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.S. Geological Survey (USGS) National Land Cover Database (NLCD) 2001, which
represents the nation's land cover status based on a nominal date of 2001, is widely used as a baseline for
national land cover conditions. To enable the updating of this land cover information in a consistent and
continuous manner, a prototype method was developed to update land cover by an individual Landsat path
and row. This method updates NLCD 2001 to a nominal date of 2006 by using both Landsat imagery and data
from NLCD 2001 as the baseline. Pairs of Landsat scenes in the same season in 2001 and 2006 were acquired
according to satellite paths and rows and normalized to allow calculation of change vectors between the two
dates. Conservative thresholds based on Anderson Level I land cover classes were used to segregate the
change vectors and determine areas of change and no-change. Once change areas had been identified, land
cover classifications at the full NLCD resolution for 2006 areas of change were completed by sampling from
NLCD 2001 in unchanged areas. Methods were developed and tested across five Landsat path/row study sites
that contain several metropolitan areas including Seattle, Washington; San Diego, California; Sioux Falls,
South Dakota; Jackson, Mississippi; and Manchester, New Hampshire. Results from the five study areas show
that the vast majority of land cover change was captured and updated with overall land cover classification
accuracies of 78.32%, 87.5%, 88.57%, 78.36%, and 83.33% for these areas. The method optimizes mapping
efficiency and has the potential to provide users a flexible method to generate updated land cover at national
and regional scales by using NLCD 2001 as the baseline.

© 2009 Elsevier Inc. All rights reserved.
1. Introduction
Land cover (LC) composition and change are important aspects for
many scientific research and socioeconomic assessments. Data related
to LC types and distributions are widely used to assess landscape
condition and to monitor status and trends of ecosystem change over
a specific time period (Coppin et al., 2004). Inventory and monitoring
of the types and locations of land use and land cover (LULC) change
provide valuable information to better understand change mechan-
isms and to model impacts on the environment and associated
ecosystems (Homer et al., 2004; Loveland et al., 2002; Lunetta et al.,
2002a,b; Xian & Crane, 2005). Continuous, accurate, and up-to-date
land cover data are important for natural resource and ecosystem
management and need to be based on consistent monitoring of
landscape attributes over time. However, at regional or national scales,
such efforts face a number of challenges, including timely acquisition
of data, the high cost of creating national products, and the
.
.
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development of appropriate analytical techniques to successfully
evaluate change.

The National Land Cover Database consists of two major data
releases based on a 10-year cycle. These include a circa 1992
conterminous U.S. land cover dataset with one thematic layer of
land cover (NLCD 1992) (Vogelmann et al., 2001), and a circa 200150-
state/Puerto Rico updated U.S. land cover database with three
thematic layers including land cover, percent imperviousness, and
percent tree canopy (NLCD 2001) (Homer et al., 2004; Homer et al.,
2007). With these national data layers, there is often a 5-year time lag
between the image capture date and product release. In some areas,
the land cover can undergo significant change during production time,
resulting in products that may be perpetually out of date. To address
these issues, a circa 2006 NLCD land cover product (NLCD 2006) was
conceived to meet user community needs for more frequent land
cover monitoring (moving to a 5-year cycle) and to reduce the
production time between image capture and product release. NLCD
2006 is planned to provide the user both updated land cover data and
additional information that can be used to identify the pattern, nature,
and magnitude of changes occurring between 2001 and 2006.

To achieve this goal in a cost-effectivemanner, onepossible approach
would be to identify areas of LC change occurring subsequent to 2001
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and to update LC data only for these areas. For the areas that have not
changed, the NLCD 2001 land cover would remain the same. One
advantage in monitoring LC change with remotely sensed data is that
temporal sequences of images can accurately indicate spectral changes
based on surface physical condition variations, assuming that digital
values are radiometrically consistent for all scenes (Cakir et al., 2006).
Multitemporal, medium resolution remotely sensed data can be used to
identify such spectral changes and extrapolate LC types for updating LC
classification over a large geographic region (Lunetta et al., 2006).

To develop a practical method for large-area change monitoring
using remote sensing data, significant reduction of inter- and intra-
annual vegetation phenology variance and removal of image noises
caused by atmospheric effects are required. Factors contributing to the
potential inconsistency in measured radiance include changes in
surface condition, illumination geometry, sensor calibration, and
atmospheric condition (Jensen et al., 1995). For most change detection
applications, variations in solar illumination conditions, atmospheric
scattering and absorption, and detector performance need to be
normalized (Coppin et al., 2004). Among several relative radiometric
normalization methods (Furby & Campbell, 2001; Hall et al., 1991),
relative radiometric normalization techniques have proved useful in
Fig. 1. Flowchart of the prototype method for NLCD 2006 updating by using ch
correcting data inconsistencies resulting from many different effects
(Coppin & Bauer, 1994; Collins & Woodcock, 1996; Elvidge et al., 1995;
Lu et al., 2004; Nelson et al., 2005). The normalization technique using
a linear regression approach usually derives a correction factor for the
subject image relative to a reference image (Singh, 1989). Most early
approaches of the relative radiometric normalization were based on
manually selecting time-invariant features (Elvidge et al., 1995; Yang
& Lo, 2000). Recently, a multivariate alteration detection (MAD)
approach was introduced for bitemporal image change detection
(Nielsen et al., 1998, 2002) and was used for selecting time-invariant
pixels to normalize images (Canty et al., 2004). However, the
usefulness of the normalized image obtained from the MAD method
for land cover related change detection is not clear. By using
normalized images for change detection, a change vector analysis
(CVA) designed to interpret image transformation results by specify-
ing the magnitude and nature of change was usually used for
determining changes associated with LC change (Chen et al., 2003;
Lambin & Strahler, 1994). To achieve optimal results by using
normalization and CVA, anniversary dates are often used for
bitemporal change detection because they minimize discrepancies
in reflectance caused by seasonal vegetation cover variations and Sun
ange vector analysis and decision tree land cover classification algorithm.



Table 1
Landsat image locations, paths and rows, acquisition dates, and sources.

Location Path Row Date Landsat

Manchester, New Hampshire 13 30 8/31/1999 ETM+
9/24/2005 TM

Jackson, Mississippi 22 38 7/15/2000 ETM+
6/6/2006 TM

Sioux Falls, South Dakota 29 30 6/30/2000 ETM+
6/23/2006 TM

Seattle, Washington 46 27 9/25/2000 ETM+
9/2/2006 TM

San Diego, California 40 37 10/4/2001 ETM+
2/12/2006 TM
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angle differences. The phenological stability of summer and winter
seasonal imagery is often best for change detection applications
(Hame, 1988). However, not all radiometric variations detected from
multitemporal satellite images are associated with authentic LC
change. Correct identification of radiometric changes does not
guarantee that these changes can be correctly classified. A thorough
knowledge of existing LC condition needs to be incorporated with
remotely sensed change analyses to provide useful information in
determining LC change directions (Comber et al., 2004).

Here we report on the use of two dates of Landsat imagery to
update NLCD 2001 land cover to circa 2006. Proposed methods
involve change vector analysis to identify changed pixels, coupled
with decision tree classification (DTC) trained from unchanged pixels,
and label changed pixels to the updated land cover type. Methods
proposed here should greatly accelerate the ability to update NLCD to
circa 2006. Similar approaches were also used to produce percent
impervious surface data for the five areas, and those results will be
presented in a separate article.

2. Methodology

The proposed CVA–DTC method requires image preprocessing,
image normalization, change and no-change detection, training data
sampling, land cover classification, and postmapping analysis. The
general procedures are summarized in the flowchart displayed in Fig. 1.

2.1. Landsat image selection and preprocessing

The proposed algorithm requires a two-date pair of Landsat scenes
in the same path and row for change detection and land cover
classification. To reduce the impacts of seasonal and phenological
variation, the image pairs were selected in the same season or nearly
the same season for all target areas (Table 1). The temporal ranges for
most scenes were restricted to within about one month, but the San
Diego scene differs by nearly four months because no cloud-free
image pair was available for the same season. To satisfy the
preprocessing requirement for change detection, multitemporal
image registration and radiometric and atmospheric corrections
were accomplished first. All images were acquired from the USGS
Earth Resources Observation and Science (EROS) Center and had
terrain correction applied through the National Landsat Archive
Production System (NLAPS). The corrections included radiometric
and geometric precision correction and had a registration error of less
than 5 m. The atmospheric corrections also were conducted by
converting digital number to at the top of atmospheric reflectance
using the same procedures as for NLCD 2001 (Homer et al., 2004).

2.2. Landsat imagery normalization

The detection of landscape change revealed by variations in surface
reflectance from multidate satellite images requires radiometric
correction. The relative correction approach is preferred because no
in situ atmospheric data are required for the correction. To perform a
relative radiometric normalization, one image is used as a reference so
that the radiometric properties of the subject image are adjusted to
match the reference. To update NLCD 2001 to 2006 for the entire
United States, hundreds of Landsat scenes are required for change
detection and LC classification. A cost-effective and operationally
practical approach is needed to perform relative radiometric normal-
ization for these scenes.

Among many normalization methods, linear regression normal-
ization has been developed and proven as a successful approach to
reveal changes in surface reflectance from multidate satellite images
(Schott et al., 1988; Yang & Lo, 2000). One fundamental premise of the
method is that the radiance reaching a satellite sensor in a given
spectral channel can be expressed as linear function of reflectivity.
Also, the assumption that atmospheric and calibration differences
between scenes are linearly related simplifies the normalization
procedure so that it simply involves relating each pixel of the subject
image (usually in late date) and reference image (usually in early
date) band by band to produce a linear equation by a least-squares
regression and can achieve an optimal performance (Yang & Lo, 2000).
In addition, the method does not require extra segmenting sample
sets from images and is easy to implement. The linear equation
normalization was chosen here with consideration of operational
feasibility.

Accordingly, scene pairs are normalized using the following linear
regression formula

si = aixi + bi ð1Þ

where xi is the digital number (DN) of band i in the image that is to be
normalized (subject image) and si is the normalized DN of band i in
the subject image, ai is the slope or gain, and bi is the intercept or
offset. The equation accounts for the difference in the mean and
variance between radiance values in different dates. The transforma-
tion coefficients ai and bi are computed from a linear regression
carried out on two radiometric images, in which clouds and shadows
are excluded, for the whole scene by ai=Vs,i/Vr,i and bi=Mr,

^
i−aiMs,i,

where Vs,i and Vr,i are the variances of subject and reference images in
band i, respectively, and where Ms,i and Mr,i are the means of subject
and reference images in band i, respectively.

2.3. Change vector analysis

Change vector analysis focuses on multivariate change detections
for two-date images. To implement CVA, the normalized and reference
images are used to calculate a CV that represents the spectral feature
differences that may represent changes in land use and land cover
types between two dates. If a pixel's values in two images on dates t1
and t2 are represented by two vectors R and S, respectively, vectors are
expressed as

R =

r1
r2
v
rn

2
664

3
775; S =

s1
s2
v
sn

2
664

3
775 ð2Þ

where n is the number of bands. A CV is then determined by

ΔV = R − S =

r1 − s1
r2 − s2
: : :

rn − sn

2
664

3
775 ð3Þ

The change magnitude is calculated with

j ΔV j = r1−s1ð Þ2 + r2−s2ð Þ2 + : : : + rn−snð Þ2
h i1=2 ð4Þ
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Fig. 2. The five study sites from different regions of the conterminous United States. The prototype method has been tested in these areas for updating NLCD 2001 to circa 2006.
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where ||ΔV|| represents the total differences and includes all the
changed or unchanged information between t1 and t2 for a given
pixel. Generally, a greater ||ΔV|| indicates a higher possibility of
change in land cover type, and a specific threshold is usually used to
determine pixels of change or no-change.
2.4. Threshold for bitemporal change detection

Usually, the selection of a threshold to identify a changed or
unchanged pixel can be done empirically through experience or
objectively through an optimal threshold search algorithm (Chen
et al., 2003). Typically, a single threshold is used for a whole scene to
determine whether the physical characteristics within a pixel are
changed or not changed between two dates (Morisette & Khorram,
2000). However, LC type is not unique within a Landsat scene
footprint, and the single threshold obtained from CVA is not always
appropriate to segregate areas of change or no-change (CNC). For
example, the dynamic range of ||ΔV|| from agricultural land might be
larger than that of clear-cut areas in forestland. If a single threshold is
used to segregate areas of change or no-change for all land cover
types, then changed areas can be either overextracted or under-
extracted. Here, we propose a multithreshold approach to define
pixels of change or no-change by assuming that thresholds deter-
mined by the magnitudes of the change vector depend on different
land cover categories, and multiple thresholds are necessary for
Fig. 3. Landsat images in early 2000s, 2006, and 2006 normalized images (from left to right).
(d), and San Diego (e) scenes. The black rectangles in the middle panels indicate areas of in
change determination. Generally, if the change vector magnitude of a
pixel for a certain land cover type is larger than the mean plus an
adjustable parameter multiplied by the standard deviation of the
histogram for the specific LC category, the pixel is defined as a changed
pixel; otherwise, the pixel label is unchanged. To simplify the class
legend during threshold calculations, the NLCD 2001 product is re-
categorized to eight LC classes according to the Anderson Level I
classification (Anderson et al., 1976). The condition is defined by
following constraints

CVj x; yð Þ = change if j ΔVj x; yð Þ j z j Vj j + ajσ j

no� change if j ΔVj x; yð Þ j b j Vj j + ajσ j

(
ð5Þ

where j represents an LC class, ||V
P
j||is the mean of change vector (CVj)

for the LC type j, σj is the standard deviation of the CVj, and aj is an
adjustable parameter. Morisette & Khorram (2000) demonstrated that
the optimal range of aj is from 0.0 to 1.5 for a single threshold. Thus,
the range of aj, depending on the LC type, is retained from 0.0 to 1.5.

2.5. Training dataset

Change pixels are classified by using the same decision tree
classification algorithm used for the NLCD 2001 LC classification. A
training dataset is required to train themodel to build up relationships
for different LC categories. All training data are selected through
Panels from top to bottom represent Manchester (a), Jackson (b), Sioux Falls (c), Seattle
terest that will be enlarged in other figures.
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randomly stratifying samples from areas designated as unchanged to
assure that the same classification accuracies as NLCD 2001 are kept in
the training dataset. Training samples include all LC classes with the
number of samples for any particular LC class held proportional to the
total number of pixels in that class. Therefore, an adequate number of
pixels for each LC class is included in the training dataset for a study
area. These samples are then used to create an environment file that
serves as the dependent variable for the decision tree model.
Independent variables used as input to the model are 2006 Landsat
reflectance (bands 1–5 and 7), the thermal band, the tasseled-cap
derivative, and digital elevation data. Separate and unique classifica-
tion models are developed for each study area.
Fig. 4. Means and standard deviations of change vectors derived from different land
covers determined by Anderson Level I classification in the Seattle and San Diego areas.
3. Study area descriptions

To examine the proposed algorithms, five study areas were
selected: the New England area including parts of New Hampshire,
Vermont, Massachusetts, and New York; southern Mississippi and the
eastern part of Louisiana; eastern South Dakota and parts of Nebraska,
Iowa, and Minnesota; Washington; and southern California. Accord-
ingly, five Landsat scenes were acquired from these locations. Each
scene was named after a major city included within the scene
footprint: Manchester, New Hampshire; Jackson, Mississippi; Sioux
Falls, South Dakota; Seattle, Washington; and San Diego, California.
Geographic locations and spatial coverage of these scenes are
displayed in Fig. 2. Table 1 presents details of paths and rows,
acquisition dates, and locations for each Landsat scene. Areas covered
by the five scenes have a wide range of LC types and represent the
varying characteristics of ecoregions associated with NLCD 2001
mapping zones. The study areas contain 18 or 21% of Level III
ecoregions of the conterminous United States (Omernik, 2004). These
areas were selected because they experienced both natural and
anthropogenic disturbances and contained all LC components for
calibrating and validating the algorithm for LC change classification.

The first test area was within the Manchester scene in the New
England region, located in the northeastern United States. More than
74% of the areal land is forestland with over 35% deciduous forests
according to NLCD 2001 (all LC information is referred as NLCD 2001
hereafter). Agricultural and urban lands are the second and third
largest LC types, respectively, in the region. Agricultural lands are
concentrated in the southern and western parts of the region, and
forestlands are widespread.

The second test area was within the Jackson scene in southern
Mississippi, located in the southeastern United States. The largest LC
type in the region is forest with evergreen forest covering more than
25% of the land. The warm and humid climate makes vegetation
canopies abundant in the region. Agriculture and shrub are the second
and third largest LC types, respectively. Forest and agricultural lands
are widely distributed in the region.

Our third test areawas within the Sioux Falls scene in southeastern
South Dakota, northeastern Nebraska, southwestern Minnesota, and
northwestern Iowawithin theMidwestern region of the United States.
The regional landscape contains about 74% agricultural land (with 60%
cultivated croplands), about 13% grasslands, and widely distributed
urban areas surrounded by agriculture. The seasonal and phenological
variations from agriculture and grasslands presented a significant
challenge for LC change detection and classification.

The fourth test area was within the Seattle scene in Washington
state, located in the northwestern corner of the United States. Major
cities in the area include Seattle and Tacoma. Over 56% of the land is
classified as forestland with about 48% evergreen forest. The second
largest LC type is urban, covering more than 10% of the land. Most
urban land is distributed along the Interstate 5 corridor and
concentrated in the Seattle and Tacoma areas. Shrubland is the third
largest LC type and covers more than 9% of the land.
The fifth test area was within the San Diego scene in southern
California, located in the southwestern corner of the United States.
Majormetropolitan areas include San Diego and southern Los Angeles.
The first three largest LC types are shrubland, urban areas, and
grassland covering about 48%, 25%, and 14% of the land, respectively. A
large part of the urban land is distributed along the coast from the
northwest to the south. In contrast, most shrublands and grasslands
are in mountain areas on the eastern part of the region where a few
forestlands are also observed. Most coastal areas are well developed
and new urban developments are anticipated off the coast on lands
that were covered by shrub and grass in 2001.

4. Results

4.1. Normalization and change detection

After the linear regression was performed for each image pair of
selected paths and rows, normalization procedures were applied to
the subject image to obtain a normalized image. To facilitate the visual
comparison, Landsat image pairs comprised of bands 4, 3, and 2 and
normalized images were produced for the five study areas (Fig. 3).
Visual inspections for all images indicated that there were more
spectrally variant patches in the Jackson and Sioux Falls scenes than in
other scenes. Many variant patches were related to temporal changes
in vegetation conditions associated with agricultural activities.

The CVs calculated from normalized and reference images
indicated that CVs usually have large dynamic ranges on different
landscapes. Fig. 4 demonstrates values of CV and associated standard
deviations for different LC types in Anderson Level I in the Seattle and
San Diego areas. Accordingly, dynamic ranges of CVs vary with LC
types; for example, water has a relatively small mean CV because of
the existence of a large water body that has relatively small temporal
variation in reflectance. Both mean and standard deviation of CV for
the barren land are relatively large, indicating large spectral variation,
especially apparent on high elevation mountains of the Seattle region.
In addition, the forest has relatively small means of CV for both areas,
and snow or ice has the largest mean and standard deviation of CV for
the Seattle area. Clearly, multiple thresholds based on LC types were
necessary for segregating pixels that experienced true physical
changes but had small CVs compared to those that had false physical
change but had large CVs. Areas of CNC for all five study regions were
determined by applying multiple thresholds for CV images.

To visually inspect CV and areas of CNC in detail, pairs of Landsat
images, CVs, and final images of CNC are displayed (Fig. 5) for the five



Fig. 5. Panels from left to right are subset areas indicated by rectangles in Fig. 3 for Landsat images in early 2000s, 2006, change vectors, and images for areas of change and no-change.
Panels from top to bottom are portions of the Manchester (a), Jackson (b), Sioux Falls (c), Seattle (d), and San Diego (e) areas.

1139G. Xian et al. / Remote Sensing of Environment 113 (2009) 1133–1147



Fig. 6. Panels represent land cover distributions in 2001 and 2006 for the five study areas. Panels a and b are for Manchester, c and d are for Jackson, e and f are for Sioux Falls, g and h are for Seattle, and i and j are for San Diego areas,
respectively.
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Fig. 7. Panels represent land cover conditions in 2001, 2006 for the corresponding areas displayed in Fig. 4. Pairs from left to right are for land cover in 2001 and 2006 in the
Manchester, Jackson, Sioux Falls, Seattle, and San Diego areas, respectively.
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small areas defined by rectangles in Fig. 3. Changes in the forestlands
observed from reflectance images are appropriately labeled in both
the Manchester and Seattle areas (top and next to the bottom panels).
A new reservoir and nearby forest disturbances in the Jackson scene
are identified in changed areas (the second panels). Changes
associated with urban development in both the Sioux Falls and San
Diego scenes are also identified (the third and bottom panels).
Generally, pixels having relatively large magnitudes for CV of a certain
land cover type were labeled as changed areas, and pixels having
relatively smaller magnitudes were classified as unchanged areas.
These images of CNC were formatted as binary images and used as
mask files for further LC classifications.

4.2. Land cover classification

The NLCD 2001 Anderson Level II LC product was used as a baseline
for acquiring training datasets from unchanged pixels for the five
study areas. The modeling results, having cross-validation errors
retained within 4% to 10%, were used to update LC status to the
nominal date of 2006 for the five study areas. Both 2001 LC and newly
updated 2006 LC images for these areas are displayed in Fig. 6. In the
Manchester scene (Fig. 6a and b), land cover changes are observed in
the region due to the forest harvest and replanting cycle, as well as
new urban development. Forest harvesting usually implemented
clear-cut or partial clear-cut (thinning) on industrial and private
forestlands. Meanwhile, some cutting areas in the early 2000s are
recovered from clear-cut patches to shrublands or partial-cut patches
to forestlands in the 5-year period. In the Jackson scene (Fig. 6c and d),
the forest harvest and replanting cycle frequently changes LC
conditions in the region. With optimal climate conditions for forest
regrowth, trees can grow about 1 to 1.5m per year (Dolan et al., 2007),
allowing visible forest recovery in harvested areas within a 5-year
period. Other major LC changes are associated with agricultural
activities in the region. In the Sioux Falls region (Fig. 6e and f), rotation
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between cultivated cropland and hay/pasture cropland might cause
many false changes viewed from the satellite sensor. Other apparent
changes are from urban developments that typically consume
surrounding agricultural land. The Seattle region experienced appar-
ent LC changes caused by both urban development in suburban areas
and forest harvest (Fig. 6g and h). Many new urban developments
occur on both agricultural and forestlands of the region. In the San
Diego area (Fig. 6i and j), most landscape change was related to urban
development to meet growing population in the region. In addition,
wildland fires might also change the landscape condition because of
regional dry climate in summer.

Fig. 7 depicts pairs of 2001 and 2006 LC images for the same areas
displayed in Fig. 5. In the Manchester scene, changes in the evergreen
forestland are updated (the first pair in Fig. 7). The second pair in Fig. 7
indicates that a new reservoir and nearby forestland changes in the
Jackson scene are captured and classified in the 2006 LC image. In the
Seattle scene, most changes from new forest canopies recovering from
early forest-cutting and new forest-cutting areas are observed and
classified. The latter usually are labeled as shrub or grasslands (the
fourth pair in Fig. 7). Many change patches on the edges of cities in the
Sioux Falls and San Diego areas are classified as urban lands as new
developments push into these areas (the third and fifth pairs in Fig. 7).
However, changes between agricultural types are restricted to have
conservative changes because many of the other changes might be
caused by the annual rotation of agricultural land.

The overall regional LC changes between 2001 and 2006 were
assessed by calculating change pixels from the two-date LC images.
Table 2 lists percent changes of land use and land cover for the five
areas. Both the largest and smallest LC classes in two dates are also
listed. Among them, LC change in the Jackson area has the largest
change rate of 10.27%, while the Manchester area has the smallest
change rate of 4.28% between two dates. The largest LC types in 2001
are still the same in 2006 in each study area although their spatial
extents vary 0.3–2.0% in these regions.

5. Accuracy assessment

Several verification processes were conducted to verify accuracies
of CNC detection and LC classification for the five areas.

5.1. Statistic sensitivity test and the assessment for CNC areas

The determination of areas of CNC was important for successfully
updating LC classification. Accurate change identification assured that
the training dataset was selected from unchanged areas for decision
tree models. To assess improvements for the segregation of pixels of
CNC by using normalized images and CVA, sensitivity tests were
conducted.

The sensitivity test was designed to test the null hypothesis that
the difference between the two averages was zero if the experiment
were repeated many times. A paired t-test was performed to assess
whether the average of these differences was significantly different
from zero by defining δ as the true mean of differences between
random variables y1 and y2 that were observed with matched pairs of
Table 2
Regional land cover changes between 2001 and 2006.

Location 2001 the largest land
cover class (% to the total)

2001 the smallest land
cover class (% to the total)

2006 th
class (%

Manchester Deciduous forest (34.47) Barren land (0.22) Deciduo
Jackson Evergreen forest (25.29) Barren land (0.14) Evergre
Sioux Falls Cultivated crops (60.93) Mixed forest (0.02) Cultivat
Seattle Evergreen forest (48.17) Cultivated crops (0.35) Evergre
San Diego Shrub (45.27) Deciduous forest (0.01) Shrub (

The change percent for a specific land cover type represents the change area to the total ar
experimental conditions. The δ would be zero if the populations from
y1 and y2 were equal. A 95% confidence interval of the δ then is
expressed as

d − tn;0:05=2Sd b δ b d + tn;0:05=2Sd ð6Þ

where d
P

and Sd are the average of differences between paired
observations and the standard error of the average difference,
respectively. The value of t is computed using the t-distribution. If
the 95% confidence interval for these averages did include zero, the
difference was not significant at 95% confident level.

Three hundred sample points randomly collected from each
changed and unchanged area of a reference change and no-change
image, which was determined by comparing the 2001 and 2006 LC
classifications and labeling areas as no-change if two-date LC types
were the same, were used to calculate reflectance differences
between 2001 images and 2006 un-normalized images, as well as
2006 normalized images from CNC areas. The differences for each
pair of images were averaged to have the value of d

P
and examined

to decide whether they could confidently be declared as small or
large. For unchanged pixels, we expected near-zero differences
because reflectance had no or small variation if subjects had no
change in their physical characteristics. For changed pixels, we
expected larger-than-zero differences because changes in LC char-
acteristics also altered reflectance received by the satellite. Therefore,
for unchanged areas, it was highly confident that the difference
between the two time collections was small if the confidence interval
did include the zero. For changed samples, the differences between
two-date images were significant at 95% confidence level if intervals
did not include zeros.

The results of the sensitivity test performed for the five study areas
are displayed in Fig. 8, which represents six-band spectral differences
between reference, two-date un-normalized images, and normalized
images from unchanged pixels. All normalized images had zeros in
confidence interval differences for unchanged areas, indicating insig-
nificant differences at the 95% confidence level and high similarities
between two-date images. However, un-normalized image pairs had
only a few bands showing such insignificant differences. Normalized
images showed a superior advantage for unchanged pixel detection.
Nevertheless, the sensitivity tests for changed areas did not have the
similar significant patterns because several band differences included
zeros in confidence intervals for both normalized and un-normalized
images, although the latter showed one or two band differences falling
in the 95% confidence intervals without zeros. Detection for changed
areas was more complicated than that for unchanged areas because
many areas might not experience real LC changes regardless of large
spectral differences.

A scatterplot for spectral differences of six-band from the San
Diego scene is also included (Fig. 9). The plot conducted from 300
random samples in the unchanged area indicated that normalization
reduced differences between reference and subject images for the
unchanged area. We also conducted an error analysis for the change
and no-change determination by randomly stratifying 2

^
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points from both change and no-change areas of the reference change
e largest land cover
to the total)
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2001–2006 total
change (%)
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ed crops (62.91) Mixed forest (0.03) 4.53
en forest (46.78) Cultivated crops (0.37) 6.05
45.75) Deciduous forest (0.01) 5.48

ea of that land cover.

Original_text: ,
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Fig. 8. The comparison of reflectance between normalized and un-normalized images for the five study areas: Manchester scene (a), Jackson scene (b), Sioux Falls scene (c), Seattle
scene (d), and San Diego scene (e). The y-axis represents the 95% confidence intervals defined as d− (d

P− tn,0.05/2Sd) and d+ (d
P
+ tn,0.05/2Sd) in Eq. (6).
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and no-change image from the Sioux Falls scene. Table 3 displays an
error matrix for change and no-change determination for the area. A
relatively high overall accuracy of 94.2% and a Kappa coefficient of
0.8577 were obtained.
5.2. Accuracy curves for change detection using multiple thresholds

The multiple thresholds determined by LC types and used for
CNC detection were set up by different adjustable parameters (aj in
Eq. (5)). To compare with change detection using a single
threshold, binary products of CNC obtained using a single type
threshold (STT) for all LC types, multitype thresholds with a unique
adjustable parameter (MTUAP) for all LC types, and multitype
thresholds with different adjustable parameters (MTDAP) for
different LC types were compared.
The assessments were conducted by comparing CNC pixels
obtained from CVA with CNC samples from a reference image
obtained from comparing two-date LC classification. Six hundred
randomly selected samples from areas of CNC of the Seattle area
were used to calculate the overall accuracies and Kappa coefficients.
Fig. 10 displays the comparisons of overall accuracy and Kappa
coefficient. The multiple thresholds with different adjustable para-
meters for different LC types achieved the best performance in both
overall accuracy (0.91) and Kappa coefficient (0.81). Less accurate
results were observed from the single threshold test in which the
largest overall accuracy (0.89) and Kappa coefficient (0.79) were
observed at 0.5 standard deviation level. The results from using
multiple thresholds with the same adjustable parameter for different
LC types had the lowest accuracy in which the largest overall
accuracy (0.87) and Kappa coefficient (0.73) were obtained at 0.5
standard deviation level.



Fig. 9. Scatterplot of bi-date spectral differences for bands 1–5 and 7 from San Diego scene. All samples are obtained from no-change areas to display improvement of normalization
for change and no-change determination.
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5.3. Land cover accuracy

To inspect the performances of LC classification for the five study
areas, accuracies of change type classification were estimated from
analysis of sample pixels randomly stratified from the 2006 LC images.
More than 100 random samples including all land use and land cover
types were chosen from each of the five 2006 LC images. The
corresponding reference ground truth datawere produced fromvisual
interpretations of both 2006 Landsat images and 4-m resolution
natural color images acquired in 2006 and organized by the National
Agriculture Imagery Program (NAIP) to label land cover types. Table 4
presents the classification error matrixes and accuracies for all LC
types. Overall accuracies and Kappa coefficients were 83.33% and 0.82
for Manchester, 78.36% and 0.76 for Jackson, 88.57% and 0.87 for Sioux
Falls, 78.32% and 0.76 for Seattle, and 87.50% and 0.86 for San Diego.
The Sioux Falls, San Diego, and Manchester areas had relatively high
overall accuracies and large Kappa coefficients. The other two study
areas, Jackson and Seattle, had relatively low overall accuracies and
small Kappa coefficients. Generally, overall accuracy and Kappa
coefficients for the five areas exceeded 78% and 0.7, respectively,



Table 4
Accuracy assessments of land cover classification for the five study areas.

Location Overall accuracy Kappa coefficient

Manchester 83.33 0.8179
Jackson 78.36 0.7635
Sioux Falls 88.57 0.8720
Seattle 78.32 0.7614
San Diego 87.50 0.8592

Table 3
Error matrix for change and no-change detection from Sioux Falls scene.

Reference change

Change No-change Sum Commission
error

Classified
change

Change 639 111 750 14.80%
No-change 34 1716 1750 1.94%
Sum 673 1827 2500
Omission error 5.05% 6.08%
Overall accuracy 94.20% Kappa coefficient 0.8577
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indicating that the prototype method is accurate and effective for LC
change type classification.

6. Discussion

It is always a challenge to reliably detect land cover change using
remote sensing data for a large geographic extent — especially in a
cost-effective way. The land cover results of this new prototype
method attempt to strike the balance between product accuracy and
affordability. It appears that the CVA–DTC algorithm is capable of
updating NLCD land cover using these image change detection and
classification procedures. This method requires several steps to
incorporate pre-classification spectral change detection with DTC for
land cover change detection and change type classification. First,
two paired images from 2001 and 2006 over the same satellite path
and row are normalized. Next, the normalized and reference images
are used to calculate CVAs for pre-classification spectral change
thresholding. Finally, multiple thresholds based on NLCD 2001 land
cover baseline information were used to segregate pixels of change
and no-change from change vectors. Compared with other existing
radiometric spectral change detection methods (Coppin et al., 2004;
Yang & Lo, 2000), this CVA method is easy to operate and efficient to
implement. Among several methods for relative radiometric
normalization of multispectral images (Du et al., 2002; Furby &
Campbell, 2001; Yang & Lo, 2000), the method proposed by Canty et
al. (2004) was best able to normalize multispectral images in
automated procedures. This method used the multivariate alteration
Fig. 10. Accuracy results from using different thresholds in the Seattle area. OA_MTDAP
and KC_MTDAP are the overall accuracy and Kappa coefficient obtained from multiple
thresholds with different adjustment parameters for different LC types. OA_MTUAP and
KC_MTUAP are the overall accuracy and Kappa coefficient obtained from multiple
thresholds with one adjustment parameter for different LC types. OA_STT and KC_STT
are overall accuracy and Kappa coefficient obtained from a single threshold.
detection (MAD) approach (Nielsen et al., 1998) to calculate
multivariate covariance and employed a single threshold deter-
mined by chi-square distribution to select time-invariant pixels
from bitemporal images. These no-change pixels were then used for
performing the actual image normalization. However, the MAD-
normalization approach may still face challenges when it is used for
land cover change detection and change classification. How useful
the normalized image for land cover change related change
determination is not clear. However, the feasibility of combining
MAD-normalization and CVA for change detection needs further
investigation.

The method used in this study made distinctions among different
land cover change classes by employing different thresholds according
to land cover types. This multiple threshold approach performed
better than a single threshold approach because the areas of change
and no-change were determined by both spectral signals and land
cover characteristics. Once change areas are identified, the imple-
mentation of DTC enabled quick and efficient labeling of these areas
using NLCD 2001 as a baseline.

This new prototype method was developed in five study areas
(corresponding to five Landsat scene footprints) across the contermi-
nous United States. Budget limitations necessitated minimizing the
number of prototype site selections, and althoughmore than five sites
would have been preferable, we feel the five sites selected adequately
represent potential land cover characteristic issues. To further test
prototype conclusions, a pre-production phase test was implemented
by selecting two adjacent Landsat scenes in Colorado for product
development. This step both enabled the evaluation of the method in
an independent new geography and allowed examination of potential
edge-matching issues. Because these scenes contained a significant
mixture of forests, grasslands, agricultural land, and urban areas
(including the Denver metro area), they extended the test range of the
prototyping to represent a total of 22 of 84 (26%) Level III ecoregions
across the conterminous United States (Omernik, 2004). The NLCD
2006 update method performed well in this second phase test, best
illustrated by the successful capture of major land cover change over
this area initiated by wildland fire and urban land cover expansion.
The sensitivity analysis for normalized images suggested that all
unchanged areas had insignificant differences at the 95% confidence
level, indicating high similarities between two-date images. The
accuracies of LC from the baseline dataset remained when training
datasets were obtained from these areas. The results for the validation
of the overall LC classification for our pilot areas varied from 88.5% to
78.3%. In our judgment, this represents reasonable accuracy thresh-
olds for a national product. Because of the success of the CVA–DTC
method in efficiently identifying land cover change between 2001 and
2006, we also assume this methodwould be successful when repeated
with other time intervals (annual, biannual, or decadal) and could
potentially serve as a tool for land cover change analysis for those
seeking to go further back in time using archived imagery — or
forward in time using newly acquired imagery. However, the primary
potential disadvantage of this approach centers on the potential
availability of satellite imagery. The CVA requires that the pair of
images be in the same month or the same vegetation growing season.
Some areas may not have enough cloud-free images to meet this
requirement. One impact of using a non-similar image pair is
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potentially poorer accuracy for change detection and LC classification.
The CVA is also satellite sensor dependent. Images from two different
sensors may not produce optimum change detections from image
normalization. Another limitation of the CVA–DTC approach is the
classification accuracy of areas that experience changes in spectral
signals but not in land cover type. Most of these classification
difficulties occur in agricultural land where many spectral changes
could be misidentified as changes of land cover. Also, the spectral
change in agricultural land could be misclassified as another type of
land cover class that has similar spectral signals. Extra correction
procedures are usually needed to keep only persistent changes
although they are retained in a minimum level compared with most
classifications made by the DTC models.

Despite these limitations, we feel the application of this method
to the conterminous US will produce a reasonably accurate and
efficient updated 2006 land cover product for several reasons. First,
the method semi-automatically identifies land cover change based
on relevant information using physically based rules. This provides
appropriate objectivity to develop a consistent product with
acceptable prediction accuracies. Second, the method creates greater
cost efficiencies by targeting land cover patches that require
updating, rather than the total area. Finally, the updating method
ensures the new 2006 land cover product will be consistent with the
NLCD 2001 base product — an essential element for successful land
cover change comparison. Readers should be cautioned that
although NLCD is determined to produce future updated land
cover, this method was specifically designed to update NLCD land
cover between 2001 and 2006. Future NLCD land cover products and
methods beyond 2006 will consider future requirements and
circumstances in the design to deliver the most relevant product
for the nation.

7. Conclusion

Accurate and up-to-date land cover composition and change are
important considerations for a wide variety of applications. However,
at regional or national scales, data acquisition difficulties, cost, and
inadequate analytical techniques hinder rapid and accurate produc-
tion. A newmethod to create an updated version of NLCD for 2006 has
been designed to address these specific needs. This prototype method
provides a cost-effective and faster way to enable land cover updating.
This approach depends upon semi-automated data processing proto-
cols to reduce cost and production times. Methods involve change
vector analysis driven by different thresholds based on land cover type
rather than a single threshold, coupled with decision tree classifica-
tion trained from unchanged pixels to label changed pixels to updated
land cover. Results obtained from this study demonstrate that this
approach is robust and provides products that enable the use of NLCD
as a baseline database to monitor land cover change. We anticipate
using this approach will significantly reduce cost and production
times needed to produce the next version of NLCD in circa 2006. The
result will be a more time relevant land cover data layer for the nation,
with increasing emphasis on the need for credible land cover compo-
sition and change information.
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