERIS (left panel) and NeuroVaria (right panel) retrievals for τ(865), ρw(490)
and ρw(709) in the northern Adriatic Sea, on 13 August 2002. For τ(865)b0.35, the cor-
relation coefficient between ρw(490) MERIS and NeuroVaria is 0.84.

Fig. 7. NeuroVaria retrieval minus MERIS standard retrieval for ρw(490) (upper panel)
and ρw(709) (lower panel) in the northern Adriatic Sea, on 13 August 2002 (upper
panel) and on 16 August 2002 (lower panel).
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coefficients betweenMERIS and NeuroVaria retrieval of ρw(490) is 0.84
for the 13 August (Fig. 5) and 0.46 for the 15 August (Fig. 6). For the
whole region, differences between MERIS and NeuroVaria retrievals of
water leaving reflectance can be seen in Fig. 7. The bias is opposite in
coastal waters (underestimation of ρw(490) by NeuroVaria) as in open
ocean (overestimation of ρw(490) by NeuroVaria). Beside these bias,
the general correlation of images is good and differences we noticed
are clear only on small structures (see Appendix B to see amore general
comparison).

The water-leaving reflectance at 709 nm generally indicates the
presence of sediments, which are characteristic of case-2 waters.
The two algorithms provide some very similar patterns for ρw(709).
Nevertheless, the NeuroVaria ρw(709) values are lower than those
given by the MERIS retrieval algorithm, and the River Po discharge
is less visible in the ρw(709) NeuroVaria image. This could be due to
the fact that the error in the direct atmospheric model with MLP
(RMS around 10−3) makes the NeuroVaria algorithm less accurate
at low values of water-leaving reflectance in the near-infrared. This
weakness could be overcome if the atmospheric reflectance simula-
tions were improved in the LUT dedicated to the calibration of the
MLPs.
Fig. 6.MERIS (left panel) andNeuroVaria (right panel) retrievals for ρw(490) andρw(709)
in the northern Adriatic Sea, on 16 August 2002. The diagonal line across the image is an
artefact due to the use of a different camera in the MERIS sensor which is responsible for
the so-called “smile-effect” (Rast et al., 1999). For τ(865)b0.35, the correlation coefficient
between ρw(490) MERIS and NeuroVaria is 0.46.
It should be noted that, in the River Po discharge, the presence of
particulate matter associated with low ρw(490) values indicates the
presence of highly absorbing waters containing large quantities of
pigments. This is typical of the water in the River Po. On the contrary,
on 13 August 2002 (Fig. 5), the high ρw(490) values in the northern
Adriatic Sea (Fig. 4, location D) were caused by high levels backscat-
tering due to particles (both organic or inorganic), which could be at-
tributed to the presence of suspended sediments assuming that water
is very diffusing so that the signal does not reach the sea bottom. Nev-
ertheless, on 16 August (Fig. 6), the same region (Fig. 4, location D)
was found to have low ρw(490) values, indicating the presence of ab-
sorbing waters. In Fig. 8, the bathymetric map indicates that this area
corresponds to very shallow waters. The wind on 13 August 2002 was
stronger than on 16 August, which may have induced a more intense
suspension of sediments, generated by the shoaling of wind waves in
shallow coastal waters.
3.2. Validation with the in situ dataset

The in situ measurements were compared with the Megs7.4 MERIS
and the NeuroVaria products, whose retrieved images were averaged
over a 9-pixel window centered on the nearest pixel to the Venice
tower observation site. Thematch-up selectionwas processed according
to themethod proposed by (Bailey &Werdell, 2006). Comparisonswere
made between the remotely sensed values of water-leaving reflectance
at 412 nm, 443 nm, 490 nm and 555 nm and the corresponding in situ
observations. The in situ values of the aerosol optical thickness and the
Angstrom exponent are available only at 555 nm and 870 nm. There-
fore, comparisons were made between remotely sensed values of the
Angstrom coefficients at 550 nmand 865 nmand in situmeasurements
of the Angstrom coefficients at 555 nm and 870 nm. Similarly, compar-
isons were made between remotely sensed values of the aerosol optical
thickness at 865 nm and in situ measurements of the aerosol optical
thickness at 870 nm. It was assumed that the Angstrom coefficient, α
Fig. 8. Bathymetry (depth color bar in meters) of the region, and wind-velocity data on
13 August 2002 and 16 August 2002. The wind field was provided by ancillary MERIS
level 1B data. It was acquired from the ECMWF (European Centre for Medium-term
Weather Forecast) and was interpolated space-wise relative to the tie points.
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Table 7
Statistical errors of NeuroVaria and Meris with respect to in situ measurements.

Parameter Algorithm RMS Rel. error (%) r2

ρw(412) NV 6.8×10−3 39.8 0.18
MER 1.2×10−2 84.0 0.22

ρw(443) NV 7.8×10−3 33.8 0.33
MER 9.2×10−3 47.8 0.66

ρw(490) NV 5.8×10−3 21.6 0.79
MER 8.3×10−3 28.7 0.87

ρw(560) NV 6.0×10−3 25.7 0.90
MER 8.0×10−3 29.4 0.91

Τ NV 2.9×10−2 75.3 0.93
MER 4.3×10−2 99.3 0.89

Α NV 0.68 54.9 0.62
MER 0.45 36.7 0.71

MER: standard MERIS algorithm.
NV: NeuroVaria.
RMS : root mean square error.
Rel. Error: relative error.
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and the optical depth τ in Table 7 are similar for very close wavelengths.
To take the influence of the bi-directionality of the water-leaving reflec-
tance into account, ρw retrieved by NeuroVaria wasmultiplied by a tab-
ulated, geometry-dependent coefficient (Loisel & Morel, 2001), in order
to obtain normalized values of ρw. Table 7 shows the error statistics for
all of these products, whereas Fig. 9 shows the scatter diagrams of the
retrieved values versus in situ recorded values of τ(865) and ρw(490),
respectively.

It can be seen that, in terms of RMS (root mean square) and relative
errors, the values determined with the NeuroVaria algorithm are sys-
tematically closer to the in situ measurements than those obtained
using the Megs7.4 MERIS processing. The scattering of the retrieved
water reflectance values (described by the correlation coefficient) in-
creases at shorter wavelengths (412 nm and 443 nm, not shown),
which denotes a strong instability in the extrapolation of near-infrared
values to those relevant to visible wavelengths. This instability is some-
what stronger for the NeuroVaria algorithm and could be due to the
highly simplified aerosolmodel used,whichdoes not take absorption ef-
fects into account. The latter simplification is particularly significant at
visible wavelengths, which could explain the observed increase in the
retrieval variance in the visible bands. The effect of the aerosol model
on the extrapolation procedure to the visible wavelengths is investigat-
ed in Appendix A.

The aerosol optical thickness, τ(865), is more accurate in the
NeuroVaria retrieval. Note that although both algorithms overestimate
the optical thickness, this effect ismore significantwith theMERIS algo-
rithm. A part of this effect could be explained by the influence of thema-
rine signal, which was incorrectly interpreted by the algorithms as an
aerosol signal, leading to an increase in the apparent aerosol optical
Fig. 9. Regressions of NeuroVaria (+) and MERIS (O) retrievals of τ(865) (left) and ρw(490
sponding linear regressions for the NeuroVaria algorithm and the solid lines are those for
(1.0) of retrieved values with respect to in situ values.
thickness. The overestimation could additionally result from the defini-
tion of the aerosol optical properties or uncertainties in the absolute cal-
ibration of the space sensor.

4. Discussion and perspectives

4.1. Aerosol models

In our model, the aerosols follow a Junge size-distribution law. The
advantage of this distribution is that it is characterized by just one
sizing parameter, ν, and is able to produce realistic atmospheric re-
flectances (Gordon, 1997). The spectral dependence of the atmo-
spheric reflectance is characterized by a coefficient, ε(λi,λj), defined
by:

ε λi;λj

� �
¼ ω0 λið Þτ λið ÞPa θs; θv;Δφ;λið Þ

ω0 λj

� �
τ λj

� �
Pa θs; θv;Δφ;λj

� � ð9Þ

where λibλj, ωo is the single scattering albedo, τ is the aerosol optical
thickness, and Pa is the aerosol phase function.

The aerosol description used in the present study leads to:

ε λi;λj

� �
≈ λi

λj

 !3−υ

ð10Þ

where the approximation is due to the fact that the radius of aerosol
particles is limited.

In situmeasurements of coastal waters (Mélin & Zibordi, 2005) sug-
gest that the above expression of the spectral dependence could be bi-
ased at shorter wavelengths (λ=412 nm or 443 nm), leading to an
overestimation of the scattering at these wavelengths. The first way to
address this problem would be to include the single scattering albedo
as a retrieved parameter. However, in this case, the inversion algorithm
would need to be extended to the visible wavelengths. This could lead
to an ill-posed problem, due to an increase in the number of control pa-
rameters, which is beyond the scope of the present study. A second so-
lution would be to set the absorption to a value typical of the region
under study. However, such an approach should be accompanied by
the development of regional applications. In our study we did not con-
sider regional solutions, which are valid only for a limited area, by dem-
onstrating the ability of the NeuroVaria algorithm to perform accurate
atmospheric corrections in a global context (see Appendix B for the con-
ditions of application of NeuroVaria to other regions). Themain effect of
the simplifying assumption, that ω0=1, is to overestimate the influ-
ence of aerosol-molecule scattering at the blue end of the spectrum
(412–443 nm). More details are presented in Appendix A.
) (right) on the corresponding in situ measurements. The dashed lines are the corre-
the MERIS algorithm. The dotted line corresponds to a theoretically perfect regression
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Table 8
Description of the test dataset generated with the standard MERIS aerosol models.

Parameter Values Note

Model name Rural99 Rural with 99% humidity
Atmospheric pressure 1013.25 hPa
Wind speed, ws 5 m/s
θs,θv From 0° to 60° 24 Gauss quadrature angles
Δϕ From 0° to 180° 25 regularly spaced values
Aerosol optical thickness τ at
550 nm

0.1 and 0.2

Angström coefficient 1.4
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4.2. Inherent optical properties (IOPs) of water

The control parameters of the inversion are the aerosol optical
properties (τ and ν) and the optical properties of the ocean (R and
γ). Traditionally, in ocean-color processing, water IOPs are retrieved
in a second step, once the atmospheric corrections have been applied.
NeuroVaria is a global approach that has the potential for simulta-
neously retrieving aerosol optical properties and water IOPs. As the
impact of water IOPs is mainly detectable in the visible part of the sig-
nal, the inversion process would need to be extended from the
near-infrared to the full spectrum (including visible wavelengths).
This approach has been proposed in a previous version (Brajard et al.,
2006; Brajard et al., 2008), in order to take aerosol absorption into ac-
count. Compared with the standard multi-step approach used for
MERIS image inversion, NeuroVaria presents two advantages: the first
is that the full inversion is based on the same model as that for the
water contribution; and the second is that the global inversion avoids
the propagation of errors through successive algorithmic steps. Indeed,
especially in the case of highly absorptive waters, a small atmospheric
correction error can lead to a significant bias in the retrieval of the optical
parameters of the ocean, or may even produce negative water-leaving
reflectances.

5. Conclusions

A multi-spectral optimization at five NIR wavelengths, the
so-called NeuroVaria algorithm, has been proposed and adapted
from previous versions (Brajard et al., 2006) in order to retrieve
Fig. 10. Computation of NeuroVaria (italic type) and test (roman type) atmospheric reflectance
oceanic and atmospheric products from ocean-color images, for
case-2 waters. This algorithm has been compared with the Megs7.4
MERIS algorithm and in situ measurements. In terms of RMS errors,
NeuroVaria is found to provide better atmospheric corrections than
the MERIS algorithm. Compared with in situ measurements, the
NeuroVaria retrievals are found to be accurate and to reproduce ma-
rine structures in ρw(490) satellite remote-sensing images, with no
additional noise. Some drawbacks are also observed, in particular
the underestimation of water-leaving reflectances at the shortest
wavelengths (412–443 nm). We also compared (Appendix B) the
weakly water leaving reflectances for the year 2009 processed with
NeuroVaria to these provided by the standard MERIS algorithm
(Fig. 11). The correlation between the median of NeuroVaria and
MERIS retrievals is very high (0.94) showing the ability of NeuroVaria
to be used for in an operational context.

An important point is that no assumptions were made concerning
regional ocean and aerosol optical properties, meaning that the
NeuroVaria algorithm could be applied to all case-2 waters, in theory
at least. This shows that, for ocean-color remote-sensing applica-
tions, the use of a sophisticated and adapted inversion algorithm is
at least as important as the modeling of complex optical properties.
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Appendix A. Sensitivity of NeuroVaria to the aerosol model

In order to investigate the choice of the Junge size-distribution in
NeuroVaria, the sensitivity was determined by comparing the outputs
of the standard aerosol models (denoted SAM) used in the MERIS pro-
cessing (Antoine & Morel, 1999) to those of the NeuroVaria method.
The SAM models were designed to represent the various atmospheric
situations encountered in the atmospheric correction. A SAM aerosol
and aerosol optical thickness to address the sensibility of NeuroVaria to the aerosol model.
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Table 9
Statistical errors of NeuroVaria with respect to the test dataset.

Parameter RMS Rel. error (%)

ρA(412) 0.01 4.8
ρA(443) 7.4×10−3 4.3
ρA(490) 4.7×10−3 3.45
ρA(560) 4.2×10−3 3.3
ρA(709) 2.6×10−4 0.6
ρA(865) 1.1×10−4 0.4
τ 2.0×10−2 1.0
α 0.18 9.7

RMS: root mean square error.
Rel. Error: relative error.
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model was determined by choosing the aerosol optical thickness and
Angstrom coefficient closest to the average aerosol situation encoun-
tered in the Venice Lagoon (see Table 3). Table 8 gives a quick overview
of the aerosol model selected: rural, with 99% humidity. Associated at-
mospheric reflectances and transmittances were then computed with
the same radiative-transfer code used in this paper and then stored in
a test dataset named T-dataset. Fig. 10 gives the scheme used for the
generation of the T-dataset and the NeuroVaria estimations.

A comparison of the exact values given by the T-dataset and the
values estimated by NeuroVaria is presented in Table 9. The errors
made byNeuroVaria in the determination of the atmospheric reflectance
and aerosol optical thickness were of the same order as those made in
the in situ measurements (Table 7). The retrieval of the Angstrom coef-
ficient is very accurate, which indicates that the aerosolmodel is correct-
ly retrieved. As expected, the imprecision in the reflectance retrievals is
larger in the blue. The shortest wavelengths (412 nm and 443 nm) are
indeed more sensitive to the choice of the aerosol model and to the ex-
trapolation procedure from the near-infrared bands to the visible
bands. The error in the near-infrared is almost negligible. This shows
that the principle of reproducing the signal in the near-infrared does
not depend on the choice of the aerosol model. The error is therefore
mainly due to the extrapolation to the visible bands and not to the min-
imization procedure. Using more suitable aerosol models according to
the region could reduce this error. Investigating the aerosol models de-
scribed in (Vidot et al., 2008) would constitute an extension of the
present work. This also strongly suggests that the results could be
improved by applying a minimization procedure over the entire
spectrum (visible+near-infrared) if a realistic model of oceanic
Jan Feb Mar Apr Mar Jun Jul Aug Sep Oct
0

0.01

0.02

0.03

0.04

0.05

0.07

0.06

0.09

0.08

Fig. 11. Time series of the median of weekly ρw(490) for MERIS (in red) and
NeuroVaria (in blue) computing in the box defined in Fig. 4 (LAT : 44°30′N–44°45′N;
LON: 12°20′E–12°40′E) for the year 2009. The correlation coefficient between MERIS
and NeuroVaria retrieval is 0.94. The blue surface (resp. red surface) described the
scattering of data in the box between the 10th and the 90th percentiles for the
NeuroVaria retrieval (resp. MERIS retrieval).
reflectance could be proposed for the visible wavebands in case-2
waters. Nevertheless, the increasing number of control parameters
could lead to an ill-posed problem. One solution would be to assess
a high Colored Dissolved Organic Matter (CDOM) concentration
that would imply ρw(412)≈0 and would allow use of the 412 nm
band in the inversion.
Appendix B. NeuroVaria in an operational context

NeuroVaria was implemented in C++ language with the software
YAO version 9 (free software license CECILL at http://www.cecill.info/
index.en.html) and is available to any potential user by contacting one
of the authors of this paper. Experiments presented in this paper were
performed under Linux-Mandriva 2008O.S. on an Intel Core 2Quad pro-
cessor (64 bits, 2.6 GHz, 4Go memory). The approximate time needed
to analyze a 16 000-pixel image is 20 min (i.e. 13 pixels/s). To execute
NeuroVaria for any region for which MERIS data are available, one only
needs to download standard reduced-resolution MERIS level-1B data.
The ancillary data needed to process images are: thewind speed, the at-
mospheric ozone content, and the atmospheric pressure, which are em-
bedded in MERIS data. Some pre- and post-processing routines were
coded in Matlab, but do not present any computational or theoretical
difficulties. Some features should be added to the current version of
NeuroVaria to deal with images with high wind speed (>10 m/s) or
with ice contamination. Finally, it is possible to implement NeuroVaria
in a standard processing framework (BEAM http://www.brockmann-
consult.de/cms/web/beam/ or ODESA http://earth.eo.esa.int/odesa/)
with only a convenient specification of inputs/outputs and a recoding
of the Matlab routines. To investigate the possibilities of NeuroVaria in
an operational context, the current version of NeuroVaria was used to
process all available MERIS images on Northern Adriatic See during the
year 2009. A time-series of weekly ρw(490) retrieved by NeuroVaria
were then compared to the standard MERIS algorithm over a “box” de-
fined in Fig. 4. It can be noticed that, despite some differences, the corre-
lation between the median of NeuroVaria and MERIS retrievals is very
high (0.94 see Fig. 11). It confirms the ability of NeuroVaria to process
a complete set of images, but the improvements that have been noticed
are clearer for small structures on daily data.
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