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A B S T R A C T

The ongoing march toward freely available, highly pre-processed satellite imagery has given both researchers
and the public unprecedented access to a vast and varied data stream teeming with potential. Among many
sources, the multi-decade Landsat archive is certainly the best known, but legacy and current data from other
sensors is available as well through the USGS data portals: these include CBERS, ASTER, and more. Though the
particular band combinations or non-global missions have made their integration into analyses more challen-
ging, these data, in conjunction with the entire Landsat record, are available to contribute to multi-decade
surveys of land-cover change.

With the goal of tracing forest change through time near the Roosevelt River in the state of Mato Grosso,
Brazil, we used BULC and Google Earth Engine to fuse information from 13 space-borne imagers capturing 140
images spanning 45 years. With high accuracy, the resulting time series of classifications shows the timing and
location of land-use/land-cover change—both deforestation and regrowth—at sub-annual time scales. Accuracy
estimates showed that the synthesized BULC classification time series was better than nearly all of the single-day
image classifications, covering the entire study area at sub-annual frequency while reducing the impact of clouds
and most unwanted noise as it fused information derived from a wide array of imaging platforms. The time series
improved and gradually sharpened as the density of observations increased in recent decades, when there were
three or more clear, higher-resolution views of a pixel annually from any sensor combination. In addition to
detailing the methodology and results of multi-source data fusion with the BULC approach, this study raises
timely points about integrating information from early satellite data sources and from sensors with footprints
smaller than Landsat's. There are decades of research deriving sensor-specific techniques for classifying land use
and land cover from a single image in a variety of settings. The BULC approach leverages the many successes of
single-sensor research and can be used as a straightforward, complementary tool for blending many good-quality
mapped classifications from disparate sources into a coherent, high-quality time series.

1. Introduction

Deforestation plays an important role in the global carbon budget
and in biodiversity loss, particularly in the tropics (Baccini et al., 2012;
Barlow et al., 2016; Harris et al., 2012; Houghton, 1991, 2012;
Whitmore et al., 1992). In response, international initiatives have been
launched to ensure the sustainable management of forests worldwide,
making the monitoring of forest cover increasingly important for re-
searchers and decision makers alike. The development of remote sen-
sing strategies to monitor forest cover across large areas has become a
significant priority (De Sy et al., 2012; DeFries et al., 2007; Hansen and
Loveland, 2012).

Using large data sets, researchers have made excellent progress in

detecting changes in land use/land cover (LULC) in the new, open-data
era (Wulder et al., 2018). The best-known existing algorithms typically
use carefully calibrated imagery, most often Landsat-5, -7, and -8, to
compare bands or build robust indices that are differenced or otherwise
interpreted through time for stability and change (see especially the
review by Zhu, 2017). Some use multiple sensors of the Landsat series
(e.g., Zhu and Woodcock, 2014a; Zhu and Woodcock, 2014b) and some
merge data of different resolutions (e.g., Hansen et al., 2008; Xin et al.,
2013). Meanwhile, these algorithms have demonstrated their power at
the global scale (notably Hansen et al., 2013), and hold excellent po-
tential for detecting changes more subtle than wholesale land-cover
change through abrupt disturbance, including abandonment (Yin et al.,
2018), forest disturbance from low-density development (House and
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Wynne, 2018) and forest structure change (Savage et al., 2018).
The Landsat archive is indisputably powerful, and could likely be

made even more useful by integrating the vast amount of information
from other, perhaps substantially different sensors. For algorithms that
interpret raw imagery, sensors whose bands are fundamentally not
equivalent to Landsat's optical bands (e.g., radar data from Sentinel-1)
would be difficult to graft onto an index-based framework. Yet there is a
still-increasing array of image types and derived products now available
for interpretation and integration—for example, the National
Agriculture Imagery Program (NAIP) photography (USDA FSA, 2018),
agricultural censuses (Cardille et al., 2002), Hyperion (Pearlman et al.,
2003), and LIDAR (Brennan and Webster, 2006; Wulder et al., 2012). In
addition to algorithms that harmonize intercomparable image data for
analysis, the growing breadth of sensors invites the development of
algorithms that can track change and stability through time without
regard to each platform's remote-sensing characteristics.

To address the challenge of fusing information from an arbitrary set
of imagery sources, we have developed the BULC (Bayesian Updating of
Land Cover) algorithm. BULC was first demonstrated in the context of
tracking a fast-growing forest fire over a single summer season em-
ploying 11 Landsat-8 images (Cardille and Fortin, 2016). Despite using
only one sensor in that study, BULC is equally capable of accepting
classified imagery from a variety of sources. Because it operates on
classified images rather than raw spectral values, example data sources
might encompass optical imagery, radar-based or LIDAR-based classi-
fications, existing LULC products like the US National Land-Cover Data
Set (Homer et al., 2007; Vogelmann et al., 1993) and GlobCover
(Bontemps et al., 2011), or at the most extreme, classified hand-drawn
historical maps. Because there have been decades of work perfecting
classification techniques for each of the sensors that are or once were in
operation, analysts can benefit from past research by producing quality
classifications from the perspective of a given sensor, and then syn-
thesizing the multiple classifications in a time series produced by BULC.
This study illustrates BULC's data fusion ability to track changes in
forest cover in a nearly 12,000 km2 study area over five decades, using
the widest range of remote sensing platforms available to us during the
period.

The Brazilian state of Mato Grosso, the Brazilian Legal Amazon, and
the Amazon basin have been of substantial international concern due to
the rapid rate of deforestation and other land-cover conversion in the
past half-century (Fearnside, 2005; Malingreau et al., 2012; Saatchi
et al., 1997; Skole and Tucker, 1993). Mato Grosso was the state within
the Brazilian Amazon with the highest or second-highest deforestation
area (km2/yr) every year from 1988 to 2017, and has accumulated the
second-greatest forest loss (km2) since 1988 (total area of
1.43×105 km2), or one third of the total forest loss in the Brazilian
Legal Amazon (Câmara et al., 2006; Houghton et al., 2000; Instituto
Nacional de Pesquisas Espaciais (INPE), 2017). Conversion began early
in the satellite record: Cardille and Foley (2003) estimated a 4.7 Mha
expansion of crop and pasture land cover in the state of Mato Grosso
between 1980 and 1995, a 50% increase over the period. Subsequently,
from 1995 to 2005, Mato Grosso contributed 33–43% of the annual
deforestation increment in the Brazilian Amazon (Instituto Nacional de
Pesquisas Espaciais (INPE), 2017).

Within Mato Grosso, the area surrounding the Roosevelt River is
ideal for exploring the synthesis of decades of observations of forest
change and stability across the entire satellite record. In the early
1900s, this region was one of the most remote on Earth, and was so
named after the first complete navigation by non-Amazonian natives, in
a group with varied trailblazing experience that included former U.S.
President Theodore Roosevelt. Alongside Cândido Rondon (after whom
nearby Brazilian state Rondônia was named), Roosevelt and his fellow
explorers navigated the many rapids over several dangerous months in
unworkably heavy canoes (Millard, 2005; Roosevelt Memorial
Association Film Library, 1928; Roosevelt, 1914a, 1914b). With no
signs of visible European-style settlement along the river's shore and no

contact with the outside world, the trip nearly killed Roosevelt when a
wound became infected while they were impossibly distant from re-
cognizable landmarks or sources of medical help. Given that this river
region was so remote and apparently unfarmed when Roosevelt's party
struggled through in 1913–1914, what has it looked like in the satellite
era, which began about a half-century after Roosevelt's journey? In this
work we returned to that expanse of wilderness to explore the ob-
servable satellite record of its development history. Assembling a large
number of relatively clear images from 13 different remote-sensing
platforms – about three per year – we used BULC in Google Earth En-
gine to map forest, disturbed areas, and water at sub-annual intervals
from 1972 to 2016. The resulting time series illustrates a region's LULC
history across the entire satellite era, and outlines an approach that
could be adopted widely to create high-quality LULC time series.

2. Methods

2.1. Study area

The study area is a rectangle of 96 km×124 km (1.19× 104 km2),
centered at 60.72° W 9.99° S along the Roosevelt River, in the state of
Mato Grosso, Brazil (Fig. 1). At the beginning of the study period, the
study area was almost entirely apparently undisturbed forest flanking
the Roosevelt River and its tributaries, with an extremely small area
that may have been already in agricultural use by 1972. We tracked
three LULC types that were readily distinguishable in the study area.
The first, “Forest”, was defined as lands dominated by woody vegeta-
tion with a percent cover> 60% and height exceeding two meters. This
category encompassed the well-known IGBP forest categories 1–5
(Loveland and Belward, 1997). The second, “Water”, consisted of rivers
and streams and corresponded to IGBP class 17, “Water bodies”. The
third class, termed “Disturbed”, represented lands that, during the
study period, were cleared for human use, including: croplands; forest
clearing for pasture; regrowing lands that did not yet meet the defini-
tion of Forest; second or third clearings for agriculture; and roads. This
corresponded to classes 6–10, 12, and 16 in the IGBP framework—the
shrubland, grassland, savanna, cropland, and barren classes. As part of
the classification phase described in a later section, we also identified a
“No Data” category to encompass cloud pixels, shadow pixels and pixels
with no image coverage.

2.2. Imagery

We assembled 140 images , Fig. 2) from 13 different sensors across
five decades (1972–2016) for classification and use in BULC to under-
stand change and stability in this region across the satellite record. The
115 Landsat 1–8 images are hosted at Google Earth Engine (Gorelick
et al., 2017), and cover the entire study area. Four Sentinel images, also
a part of the Earth Engine data catalog, were accessed for the area: the
radar image from Sentinel-1 covered the full study area; three from
Sentinel-2 were smaller tiles covering about 50% of the study area.
From the USGS Earth Explorer, we accessed and uploaded to Earth
Engine: seven images from the 20m China-Brazil Earth Resource Sa-
tellite (CBERS) sensor (median coverage 81%), and 12 ASTER images
(median coverage 26%). We also retrieved a true-color image taken by
camera from a window of the US Space Shuttle and one taken from the
International Space Station (Earth Science and Remote Sensing Unit.
NASA Johnson Space Center, 2018).

The full image set spans 1972 to 2016 with variable temporal
density (Fig. 2). As expected, useable observations were considerably
more sporadic and noisier prior to the mid-1980s with the spatial and
spectral improvements beginning with the advent of Landsat-5. It is
important to note that because BULC blends classifications across
multiple inputs, we could accept images that included clouds if some of
the area was likely to produce a good LULC classification, as described
in the next section. Where possible we identified three clear or
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relatively clear images in each calendar year; some of the earliest
Landsat years had only one or two available due to persistent cloud
cover and only a single sensor returning imagery. Two years (1974,
1983) had no images or none clear enough to be used; this meant that
across the 45-year period we were able to update an estimate of LULC in
43 distinct years. When data from the entire period were assembled, the
years 2004–2006 were notable for the density of imagery: Landsat-5,
CBERS, and Landsat-7 were each providing imagery in that period.
Images were registered using Earth Engine or ArcMap as needed and
classified for use in BULC as described below.

2.3. Event creation

As described in Cardille and Fortin (2016), BULC processes a series
of LULC classifications (termed “Events”), each of which can be pro-
duced using any method suitable to interpreting images from the given
sensor. Here, we used the Earth Engine “Explorer” interface to create an
Event from each image using classification and regression trees (CART)
(Breiman et al., 1984), one of the built-in classification techniques in
Earth Engine.

The Explorer interface enabled the delineation of small regions and
points of uniform LULC to train classifiers. For each of the categories,
we created small sets of training points and polygons through on-screen
digitization and labeling of homogenous areas. Where possible, we used
the same set of training data in creating each Event, similar to other

efforts to identify “pseudo-invariant” sites to facilitate high-quality
mapping of images from multiple dates and platforms with stable
training sets (Fortier et al., 2011). We labeled points when their proper
class changed (for example, from Forest to Disturbed) during the study
period, and occasionally added points and polygons to aid the classi-
fication of a given image for an Event. For imagery such as ASTER
whose footprint covered only a small part of the area, we developed a
distinct set of training points sufficient to produce a reasonable classi-
fication in Earth Engine with CART for an image of that footprint on
that date. As the final step of Event production, a focal mode filter with
a radius of 2 pixels was applied to each classified map. Because BULC is
designed to work on a large number of Events that each are of moderate
but not exceptional quality, we performed classifications relatively
quickly without the usual goal of making each classification nearly
perfect. Taken as a whole, the set of Events presented a view of the
study area through time that contained sporadic sensor errors (Fig. 3a),
partial-coverage imagery (Fig. 3b), systematic stripes (Fig. 3c), some
properly removed clouds, some incorrectly classified clouds, and good-
quality classifications that covered the full area (see also Appendix 2).

2.4. BULC algorithm

As detailed in Cardille and Fortin (2016), the BULC algorithm
maintains a running estimate of the probability of each of several
tracked classes, as initialized to a plausible starting point and observed

Fig. 1. Roosevelt River region and surrounding area, Mato Grosso, Brazil.
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through time in an ordered series of Events. BULC ingests already-
classified images from any data source, meaning that there was no need
for special treatment for Events derived from, for example, Sentinel-1,
Landsat-4, or ASTER. Not all images affect the probability estimates
evenly: higher-accuracy classifications, and more specifically, higher-
accuracy classes within those maps, have larger impacts on probability
estimates.

To create its time series, BULC uses the agreement between Events
as an indication of the reliability of each new classification, to estimate
the LULC of the entire study region based on the evidence from all
Events up to that point. To understand how Events are processed in
BULC, consider a given Event in which Water was exceptionally well
classified with very little omission or commission error, and that Forest
and Disturbed were well classified but occasionally confused with each
other. As detailed in Cardille and Fortin (2016), BULC creates condi-
tional probabilities at each time step from an overlay of each given

Event with the previous Event in the set. The conditional probabilities
of each class are computed using the reproducibility of each (1 –
omission error) from the previous Event to the current one. The effect is
that classes that are well repeated from Event to Event are considered as
strong evidence by BULC's Bayesian calculations. In the example Event,
for any pixels classified as Water, the probability of Water increases
considerably because that class is highly reproducible between the
given Event and the previous one. With the probability of Water in-
creasing, the probability of Forest and Disturbed necessarily decrease,
since Water was little confused with either. For a pixel classified in the
same Event as Forest, the effect is similar but different in important
ways. For Forest pixels, the probability of Forest would increase by an
amount related to the reproducibility of the Forest category, which in
this example is lower than that for the reproducibility of Water. Because
Forest was occasionally confused with Disturbed but very rarely with
Water in this example, the probability of Water would decrease

Fig. 2. Above: temporal distribution of data in the Roosevelt River study area, 1972–2016. A value of 1 means that a typical study area pixel was, on average, imaged
once in a given year. Below: spatial resolution, image count, and average coverage of the study area for each sensor. Original MSS resolution was 79m×57m; some
images were resampled to 80m and some to 60m, accounting for the averaging shown. Landsat-4 included images from both its MSS and TM scanner.
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substantially, while the probability of Disturbed would change more
modestly. In practice, the probability vector of {Forest, Water, Dis-
turbed} might change from {0.65, 0.04, 0.31} to {0.72, 0.02, 0.26} in a
pixel where the Event value was Forest. The specific change of values is
driven by the conditional probabilities and also related to the value at
the beginning of the iteration, since values asymptote near 1 and must
add to 1 at the end of each time step. At a given time step, only those
pixels with new evidence (i.e., that are not No Data in the given Event)
have their probabilities updated: probabilities where a given Event is
No Data are left unchanged for that iteration. Additional detail and
examples are given in Cardille and Fortin (2016).

Three parameters drive the BULC tuning: First, a parameter in-
itializes the probabilities for the first image (here set to 0.8 for the class
of the first Landsat classification and 0.1 for the other two). Second, a
‘leveling’ value that dampens extreme values of the conditional prob-
abilities. This was set to 0.4, which modestly inhibits extreme changes
that otherwise would have pixels changing their estimated class in re-
sponse to classification noise. Third, because Bayes' formula can get
stuck if a probability becomes 0, we ensure that each of the three ca-
tegories has a small nonzero probability at the end of each iteration
(using the parameter value 0.95). Together, the three parameters
served to govern the process by trusting the first classification and in-
corporating new Events as good but not perfect evidence. These settings
were able to change a pixel's estimated class after between two and four
Events, depending on the agreement between classifications and a
pixel's history.

A considerable strength of BULC is that it automatically manages a
full set of LULC probabilities in the context of new data- that is, its
function is to decide the specific amounts of increase and decrease in
probabilities of each LULC type in light of evidence from a new Event.
In this study, LULC for the beginning of the time series was initialized to
the first view of the full region in the satellite era: July 29, 1972, just
6 days after Landsat-1's landmark launch. Data from sensors launched
later were brought into BULC as they became available, in chron-
ological order for a total of 139 iterations. We tasked Earth Engine with
producing its outputs at 20m spatial resolution for estimation of LULC
proportions, changes through time, and accuracy assessment.

2.5. Accuracy assessment

Accuracy measures of the BULC classifications and Events were
computed on a reference data set of 692 points. Candidate points were
selected via a probability sample (Stehman, 2009) from three classified
images in the following way. For the main body of points, we stratified
randomly from the Event classification of August 29, 2013, identifying
225 Forest points, 200 Water points, and 117 Disturbed points. Because
only a small portion of the Disturbed area in 2013 was already

disturbed in the 1980s, and because only a small portion of the Dis-
turbed area in the 1980s had been disturbed in the early 1970s, we
added additional reference points to capture that earlier human ac-
tivity. This was done by randomly selecting 75 points in the Disturbed
category for the Event of August 1, 1980, and 75 more randomly se-
lected points from the Disturbed stratum from the August 29, 1973
Event.

Each of the 692 points was estimated at each of the 140 dates in the
following way. Because there were no separately gathered ground ob-
servations available in any of these points at any of the time steps, we
estimated the reference LULC class (Forest, Water, Disturbed) based on
visual inspection of the corresponding unclassified imagery. The eva-
luator interpreted the LULC at 10m in the cardinal directions around
each identified sample point, making a sample unit that simulated a
pixel size of 20m. In the rare case that a simulated pixel spanned two
LULC categories, the evaluator estimated the majority LULC as the re-
ference value. In practice this had little effect on the accuracy estimates
since few points were near LULC edges given the sizes of features,
particularly of the disturbed areas and forests. Labeling of the points at
each time step was done without reference to the Events or resulting
BULC classifications. Due to cloud cover or missing data within some
images (as in Landsat-7 SLC-off imagery), there could be some ground
points within a given image's footprint that were empty or otherwise
impossible to discern by inspecting the image. Because LULC was not
ephemeral at the sub-annual time scale (e.g., did not change from
Forest to Disturbed and back again between two viewings), we applied
the same label for an unviewable point on a given date if the LULC
appeared to have been unchanged between the preceding and following
images. This permitted a full set of reference points to be used to
evaluate each BULC classification at each time step, for a total of about
98,000 observations.

We calculated two formulations of accuracy: (1) the accuracy values
outlined in Congalton (1991) and (2) the unbiased estimates as re-
visited since by others (Olofsson et al., 2014; Stehman, 2014; Strahler
et al., 2006). At each iteration, we assessed each Event and each BULC
classification with the maximum amount of assessment data available
for that footprint. When an Event did not cover the study area, only the
accuracy data from within that Event's footprint could be compared to
the Event LULC estimates. Because the BULC algorithm produced an
estimate in each study area pixel at each time step, however, the full set
of accuracy assessment data was always used for the BULC time series.
This had the intentional effect of raising the accuracy challenge for the
BULC time series—it had the responsibility of high-quality mapping at
every time step over the entire study area, even in areas that may have
been undergoing LULC change but whose status could not be seen but
only inferred at that time step. Though our protocol could not entirely
eliminate the risk factors encountered when assessing LULC

Fig. 3. a, b, c: Classified events for July 31, 1982 (Landsat-3, 80m), August 18, 2006 (CBERS, 20m), and June 15, 2012 (Landsat-7, 30m) respectively.
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classification in the tropics noted by Powell et al. (2004), we worked to
minimize avoidable obstacles to realistic assessment of the Events and
BULC classifications. These efforts included using clear categories, well-
registered images, and LULC that does not change between a map's
nominal date and the date of reference data.

2.6. Extracting LULC sequences

BULC produces a time series of LULC categories as its output, but
does not assign meaning to the sequences of LULC categories seen
throughout the study area. To detect dynamics of deforestation, re-
growth, and reconversion, we developed a sequence-matching tool in
Earth Engine to identify the location and timing of these three note-
worthy LULC change types. The sequence matcher inspected the BULC
classification value of each pixel at the end of each year. First, to
identify a conversion of Forest to Disturbed, we identified sequences in
which at least three years of Forest were followed by three years in the
Disturbed category as assessed in the year-end BULC classes. The
second type of LULC change tracked in the annual BULC classifications
was the reversion of Disturbed back to Forest. This was based on a
sequence of three years of Disturbed followed by three years of Forest.
Because the appearance of regrowing Forest in images often appeared
for a time to exist in an indeterminate state between Forest and
Disturbed, some alternate sequences of reforestation were observed and
retrieved as described in Appendix 3. The final type of LULC change
was a reconversion to the Disturbed category, as a second (or, much
more rarely, a third) clearing after reforestation. To find any re-
conversions, we identified pixels in which the deforestation sequence
(three years Forest, three years Disturbed) was again observed after an
initial, earlier clearing and sustained regrowth. We developed the set of
reforestation sequences by closely inspecting fields that, to the eye,
were undergoing the same LULC history, but in which a few pixels had
similar but slightly non-standard LULC histories in Events and BULC.
After a sequence was detected, the year of the change (such as from
Forest to Disturbed) was recorded.

3. Results

3.1. BULC time series for the Roosevelt River region

The time series of Events, before introducing them into BULC, was
not a realistic portrayal of true LULC change in the Roosevelt River
region. Because of the strengths and weaknesses of different sensors, the
amount of cloud and haze, missing data, and classification error, in-
dividual Events of the time series differed considerably from each other
and could not be simply superimposed and analyzed as a meaningful,
realistic time series (Appendix 2). A given pixel might be classified in
the Events as Forest on one day, Water the next, then Disturbed, then
Forest again. When considered as a series, the individual Event classi-
fications disagreed on important, basic characteristics like the propor-
tion of Forest cover—in two consecutive 1991 Events, for example, one
Event estimated 94.4% Forest and the next, from a few weeks later,
estimated 95.9%. Even more importantly for mapping a coherent time
series, the set of Events disagreed substantially among themselves on
the locations and patterns of the LULC classes within the study area.

BULC interpreted the information contained in the Events to pro-
duce a continuous, coherent LULC time series for 140 imagery dates
between 1972 and 2016 (Appendix 4). The series assessed, for each
time step (e.g., for the dates of Fig. 4), its best estimate in every pixel,
even those that were not imaged for a given time step (corresponding to
the No Data areas in Fig. 3). With updates on average several times each
year, the series showed the varieties of LULC change dynamics over the
entire satellite era. These included new deforestation between 1982 and
2006 in the southwestern part of the study area; abandonment and
reforestation that split a large field in the southeast into two; small,
isolated clearings amid large, contiguous ones in the center of the study

area; and deforestation, regrowth, and subsequent reclearing (e.g., in
the extreme north center of the study area).

The BULC time series estimated that the proportion of Forest in this
study area fell from nearly 100% in 1972 to around 93% in 2016, a net
forest loss of 795 km2 (Fig. 5). The unbiased assessment of map areas
(Stehman, 2014), which uses the characteristics of the accuracy as-
sessment points to account for sampling bias and the size of sampled
strata, estimated that there was even less forest in the region at the end
of the time period: 90.6% in 2016, for a net loss of 1068 km2. Although
the downward trend in forest cover was very roughly linear across the
time series, there were several periods at which net forest loss occurred
at higher rates: notably, between 1979 and 1982, adjacent to the
Roosevelt River in the north of the study area; between 1996 and 2000
in the center of the study area; and in 2004–2005 throughout the re-
gion, after which deforestation continued but slowed considerably, at
least until this study's 2016 end date (see an animation of the time
series in Appendix 4).

3.2. BULC and event accuracy

The Overall Accuracy of the entire BULC time series averaged 98%
in the unbiased calculation and 90% in the standard formulation
(Fig. 6, Table 1), well above the recommended threshold of 85%
(Foody, 2002; Thomlinson, 1999). Average per-class Producer's and
User's Accuracy values were similarly high (Table 1), though with some
aspects that merit further discussion below.

The Producer's Accuracy for the Water class (Fig. 6, second panel)
illustrates several important aspects of the BULC time series. Stretches
of several rivers in the Roosevelt region were too narrow to be classified
reliably as Water in MSS imagery: in the early part of the satellite re-
cord when MSS images provided the only satellite data, narrow rivers
were typically classified as their surrounding Forest class. This limita-
tion was reflected in the BULC time series (Fig. 4, left), in which large
stretches of narrow rivers were classified as Forest until the arrival of
TM images (Fig. 4, middle, particularly in the southwest part of the
study area). These resolution-driven constraints can also be easily seen
in Appendix 4.

When the accuracy of the BULC Water class was estimated with both
the standard Congalton (1991) and the unbiased Stehman (2014) for-
mulas, different opinions emerged (Fig. 6, second panel). In a series
built from MSS Events that had quite high omission error, the Con-
galton values record that 60%–75% of the true water pixels were
properly classified as Water during the MSS era; this matches what is
seen at finer viewing magnifications and the informal observation that
one river was wide enough to be mapped with MSS, while the other was
mostly not. Soon after TM imagery was introduced in the mid-1980s,
BULC's ability to discern these rivers quickly jumped to around 90%,
where it remained stable. In contrast, the unbiased accuracy estimates
were susceptible to large, unrealistic jumps and plateauing (Fig. 6,
second panel). This is because sample points of the very small Water
class were sometimes near to the very large Forest class, which made
the unbiased accuracy estimates unstable based on the behaviour of a
few accuracy assessment points. In our judgement, the Congalton cal-
culations provide a more realistic and better-behaved estimate of
omission error for the Water class.

For the Disturbed class, the BULC time series had low omission error
(Fig. 6, third panel) for most of the time series—from about 1980 until
the present. Early in the satellite era, however, the Producer's Accuracy
began low–not because of poorly classified imagery, but because of
updating delays due to infrequent imagery, during a period when the
amount of Disturbed area happened to be rapidly increasing. BULC had
been parameterized to confirm new disturbances only after several
images had been collected, which equated at that time to a year or
more. In the study area, the most apparent omission in the 1970s was
located in the southeastern part of the study area, in which a very large
forest clearing in mid-1976 (as evidenced by eye on the Landsat image
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and the Event, as visible in Appendix 4) was not confirmed until mid-
1977. This time lag was manifested as a low Producer's Accuracy, which
resolved itself only when new relatively clear imagery later arrived
quickly enough for BULC to catch up to the then-current LULC pattern
of Disturbed area.

The User's Accuracy of the Disturbed class (Fig. 6, fourth panel) is
informative for several reasons. First, BULC is able to synthesize LULC
maps of Disturbed areas from very low-quality inputs, especially for the
period prior to 1991 (compare the Event bars of Fig. 6 with the accu-
racy estimates). In our investigation of the accuracy assessment results,
most of the commission confusion did not come from entirely un-
disturbed areas that were misclassified, but rather was principally due
to evaluator uncertainty about when abandoned or fallow agriculture
land had regrown sufficiently to be properly called Forest. With a

substantial proportion of the Disturbed area in some form of recovery
throughout the process, this uncertainty in labeling the reference data
drove what was marked as commission error. There were a few places
marked as Disturbed that were never farmed (rock faces, permanent
sandbars), but these were a diminishingly small part of the signal as
agricultural conversion continued.

3.3. LULC trends through time in the Roosevelt region

The BULC time series indicates that between 1972 and 2016 a total
of 980.46 km2 of the study area was converted from Forest and kept in
the Disturbed category for at least three years, amounting to about
8.3% of the study area. Abandonment of disturbed land for a long en-
ough period to revert to the Forest class was seen in 27% of lands

Fig. 4. a, b, c: BULC time series excerpted for July 31, 1982, August 18, 2006, and June 15, 2012, corresponding to the same panels in Fig. 3.

Fig. 5. Forest cover proportion in the study area from 1972 to 2016 time as estimated by individual Events (dotted dark gray lines) and the corresponding BULC
classifications (solid line). The unbiased estimate of forest cover proportion (dashed line) with calculated confidence intervals (dotted light gray lines) indicates even
less forest than that seen on the BULC classification maps. Note: because very small Events (such as those made with ASTER) may cover only part of the study area,
some of the volatility of this proportion in Events in later years was due to smaller footprint: Events covering a smaller area were more likely to have an un-
representative proportion of forest.

J.A. Fortin, et al. Remote Sensing of Environment xxx (xxxx) xxxx

7



(caption on next page)

J.A. Fortin, et al. Remote Sensing of Environment xxx (xxxx) xxxx

8



cleared once; about 22% of those reforested lands were later cleared
again (Fig. 7).

The reforestation proportion was comparable to but somewhat
lower than that estimated in other studies across much larger areas
(e.g., Cardille and Foley, 2003; Houghton et al., 2000). The discrepancy
may illustrate geographic differences, but more likely reflects the re-
latively restrictive definition of reforestation in this study—that is, land
recovered enough to be classified again as Forest for a sustained period.
The estimated amount of reforestation is not a function of BULC per se;
rather, it is a reflection of several factors, including the definitions of
deforestation in the post-processing sequence matcher, the LULC cate-
gories chosen for classifying Events and the sensitivity of the classifi-
cation algorithms and training to those classes. Analysts wanting to do a
more specific evaluation of regrowth and subsequent clearings could
produce a new series of Events that took specific care to identify LULCs
of interest, e.g., recent abandonment, second-growth forest, pasture,
and others. Those Events could be combined in BULC in the same way
described here, and interpreted accordingly.

The analysis of the full satellite record can be used to see the be-
ginnings of conversion for modern agriculture in the Roosevelt River
area. The complete time series of BULC classifications shows the de-
velopment of the region from a nearly unfarmed area to one undergoing
steady conversion to an agricultural landscape. This is consistent with

the surrounding region, notably even more extensive conversions in
Rondônia to the west and Mato Grosso to the east. The image of change
complements and extends the record of Hansen et al. (2013), who found
forest loss in the same parts of the study area in recent decades. The
assembled multi-decade LULC history (Fig. 8, Fig. 4, Appendix 4) shows
that conversion for agricultural uses since 2000 is broadly consistent
with its longer history: the region has been developing continually since
the 1970s.

4. Discussion

The synthesis of LULC observations from multiple sensors providing
data of variable density, resolution, and accuracy raises several im-
portant points for discussion. These include: the strengths and weak-
nesses when considering noisy data from early in the time series when
images were rare; factors influencing the quality of the BULC time
series; interpreting the effects of changing spatial resolution through
time and judging the value of images with small footprints; and lim-
itations to the BULC algorithm in this setting.

4.1. Data quality and quantity

When considering how best to incorporate information from the
earliest years of Landsat, we found a tension between the desire to in-
clude as many images as possible from the early, data-poor part of the
time series and the instinct to avoid noisy classifications. Because of
familiar limitations of spectral and spatial resolution in MSS imagery,
early satellite images created poorer classifications than more recent
ones, even into these few relatively distinct categories. On the other
hand, a given image from Landsat 1–4 was a rare early look at the
region and had a high potential, even given its likely flaws, to inform
our understanding of LULC from that time. In effect, earlier observa-
tions were more valuable than more recent ones because of their rarity,
and users might want to expend more effort to create Events from them.
Ultimately, some users might be willing to experiment with including
substantially cloudier imagery at the beginning of the sequence, or to

Fig. 6. Accuracy of the BULC and event classifications through time, for each of 139 events between 1972 and 2016. First panel: Overall accuracy for the BULC time
series and Events. Second panel: Producer's Accuracy for the Water class. Third panel: Producer's Accuracy for the Disturbed class. Fourth panel: User's Accuracy for
the Disturbed class. The complete set of accuracy graphs is given in Appendix 5.

Table 1
Accuracy values for the 1972–2016 time series averaged across the 139 BULC
classifications. Two values are shown for each accuracy component: first the
Congalton (1991) values; second, in parentheses, the unbiased adjustments
made following Stehman (2014). As described in the text each component
captures a different aspect of accuracy.

Omission (producer) Commission (user)

Forest 0.92 (0.99) 0.91 (0.98)
Water 0.84 (0.56) 0.95 (0.94)
Disturbed 0.92 (0.78) 0.88 (0.82)
Overall 0.91 (0.97)

Fig. 7. Annual deforestation, reforestation, and reconversion (in km2) in the Mato Grosso study area, 1975–2014. Deforestation and reconversion are shown as
negative, reforestation as positive.
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include more than a few clear images per year where possible.
Data frequency can affect BULC's detection and estimated timing of

LULC changes. BULC is not limited to any maximum number of images
per year or number of years for its functioning. In a situation where
more images per year were available, this would give the ability for
LULC change in those years to be evaluated more frequently. This
would afford more opportunities to confirm either change or stability in
LULC classes. We found that three (or more) images per year, as seen
here, allows most changes to be identified within a year of when they
occurred. Meanwhile, updates can continue indefinitely into the future
as new evidence arrives. Where data is substantially less frequent,
however, such as early in the satellite era or in extremely cloudy lo-
cations, timely updating is inevitably difficult. For persistent phe-
nomena, limited data availability can greatly affect accurate timing of
LULC. That is, a deforested parcel may eventually be detected and
confirmed, even if the exact timing is not well known. For ephemeral
changes, such as floods, sparse imagery may mean missing an LULC
change altogether.

One of the intended eventual audiences of BULC is users with access
to a platform like Earth Engine but without experience performing

atmospheric corrections, discerning haze in imagery, devising radio-
metric corrections across sensors, and other significant training in re-
mote sensing. Here, despite the quality of the BULC classification op-
erating across multiple sensors, the time series did retain some transient
noise. If desired, much of this noise could be removed with more me-
ticulous preparation of Events, particularly through greater attention to
detail in cloud and cloud-shadow masking at the stage of Event crea-
tion. Given BULC's success in producing a highly credible time series
from many inputs that had severe limitations (Appendix 4), BULC may
be able to make the production of long, accurate time series feasible for
users of moderate remote-sensing experience.

BULC was parameterized to be relatively conservative in its ten-
dency to accept new information, which had several effects. This
parameterization meant that a possible LULC change needed to be
confirmed several times, depending on the strength of the evidence
contained in the Event classifications, before the probabilities flipped
from one category to another. In the later part of the time series, when
observations were plentiful, this conservative parameterization meant
that a valid change (say, to Disturbed) was typically confirmed within
the correct year. Earlier in the sequence, however, forest clearings were

Fig. 8. Date of first clearing in Roosevelt River study area as detected in the BULC time series.
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similarly confirmed after a few images, but the rarity of images at that
time in this area meant that this could be several years later. This had
the effect of lowering the Producer's Accuracy of the Disturbed class
early in the initial years, since at a given moment in the early part of the
sequence, there were areas that had been converted but not yet imaged
often enough to confirm changes. It would be possible, though we did
not do it here, to parameterize BULC to treat evidence from certain
images more (or less) conservatively than their conditional prob-
abilities would indicate. Depending on a study's goals, a user might
wish to weigh early images less strongly (because they are more likely
to contain registration or classification errors) or more strongly, be-
cause a given observation of, say 75% confidence may be considered
much more valuable than no observation at all, in years of rare imagery
and potentially rapid change.

4.2. Changing minimum mapping unit through time

Although the images in the BULC time series all were exported with
20m resolution, the features visible in the series changed as inputs
sharpened over the 45-year series. Just as the size of the smallest fea-
tures visible on different sensors has varied across the long satellite
record, the BULC time series could resolve features of different sizes
throughout the study period. At any point in the BULC time series, the
minimum mapping unit is a product of the interplay between the spatial
resolution of recent Events, the majority filter applied during Event
creation, and the agreement between Events. Using the rule of thumb of
an MMU being four pixels in an image and considering that the filtering
of each Event removes single pixels, we estimate that the MMU during
the MSS era was about 10 ha. For most of the TM era, the BULC output
sharpened to an MMU closer to 1 ha. Near the end of the time series, in
the period closer to the present as platforms have proliferated, esti-
mating the MMU is more complex. The smallest resolvable unit is a
function not only of the minimum input resolution provided, but also its
frequency in the series—when finer-resolution Sentinel imagery was
used frequently at the end of the period, the BULC time series took on
those spatial characteristics and was able to resolve new features- for
example, forest islands in disturbed areas and small reservoirs. But if
Sentinel imagery were only available in one part of the study area, that
sector would become sharper and the rest would retain the information
visible on a 30m image. (In contrast, if only MODIS imagery were
provided to BULC, the output would take on the characteristics of
MODIS data.) In today's potential mix of resolutions from Sentinel-1,
Sentinel-2, Landsat, and others, the MMU of a given date could vary
somewhat across the region depending on the mix of recent images over
parts of the study area. From one perspective, that comports with a
philosophy of using all available imagery to make the best map at every
location. Variability in the MMU across space and time might not be
appropriate for all applications; users who prefer a stricter control over
the spatial characteristics of the BULC time series can either (1) re-
sample all Events to a common, coarse spatial resolution; or (2) coarsen
the BULC output to a common, coarse spatial resolution.

4.3. Initial conditions, event accuracy, and bias

Because BULC builds its time series by considering the accuracy of
an Event versus the previous one, it might seem that the quality of the
very first image would be paramount and drive the success of the entire
BULC run. Somewhat surprisingly, this is not the case in practice.
Because BULC's primary function is to change the state of pixels given
new evidence, a poor initial map is quickly overwritten given a few
Events that present consistent LULC evidence. In testing, we found that
no trace of even an entirely random starting map was evident after
about 6 images. That said, it was fortuitous to begin the sequence with
the very first Landsat image, which was quite clear and created an
excellent starting condition.

BULC follows the evidence from Events to characterize Earth's

surface in a user's desired categories. Systematic errors, such as re-
peated misclassification of an area, in a set of Events cannot be dis-
cerned by BULC and would be interpreted as whatever is indicated by
the Events. Given BULC's design, biases need to be monitored at the
stage of first creating the Events. There is no need, from BULC's per-
spective, for Events to use relatively broad categories as seen in this
study. Event creators might decide to invest the effort to create very
fine-grained classes- consider forest age classes as an example. If ana-
lysts can reliably delineate a set of classes across images (granting oc-
casional errors), BULC can work even very similar categories to fuse the
classifications into a time series.

BULC is best suited for phenomena that have signals that per-
sist—that is, that lasts longer than a few images. Where data is in-
frequent relative to the mapped phenomena, there is a risk of missing
phenomena of interest. For example, floods may be of interest but if
imagery is only available every few weeks, BULC is not the right tool if
the flood only is visible in a single image. In this study, there was a
concern that a short period of reforestation might be missed if it only
occurred for a few years before being reconverted for human use. In this
small area, we could confirm that was not a widespread problem. But in
a larger area in which imagery was sparse and cloudy, transient states
should be interpreted with care.

We have directly graphed and compared the accuracy of Events
versus the BULC time series here, but that strategy has important po-
tential limitations. Because many Event images had footprints of dif-
ferent sizes, each one that was smaller than the full study area inter-
sected with a different subset of the reference data. We gave BULC the
harder challenge of correctly representing the entire study area at all
time points, comparing it against all available reference data at each
time step. In this work, there were enough points to express the quality
of each of the Events fairly. More generally, however, as BULC fuses
data of many different qualities and resolutions, we are uncertain how
best to weigh the contribution of individual images in time series
classifications built from data of unique characteristics. What is a given
ASTER image's value to the process, for example, in sharpening the
classification to sub-30m resolution if it covers only part of the study
area and is of moderate accuracy? In a time series built over an en-
ormous area, the question may be more pressing than it was here in a
study where the image list could be built by hand. It may soon become
important to be able to automate the weighing of several important
criteria (footprint, resolution, accuracy) to judge whether to include an
image in a time series. A strategy for formally considering Events and
each one's effect on BULC classifications through time, accounting for
changing footprints and resolutions, remains to be developed.

4.4. Accuracy in long time series

Accuracy assessment values were useful for a broad understanding
of the utility of the Events and the BULC time series, but they were
inherently limited in ways that, to us, seriously constrained their in-
terpretation for comparisons or their use in isolation from viewing the
Event and BULC time series. For example, the Event from August 18,
2006 (Fig. 3b) was evaluated as having a 95% Overall Accuracy, very
near to the 97.5% result for the BULC time series on that date (Fig. 4b).
Given these high and similar values one might conclude, especially if
one could not view the images of the classifications, that the Event and
the BULC item for those days were equally useful and likely quite si-
milar. Yet the Event, despite its high score, has severe flaws that would
limit its use as a representation of LULC across the study area at that
time, except with additional context that could potentially be found by
incorporating data from other images from the same period. These in-
clude apparent substantial commission errors in the Disturbed category,
as well as no data at all for 19% of the study area.

Surprisingly, we found that the unbiased per-class assessments were
unstable across the time series for the small Water and Disturbed
classes. This was inherent in the methods of calculation of the unbiased
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assessments (Stehman, 2014): reference pixels from these small classes
that were misclassified as Forest had enormous potential effects on per-
class estimates despite the underlying BULC maps being nearly indis-
tinguishable (Fig. 6, Appendix 4). Except for these abrupt dips and
jumps, the estimates of Congalton (1991) are similar in magnitude to
the unbiased estimates in the Water and Disturbed classes, and we
advise looking to the Congalton estimates to understand the stability of
the BULC time series in those classes.

Sharpened resolutions over the satellite era tended to improve ac-
curacy in the BULC time series, though not always. In the earliest part
of the satellite record, the Water class revealed a demonstrable effect of
improving spatial resolution from 80m to 30m. When compared to the
80m MSS resolution, the Roosevelt River and the Rio Branco to its west
were narrower than could be reliably resolved in our classifications.
Given the MSS obstacles of coarse spatial resolution, low radiometric
resolution, and residual registration uncertainty, the Producer's
Accuracy for Water remained at levels we expected, respectable but
relatively low (~60% in the stable Congalton estimates) for much of the
early satellite period until Landsat-5 was launched. From that point
forward, both User's and Producer's Accuracies were quite high as the
borders of the rivers became increasingly well-defined through time
once sensors with higher spatial resolution were introduced. Recent
improvements in spatial resolution through time were only somewhat
reflected in the standard accuracy values. The effective spatial resolu-
tion of the BULC time series adjusts quickly to the data it is fed; this
resulted in a sharpening of the classification through time as sensors
with higher spatial resolution were introduced. The improvements in
resolution from ASTER, Sentinel-1, and Sentinel-2 beginning in 2014
did not have any obvious effect on the accuracy measures, perhaps
because the quality of the BULC products was already high.

4.5. Limitations in this study

Although this analysis was successful at creating a highly plausible
LULC time series formed by synthesizing multiple sources of data,
several limitations were apparent. The BULC classification's re-
presentation of Disturbed was limited by a confluence of factors be-
tween 1973 and 1979. These years were good for classifying Water and
Forest, but quite poor for the Producer's Accuracy of the Disturbed
class, which was low for several reasons. First, by chance there were no
useable images in this region for 1974, making an update impossible in
that year. Second, agriculture appears to have increased considerably in
that period. Third, the expansion came at a time when there had been
very little prior evidence of Disturbed land in the study area. Given
these three obstacles, BULC was (temporarily) unable to produce a
classification that scored a high Producer's Accuracy for Disturbed for
part of 1975. With no images during that period, a large amount of land
was disturbed was established without being concurrently observed.
When a period of clear imagery returned, BULC needed to “catch up” to
a better LULC map, which took several iterations for the new disturbed
areas to be confirmed. Because there was very little of the that class
before that point, errors in the newest areas played a heavy role in
lowering the Producer's Accuracy values until enough new imagery
arrived. For users interested in noting the precise timing of changes,
however, disturbance dates should be interpreted with caution, in that
the exact year of a change might be missed by one or even two years,
depending on the rarity of new data. Within this study, that poor MSS-
era performance illustrates the challenge of LULC mapping in low-data
situations.

Users interested in more accurate timing of LULC changes in low-
data conditions have several options within this analysis framework.
First, it would be reasonable to assess the accuracy of BULC not at every
incorporation of an Event, but on an annual basis as in many other
time-series studies (e.g., Hawbaker et al., 2017; Song et al., 2014).
Second and more interestingly, one could choose a second para-
meterization for BULC that is different for eras when data was known to

be sparse. In this study, the timing noted for conversions to Disturbed
was typically delayed by several Events as BULC waited for confirma-
tion of changes. This was as intended, given that BULC was para-
meterized to not react too strongly to each new Event, in favor of sta-
bility in avoiding a classification series fraught with noisy, incorrect
transitions. One could add the option of a specialized MSS-era para-
meterization that would be more trusting of each Event. This would
improve the timing of disturbances but would, however, also have the
effect of more errors of commission, as stray errors in Events might be
immediately accepted by BULC; in general, the user could choose the
level of acceptable noise. Separately, one could expand the functioning
of the sequence detector to detect when a confirmed LULC change had
first been seen in the series of Events. More generally, however, data
rarity was less of a limitation in recent years and can be expected to
lessen further as data becomes much more available as new instruments
are launched, provided data access remains free. In processing future
imagery from different platforms, it seems much more likely that the
delay of a few Events might translate to a confirmation delay of a few
weeks.

5. Conclusion

When Theodore Roosevelt and his party passed through this area a
century ago it was, apparently, not so different from how the region
appeared six decades later, at the dawn of the satellite age in 1972. The
earliest Landsat images and associated BULC classifications, for 1972–3,
show only one bit of estimated agriculture. By 1980, however, large-
scale land clearing had already begun to change regional-scale LULC
patterns. The intervening four decades, unlike the previous six since
Roosevelt's journey, were times of remarkable change in the region:
between 6 and 10% of the landscape appeared to be in active agri-
culture in 2016, a number that may seem small but had created ob-
vious, visible, and long-lasting patterns on the landscape of the region.

The Bayesian Updating of Land Cover algorithm has several features
that should be of interest in remote sensing's new age. Perhaps most
importantly, as a sensor-independent algorithm it is able to benefit
directly from the rich legacy of sensor-specific techniques developed
over decades of scientific effort. In this study, simple CART models
produced each Event; other users of BULC might choose to produce
Events using more sophisticated techniques they deem useful, such as
texture analyses, band transformations, and other techniques developed
in the context of one or two sensors. By working with classified maps,
BULC can rely on analysts to choose the appropriate legend, image
quality, and classification strategy for a particular study in order to
produce Events to a standard acceptable for the project. BULC's struc-
ture should be able to create time series that synthesize data from
virtually any source. For tropical settings like that explored here, for
example, it would be simple to gather more than the self-imposed limit
of three images annually in recent years, and to more deeply employ
radar data, which may be of substantial use where multiple optical
sensors frequently return cloudy images. Using BULC could open time
series analysis to rarely employed but high-quality satellite data, up-
dating the time series for a pixel only when satisfactory evidence arrives
from any sensor. In its automatic tracking of the estimated rise and fall
of probabilities of these categories, BULC provides a clear mechanism
for managing a vector of probabilities through time. In settings with,
say, 5 or 10 classes, BULC can maintain an evidence-based estimate of
probabilities at each time step, recording how more than one class's
probability might increase in light of new data, while others decrease.

This study presented a use case for tracking deforestation over the
entire satellite record, employing a very wide range of sensors from
1972 to 2016 in a cloudy region. Future applications could include
either land or water monitoring over larger areas, integrating data from
an arbitrary number of sensors of different types. As more and more
remote sensing data from both the past and future are brought online,
BULC can help to separate signal from noise, leveraging the unique
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perspectives of each sensor to synthesize decades of views of Earth's
surface.
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