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Soil salinization is widely recognized to be a major threat to worldwide agriculture. Despite decades of research
in soil mapping, no reliable and up-to-date salinity maps are available for large geographical regions, especially
for the salinity ranges that are most relevant to agricultural productivity (i.e., salinities less than 20 dSm~", when
measured as the electrical conductivity of the soil saturation extract). This paper explores the potentials and lim-
itations of assessing and mapping soil salinity via linear modeling of remote sensing vegetation indices. A case
study is presented for western San Joaquin Valley, California, USA using multi-year Landsat 7 ETM + canopy re-

Keywords:
Soﬂv:alinity flectance and the Canopy Response Salinity Index (CRSI). Highly detailed salinity maps for 22 fields comprising
Landsat 7 542 ha were used for ground-truthing. Re-gridded to 30 x 30 m, the ground-truth data totaled over 5000 pixels

with salinity values in the range 0 to 35.2 dS m ™~ '. Multi-year maximum values of CRSI were used to model soil
salinity. Soil type, meteorological data, and crop type were evaluated as covariates. All considered models were
evaluated for their fit to the whole data set as well as their performance in a leave-one-field-out spatial cross-
validation. The best performing model was a function of CRS], crop type (i.e., cropped or fallow), rainfall, and av-
erage minimum temperature, with R? = 0.728 when evaluated against all data and R? = 0.611 for the cross-
validation predictions. Broken out by salinity classes, the mean absolute errors (MAE) for the cross-validation
predictions were (all units dS m~1): 2.94 for the 0-2 interval (non-saline), 2.12 for 2-4 (slightly saline), 2.35
for 4-8 (moderately saline), 3.23 for 8-16 (strongly saline), and 5.64 for >16 (extremely saline). On a per-field
basis, the validation predictions had good agreement with the field average (R*> = 0.79, MAE = 2.46 dSm™1),
minimum (R? = 0.76, MAE = 2.25dS m™~ '), and maximum (R* = 0.76, MAE = 3.09 dSm™ ) observed salinity.
Overall, reasonably accurate and precise high resolution, regional-scale remote sensing of soil salinity is possible,
even over the critical range of 0 to 20 dS m ™', where researchers and policy makers must focus to prevent loss of
agricultural productivity and ecosystem health.
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1. Introduction

The degradation of agricultural soil quality due to natural and
anthropologic factors is a major concern because it threatens the sus-
tainability and reliability of food production systems (Lobell, 2010). In
particular, there is general agreement that soil salinity is a major threat
to irrigated and rain-fed agriculture throughout the world (Ghassemi,
Jakeman, & Nix, 1995; lvits, Cherlet, Téth, Lewinska, & Téth, 2011). Of
the cultivated lands worldwide, about 0.34 x 10° ha (23%) are estimated
to be saline, and another 0.56 x 10° ha (37%) are estimated to be sodic
(Tanji & Wallender, 2012). To better manage the threat posed by soil sa-
linity, producers, land and water resource managers, and policy makers
need reliable, up-to-date, high resolution assessments of soil salinity
across large regions. Currently available data are, at best, educated
guesses; no reliable inventories based on quantitative ground-truth
measurements of soil salinity exist due to the dynamic and complex
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spatial and temporal nature of salinity (Metternicht & Zinck, 2003).
Available regional-scale maps are often qualitative or unreliable (Lal,
livari, & Kimble, 2004; Lobell et al., 2010).

For years, scientists attempted to use remote sensing to assess soil
salinity (Metternicht & Zinck, 2003), although success was limited, es-
pecially over very large geographical regions (Lobell et al., 2010). Re-
cently, however, a number of regional-scale studies have indicated a
renewed interest in remote sensing approaches (Lobell et al., 2010;
Zhang et al.,, 2011, 2015; Wu, Al-Shafie, Mhaimeed, Ziadat, Nangia,
et al.,, 2014; Wu, Mhaimeed, et al., 2014; Nawar, Buddenbaum, & Hill,
2015; Furby, Caccetta, & Wallace, 2010; Taghizadeh-Mehrjardi,
Minasny, Sarmadian, & Malone, 2014; Aldabaa, Weindorf, Chakraborty,
Sharma, & Li, 2015; Allbed, Kumar, & Sinha, 2014; Yang, Huang, Liu, Liu,
& Zhu, 2015). Unfortunately, most of these studies examined landscapes
with salinities far in excess of the range where nearly all agriculture oc-
curs (most halophytes have little commercial value, although there is
growing interest in their use as bio-fuel sources; Brown, Cybulska,
Chaturvedi, & Thomsen, 2014). The U.S. Salinity Laboratory (U.S.
Salinity Laboratory Staff, 1954) classifies agricultural soil salinities as:
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0-2 dS m~! (non-saline), 2-4 dS m~" (slightly saline), 4-8 dS m™!
(moderately saline), 8-16 dS m~! (strongly saline), and >16 dS m™!
(extremely saline), where salinity is quantified as the electrical conduc-
tivity of a saturated soil paste extract (EC., with units of dS m™"). Most
of the recent work noted above focused on ranges of 0-100 dS m ™! or
higher, with little consideration of the reliability or precision of results
in the agronomically important range of 0 to 20 or 30 dSm™ .

AtEC.<20dSm™, the ability to directly assess soil salinity from bare
soil reflectance is limited (Metternicht & Zinck, 2003; Allbed & Kumar,
2013). In irrigated agriculture, salts do not collect on the surface very
often, accumulating instead in the lower portion of the root-zone and
below (Skaggs, Anderson, Corwin, & Suarez, 2014). When salinity does
exist at the surface, it can be successfully detected with remote sensing
techniques, but only in very saline soils, where the influence of vegeta-
tion is minimal (Mougenot, Pouget, & Epema, 1993). In lower salinity
ranges (0-20 dS m™ '), vegetation condition provides a potential alterna-
tive proxy of root zone salinity. Generally, when plants experience biotic
and abiotic stress (including salinity), their photosynthetic activity de-
creases, causing increased visible reflectance and reduced near-infrared
reflectance (NIR) from the vegetation (Mulla, 2013). Multi-year canopy
reflectance data can be used to discriminate landscape features/stressors
such as soil salinity that are relatively stable in time (Lobell et al., 2010;
Wu, Al-Shafie, et al., 2014; Scudiero, Skaggs, & Corwin, 2014; Lobell,
Ortiz-Monasterio, Gurrola, & Valenzuela, 2007) from other stressors
that are typically more transient (e.g., drought, pests, and mismanage-
ment) (Scudiero, Teatini, Corwin, Ferro, Simonetti, & Morari, 2014).
The pioneering paper of Lobell et al. (2010) used 6 years of MODIS
(National Aeronautics and Space Administration Agency, USA)
reflectance data (250 x 250 m spatial resolution) to map salinity in the
0-20 dS m~! range in the Red River Valley, USA. More recently,
Zhang et al. (2015) used the same satellite sensor to map salinity in the
0-30 dS m~! range for the Yellow River Delta, China. Unfortunately,
the resolution of MODIS imagery is generally insufficient to map the spa-
tial variability of salinity that usually exists within agricultural land-
scapes (Scudiero, Skaggs, & Corwin, 2014; Eldeiry & Garcia, 2008). The
30 x 30 m resolution of the Landsat 7 (L7) Enhanced Thematic Mapper
Plus (ETM +) sensor (National Aeronautics and Space Administration
Agency and US Geological Survey, USA) offers the possibility of mapping
large areas (i.e., at regional scale) with enough detail to allow sub-field
management of agricultural farmland. In this context, Landsat 7 repre-
sents a viable compromise between spatial resolution and data costs.

Previous studies have shown the importance of including soil-
environmental covariates in the salinity assessment models. Soil type,
geographical location, meteorological setting (Scudiero, Skaggs, &
Corwin, 2014), and crop cover type (Lobell et al., 2010; Zhang et al.,
2015) can all be significant covariates. However, the contribution of in-
dividual covariates can be inconsistent (Samuel-Rosa, Heuvelink,
Vasques, & Anjos, 2015), depending, for example, on the quality of avail-
able data and its spatial resolution (Miller, Koszinski, Wehrhan, &
Sommer, 2015).

The objective of this study is to map salinity over a large agricultural
region in California's Central Valley, USA using multi-year Landsat 7
ETM + canopy reflectance. In particular, the manuscript focuses on inte-
gration of soil-environmental covariates (e.g., soil texture, meteorolog-
ical conditions, and crop cover type) and validation of the model. The
extent of ground-truth data clearly separates this study from previous
studies.

2. California's Western San Joaquin Valley

In less than 1% of USA's farmland, the Central Valley of California,
which includes the San Joaquin Valley (S]V), the Sacramento Valley, and
the Sacramento-San Joaquin Delta, provides about 25% of the USA's
table food (Cone, 1997). However, agricultural practices are challenged
by extensive areas of salinity and sodicity, particularly in the western
San Joaquin Valley (WSJV, Fig. 1). The WSJV soils are derived from saline

alluvium originating from California's Southern Coast Range (Scudiero,
Skaggs, & Corwin, 2014; Letey & Dinar, 1986). In the early 1980s,
Backlund and Hoppes (1984) estimated about 60% (i.e., 9 x 10° ha) of
the soils in the WSJV to be saline and/or sodic.

In arid or semi-arid irrigated agricultural areas such as the S}V, sus-
taining crop production requires irrigation management practices that
prevent excessive root zone salt accumulation. Recent studies have
shown that some irrigation practices can help reclaim saline-sodic soil,
even when saline irrigation water is used (Corwin, Lesch, Oster, &
Kaffka, 2006; Corwin, Lesch, Oster, & Kaffka, 2008). The current 4-year
drought in California has resulted in irrigation water allocations to
farmers being reduced drastically and substantial land in the S]V being
left fallow. Drought and salinization often go hand-in-hand. Fallow
land, particularly in the WSJV where water tables can be high, can be-
come saline in a relatively short time due to the upward movement of
salts in the soil solution (Corwin, 2014). According to the CropScape da-
tabase (Han, Yang, Di, & Mueller, 2012), during the current California
drought that began in 2010, fallow land went from 12.7% (2007-2010
average) to 19.2, 21.0, and 21.6% in 2011, 2012, and 2013, respectively.
In 2014, approximately 1.95 x 10° ha of land in the Central Valley was
fallow, resulting in $810 million in lost crop revenue (Howitt,
Medellin-Azuara, MacEwan, Lund, & Sumner, 2014).

3. Data and methods
3.1. Landsat 7 canopy reflectance

This study considers seven years (2007-2013) of ETM + canopy
reflectance, over five L7 tiles (Fig. 1), covering the entire WSJV, as de-
scribed by Scudiero, Skaggs, and Corwin (2014). The ETM + surface re-
flectance is provided at the resolution of 30 x 30 m in six multispectral
bands, namely: blue (B, 450-520 nm), green (G, 520-600 nm), red
(R, 630-690 nm), near-infrared (NIR, 770-900 nm), shortwave infrared
1 (IR1,1550-1750 nm), and shortwave infrared 2 (IR2, 2090-2350 nm).
A total number of 366 scenes with cloud coverage <10% were consid-
ered. All scenes with cloud coverage <10% were corrected through the
Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS)
according to Masek et al. (2006). The missing data due to the failure of
the Scan Line Corrector were masked according to Roy et al. (2010).
On a yearly basis, the L7 scenes were stacked (average) obtaining
seven datasets for each of the six multispectral bands. Yearly values of
the Canopy Response Salinity Index (CRSI, unitless) were calculated ac-
cording to Scudiero, Skaggs, and Corwin (2014):

(NIR x R)—(G x B)

S NRR) T C By .

From the yearly average CRSI, the multi-year maximum CRSI was
calculated at each pixel, similarly to that proposed by Wu, Al-Shafie,
et al. (2014). The multi-year maxima approach helps isolate the effects
of soil salinity from other, less-stable factors. Indeed Scudiero, Skaggs,
and Corwin (2014) found that the relationship between multi-year
maxima CRSI and salinity had a correlation coefficient of r = —0.751,
whereas the best single year analysis obtained r = — 0.630.

Of the many vegetation indices (VIs) usually calculated employing
L7 data, the CRSI showed the best fit with soil salinity data in the
WSJV (Scudiero, Skaggs, & Corwin, 2014). Moreover, compared to
other, more popular VIs such as the Normalized Difference Vegetation
Index, NDVI (Rouse, Haas, Schell, & Deering, 1973) and the Enhanced
Vegetation Index, EVI (Huete et al., 2002), CRSI showed stronger corre-
lations and higher sensitivity (calculated according to Ji & Peters, 2007)
to salinity changes with EC. > 1 dS m™ . Moreover, although this man-
uscript considers CRSI for the salinity assessment models, similar re-
sults, and equivalent conclusions, can be achieved with NDVI and EVI.
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Fig. 1. Map of California's San Joaquin Valley. The western San Joaquin Valley (WSJV) is highlighted with hatch marks. The squares represent the five Landsat 7 tiles covering the WSJV. The
location of the 22 study sites is shown in the detailed WSJV map (right). Taken from Scudiero, Skaggs, and Corwin (2014).

3.2. Ground-truth salinity dataset

This study uses the WSJV (Fig. 1) salinity ground-truth measure-
ments presented by Scudiero, Skaggs, and Corwin (2014), to which
the reader is referred for detailed description. In 2013, intensive electro-
magnetic inductions surveys were conducted at 22 agricultural fields
(total area 542 ha) collecting 41,779 apparent electrical conductivity
(EC,) readings (150 to 13,400 measurements per field, at an average
density of ca 175 per ha™!), for both the 0-0.75 and 0-1.50 m soil pro-
files using an EM38 Dual Dipole (Geonics Ltd., Mississauga, Ontario,
Canada) sensor, connected to a GPS and mounted on a non-metallic
sled (Corwin & Lesch, 2013). When dealing with saline soils, EC,
measurements can be used as proxy for soil salinity (Lobell et al.,
2010; Wu, Al-Shafie, et al., 2014; Ding & Yu, 2014), as the more ions
in the soil solution, the more conductive the soil (Corwin & Lesch,
2013). A total of 267 soil sampling locations (each covering ca2 x 2 m
of soil) were selected from the 22 fields. The sampling schemes (one
for each field) were designed in order to best represent the spatial var-
iations of EC, (and, thus, of soil salinity), using a Response Surface Sam-
pling Design (RSSD) algorithm (Lesch, 2005).

At each of the 267 soil sampling locations, the root-zone (0-1.2 m)
salinity was measured as electrical conductivity of the soil saturation
extract, i.e., ECe, dS m™! (U.S. Salinity Laboratory Staff, 1954). The
EC, readings were then calibrated (R> = 0.93) against the EC,.
measurements (Scudiero, Skaggs, & Corwin, 2014). Salinity esti-
mates (ECs, dS m~!) for the 22 fields were obtained from the EC,-
EC. relationships. Kriging with 30 x 30 m block support was used
to interpolate the point ECs data onto a regular 30 x 30 m grid
(Lobell et al., 2010), using isotropic exponential semivariograms in
ArcMap 10.1 (ESRI, Redlands, CA, USA). The interpolation resulted
in 5891, 30 x 30 m, ECJ estimates. To reduce bias in the L7-EC.*
due to field edge effect, the L7 pixels at the field margins were re-
moved from the ground-truth dataset (i.e., 608 pixels). The exclu-
sion of these field edge pixels is discussed in Section 4.3 (“On Field
Edge Effect”). The average, minimum, and maximum EC; were of
7.55,0.01, and 35.2 dS m~ ' (Scudiero, Skaggs, & Corwin, 2014).

3.3. Soil and environmental covariates

When studying the reasons for the spatio-temporal variability of
the L7-soil salinity relationships over the WS}V, Scudiero, Skaggs,
and Corwin (2014) indicated that those relationships changed,
between fields, according to soil texture and, between years, accord-
ing to yearly rainfall and yearly average minimum temperature.
Moreover, the research of Lobell et al. (2010) in the Red River Valley,
USA, and of Zhang et al. (2015) in the Yellow River Delta, China,
clearly shows that cropped and fallow/wasteland (i.e., a mix of halo-
phytic plants and bare-soil) surface reflectance show remarkably dif-
ferent relationships with soil salinity.

Soil texture data were obtained from the Natural Resources
Conservation Service (NRCS) Soil Survey Geographic database
(SSURGO). SSURGO divides the land surface into elements called
map units. Map units encompass more than one component (soil
type), each having their own representative soil profile. Within
map units, components are not spatially located; they are represent-
ed only in terms of their estimated percent coverage of the map unit.
According to NRCS (http://www.nrcs.usda.gov/wps/portal/nrcs/
detail/soils/survey/?cit=nrcs142p2_054236), field investigations
and data collection are carried out in sufficient detail to name map
units and to identify accurately and consistently areas of about
1 ha. The SSURGO data corresponding to our 22 fields sites were all
collected in surveys having a sampling intensity appropriate for
1:24,000 maps. To determine a single numerical value for the sand,
silt, and clay percentages (%) of each pixel, we calculated profile
depth-average sand, silt, and clay values for each major soil compo-
nent of corresponding map unit, and then set the pixel value to be
equal to the component-percentage-weighted average of those
values. So, for example, if the jth pixel falls in a SSURGO map unit
having N major components, the silt content (%) for that pixel is:

N My
X SiAz;
SILT; = :{;} ) ’Zk 1} (2)

k=1 i=1


http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/?cit=nrcs142p2_054236
http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/?cit=nrcs142p2_054236

338 E. Scudiero et al. /| Remote Sensing of Environment 169 (2015) 335-343

where xy is the percentage of the map unit covered by the kth soil com-

ponent, X = Zg:]xk, M is the number of soil layers in the kth soil com-
ponent, s; is the silt percentage in the ith layer, Az; is the thickness of the
ith layer, and Z, is the total depth the kth soil component.

The meteorological data was obtained from the Climate Group from
Oregon State University (Corvallis, OR, USA) through their Parameter-
elevation Relationships on Independent Slopes Model (PRISM) (Daly
et al., 2008), which provides monthly meteorological data on a
4 x 4 km cell support. Yearly total rainfall (mm) and average minimum
temperature (°C) were used, at each pixel (j) from to the year with max-
imum CRSI.

Crop data since 2007 is available for the USA at the CropScape data-
base (Han et al., 2012), which presents an easily accessible version of
the Cropland Data Layer (Boryan, Yang, Mueller, & Craig, 2011). The pixels
with maximum CRSI were cultivated with alfalfa (Medicago sativa L.), cot-
ton (Gossypium sp.), wheat (Triticum aestivum L.), maize (Zea mays L.),
safflower (Carthamus tinctorius L.), with mixes of forage grass communi-
ties (i.e., pasture), or left as fallow. About 16% of the pixels were fallow,
whereas the remaining pixels were cropped.

3.4. Model formulation, calibration, and validation

The simplest predictive model for soil salinity would be based on the
linear relationship between CRSI and soil salinity. To improve upon that
model, we evaluated alternative formulations that additionally utilized
soil-environmental covariates. The specific model formulations consid-
ered are given in the results section, but in general the soil type and me-
teorological covariates were regarded as additional (to CRSI) explanatory
variables of a multiple linear regression having EC as the dependent var-
iable. The crop covariate was regarded as a factor having a direct effect on
the CRSI values, as seen in previous studies by Lobell et al. (2010) and
Zhang et al. (2015). Therefore, when the crop information was included,
CRSI was characterized by an additional regression parameter, whether
the target pixel was cropped or fallow.

In spatial datasets, neighboring records tend to be very similar,
therefore, using traditional cross-validation (CV) methods can lead to
almost identical data values in the training and the validation datasets,
returning biased predictions (Ruf3 & Brenning, 2010) with overly opti-
mistic low errors (Ruf8 & Brenning, 2010; Brenning, 2012). In order to
assure spatial independence between training and validation datasets,
the salinity assessment models were cross-validated with a leave-one-
field-out (lofo) procedure. The procedure was developed after the re-
search of Ruf§ and Brenning (2010), who proposed a special case of k-
fold CV, in which the dataset were divided into spatially independent
clusters, each representing a fold in the CV procedure. In the lofo, each
field represents an independent spatial group. The lofo procedure is ex-
pected to have less optimistic validation errors than a standard cross-
validation procedure. Twenty-two iterations were carried out: one
field was retained for validation at each iteration, whereas the remain-
ing 21 fields were used to train the compared salinity prediction models.
The validation results across models were compared by testing the dis-
tributions of the absolute errors (AE) with the non-parametric Kruskal-

Table 1

Wallis rank test (Kruskal & Wallis, 1952). Comparisons were carried out
on the validation predictions globally, and within the 0-2 (non-saline),
2-4 (slightly saline), 4-8 (moderately saline), 8-16 (strongly saline),
and >16 (extremely saline) dS m~! salinity intervals.

4. Results and discussion

4.1. Assessing soil salinity with ETM + reflectance and soil-environmental
covariates

The linear relationship of CRSI with soil salinity (Eq. (3), R? = 0.564)
is used as a reference to evaluate the performance of models employing
additional explanatory variables (Table 1).

EC;; = 99.70—111.81 x CRSI; + ¢; 3)

In Eq. (3), € (dS m™!) is the random error component at each loca-
tionj. In this equation as well as the regressions presented below, the di-
mensions of the numerical coefficients are defined implicitly by the
dimensions of the response and predictor variables (Table 1). Eq. (3)
(and the other presented regressions) had significant (p > 0.01)
ANOVA F-test and coefficients (t-test). All the linear regression assump-
tions (for all equations) were also verified. Fig. 2 shows the observed
and predicted salinity values from the corresponding validation
datasets (R? = 0.483). The validation MAE was 3.55 dS m~! (Table 2).
In the non-, slightly, moderately, strongly, and extremely saline soils,
validation MAEs were 2.74, 2.55, 3.40, 4.03, 6.89 dS m~ !, respectively
(Table 2). The MAE:s for the field average, minimum, and maximum sa-
linity predicted with Eq. (3) were 3.19, 2.93, and 3.35 dS m™ !, respec-
tively (Table 3). Table 3 gives additional statistics and parameters
(Pearson's 1, slope, intercept) for the observed-predicted salinity rela-
tionships evaluated on a “per-field” basis (i.e. in terms of field averages,
minimums, and maximums).

The observations of Scudiero, Skaggs, and Corwin (2014) and the sa-
linity assessment models presented by Taghizadeh-Mehrjardi et al.
(2014) indicate that incorporating geo-morphological factors (e.g., soil
texture, micro-elevation) into remote sensing data-based models can
improve their accuracy. The introduction of a soil texture covariate
(i.e., percent of silt) significantly improved the global goodness-of-fit
of the L7-EC} relationship, with R? = 0.583:

EC;; = 103.28—112.64 x CRS;—0.09 x SILT; + ¢;. (4)

However, the validation R? (Table 1) of Eq. (4) was worse compared
to Eq. (3), and so were the global and by-salinity-class MAE values
(Table 2). The per-field predictions were also worse when SSURGO silt
values was used as explanatory variable. It is fair to conclude that
SSURGO textural information is too coarse to be used at the ETM + spatial
resolution. In fact, at the sub-field scale, soil texture in the WSJV generally
shows sizeable variations at the sub-field scale. Most likely, the use of
finer resolution soil data could improve the salinity predictions consider-
ably. When using the measured textural properties (Scudiero, Skaggs, &
Corwin, 2014) at the 267 sampling locations as an explanatory co-

Coefficients of determination (R?) between Egs. (3), (4), (5), (6), and (7) and ground-truth salinity: i) Observed = R for fit to entire dataset; and ii) Validation = R for the 22 leave-one-

field-out cross-validations.

Model® Observed Validation
R? R?

Eq. (3) EC.j=99.70 — 111.81 x CRS|; + & 0.564 0.483

Eq. (4) EC.;/= 103.28 — 112.64 x CRS; — 0.09 x SILT; + ¢ 0.583 0.475

Eq. (5) EC = 62.88 — 113.35 x CRSI; + 0.02 x RAIN; + 2.00 x TEMP; + ¢ 0.637 0.486

Eq. (6) EC,/j= 91.39 + Berop X CRSL; + & 0.601 0.512

Eq. (7) ECe j= 263 + Perop X CRSL; + 0.025 x RAIN; + 335 x TEMP; + g 0.728 0611

3 EC, ground-truth soil salinity (dS m~"); j, Landsat 7 pixel location; CRSI, canopy response salinity index (unitless); SILT, soil silt percentage, RAIN, yearly total rainfall (mm); TEMP,
yearly average minimum temperature (°C); crop, field management type (i.e., cropped or fallow); and &, random error component (dS m~1).
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Fig. 2. Relationships between observed ground-truth salinity (EC;) and validation predic-
tions using Eqs. (3) and (7). The coefficients of determination (R?) and mean absolute
error (MAE) for the two models are reported in the figure.

Table 2

Table 3
Summary statistics for lofo cross-validation evaluated on a per-field basis.
Model Per-field salinity ~ Pearson'sr  Slope Intercept MAE (dSm™!)
Eq. (3) AVE 0.82 0.59 2.61 3.19
MIN 0.76 0.47 1.66 293
MAX 0.87 0.66 341 335
Eq. (4) AVE 0.81 0.60 2.30 3.34
MIN 0.80 0.54 1.08 2.90
MAX 0.84 0.66 3.34 3.50
Eq. (5) AVE 0.85 0.65 2.21 2.94
MIN 0.76 0.50 1.18 3.01
MAX 0.88 0.75 2.79 3.09
Eq. (6) AVE 0.84 0.63 2.36 3.06
MIN 0.77 0.50 1.59 2.86
MAX 0.89 0.70 3.05 3.18
Eq. (7) AVE 0.89 0.71 1.90 2.46
MIN 0.87 0.61 137 2.25
MAX 0.87 0.72 2.62 3.09

variable, there was a remarkable improvement of the validation R®
(+6.6%) and MAE (—6.2%) compared to those of the simple linear
CRSI- ECZ model. The SSURGO texture dataset could be of great help,
however, in salinity assessment studies carried out at much coarser
resolutions.

The PRISM meteorological data also does not match the spatial reso-
lution of the ETM + reflectance. However, it is safe to assume that there
is little to no spatial variability in the monthly rainfall and temperature
data within a 16 km? cell (Scudiero, Skaggs, & Corwin, 2014; Tardivo,
2014). Indeed, the difference in resolution between L7 and PRISM data
did not prove to be an issue. The addition of RAIN and TEMP as indepen-
dent variables (Eq. (5)) improved the explained variance of Eq. (3) by
13.1% (R*> = 0.637).

EC;; = 62.88—113.35 x CRSI; + 0.02 x RAIN; + 2.00 x TEMP; + & (5)

The lofo validation errors of Eq. (5) with validation R?> = 0.486 were
slightly improved with respect to Eq. (3). The global MAE was
3.53 dS m~ ! and 2.76, 2.34, 3.13, 4.45, and 6.34 dS m~ ' in the non-,
slightly, moderately, strongly, and extremely saline soils, respectively.

The use of different regression coefficients for CRSI according to crop
type (Eq. (6)) returned a R? = 0.601, consistent with the observations of
Lobell et al. (2010) and Zhang et al. (2015). Eq. (6) increased the ex-
plained variance by 6.7% with respect to Eq. (3):

EC; ;= 91.39 + By x CRSI; + & (6)

where [¢rop was —102.53 and —97.96 for cropped and fallow soils, re-
spectively. Eq. (6) improved validation performance both at the global
scale (R* = 0.512, MAE = 3.45dSm™ ") and, generally, over the five sa-
linity ranges (Table 2).

Performance of the validation predictions for Egs. (3), (4), (5), (6), and (7). Letters adjacent to the mean absolute errors values indicate significant (p < 0.05) differences, between different

models, in the absolute error distribution according to the Kruskal-Wallis rank test.

Model Validation
R? Mean absolute error (dSm™')
Entire dataset Non-saline soils Slightly saline soils Moderately saline soils Strongly saline soils Extremely saline soils
(0-2dSm™1) (2-4dSm™1) (4-8dSm~) (8-16dsm™1) (>16dSm™1)

Eq. (3) 0.483 3.55 bc 2.74a 255¢ 3.40 bc 4.03b 6.89 bc

Eq. (4) 0.475 3.62c¢ 2.83b 294d 348 ¢ 3.89b 6.68 b

Eq. (5) 0.485 3.53 bc 2.76 ab 234b 3.13b 4.45c 6.34b

Eq. (6) 0.512 345D 271a 253 ¢ 3.37b 3.89b 6.26 ab

Eq. (7) 0.611 290a 294 c 212a 235a 323a 5.64a
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Joining Egs. (5) and (6) the following model was derived:

EC;; = 26.3 + Bp x CRSI; + 0.025 x RAIN; + 3.35 x TEMP; + ¢;  (7)

where B¢rop was —100.76 and —93.40 for cropped and fallow soils, re-
spectively. With a R> = 0.732, Eq. (7) improves Eq. (3) by 24.8%. The
lofo CV returned a validation R?> = 0.611 (Fig. 2) and global MAE =
2.90 dS m~". In the non-, slightly, moderately, strongly, and extremely
saline soils, the validation MAEs were 2.94, 2.12, 2.35, 3.23, and
5.64 dS m™ !, respectively. The per-field average, minimum, and maxi-
mum salinity predictions were also remarkably improved in comparison
to those of Eq. (3). Fig. 2 shows how the use of separate 3¢, coefficients
for cropped and fallow soils in Eq. (7) significantly improved the soil sa-
linity predictions, compared to Eq. (3). Similar to what was seen by
Zhang et al. (2015), when salinity is <10 dS m~! one should expect big
prediction errors for fallow soils, probably because halophyte growth at
those salinity levels is limited (Zhang et al., 2011): the competition be-
tween weed species is likely to be higher as the salinity stress level is
not extreme. In this salinity range, fallow fields are likely to host multiple
weed species. Each species would most likely colonize the field in clus-
ters (Cardina, Johnson, & Sparrow, 1997) and be characterized by its
own light adsorption properties (e.g., due to different phenology and
physiology). This scenario would add noise to the salinity prediction
model, reducing the effect of salinity on CRSI determination.

In addition to the goodness-of-fit scores (e.g., validation R?, valida-
tion MAE) of a model, one should consider how uncertain the validation
predictions are in comparison to the model prediction interval
(Minasny, 2013). In order to better understand the prediction power

of different model formulations, the absolute error (AE) frequency dis-
tribution can be studied. In Fig. 3, the lofo predictions of Eqs. (3) and
(7) are compared both over the global relationship and by salinity
class. This type of analysis ascertains the uncertainty of the validation
predictions between different salinity assessment models. In particular,
the use of the meteorological and crop covariates in Eq. (7) lead to re-
duced prediction uncertainties, compared to Eq. (3), in the slightly,
moderately, strongly, and extremely saline soils. Some sensitivity is
lost, however, in the non-saline soils. Additionally, Fig. 3 shows the im-
portance of extreme prediction errors in the model selection procedure.
Although predictions of non-saline soils were more accurate in Eq. (3)
than Eq. (7) (Table 2), in Eq. (3) 30% of the AEs for non saline soils are
>4 dS m~', whereas Eq. (7) has 19%.

In this paper, and in other published studies (Lobell et al., 2010;
Zhang et al., 2015; Wu, Al-Shafie, et al., 2014; Taghizadeh-Mehrjardi
etal,, 2014; Ding & Yu, 2014; Hamzeh et al., 2013), a considerable portion
of the variance (specific to each ground-truth salinity dataset) is not ex-
plained. When using canopy reflectance, one should always keep in
mind that the VI are indirectly measuring crop health/status by simulta-
neously recording information on multiple parameters (Mulla, 2013), in-
cluding leaf area index, biomass, and chlorophyll content. Therefore,
decreases of reflectance performances can be due to many factors, in-
cluding biotic and abiotic stress sources. This paper highlights the impor-
tance of using multi-year reflectance to assess soil salinity. In particular,
the yearly average highlights features that are stable in time, such as sa-
linity (Lobell et al,, 2010), whereas the multi-year maximum VI further
masks the effects of other stress types (Wu, Al-Shafie, et al., 2014). Nev-
ertheless, abrupt changes in agronomical practices (e.g., shifting from
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Fig. 3. Frequency distribution for the absolute errors (AE) of the validation predictions for a) Eq. (3) and b) Eq. (7). The AE distributions are shown, with a dashed line, for the entire dataset
and with bars for five selected salinity classes: 0-2 (non-saline), 2-4 (slightly saline), 4-8 (moderately saline), 8-16 (strongly saline), and above 16 (extremely saline) dSm~".
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cultivated to fallow), which generally result in fast changes of root-zone
salinity (Corwin, 2014), may increase the uncertainty of salinity estima-
tion of the presented approach. Additionally, salinity is not the only abi-
otic stress fairly stable in time. For example, sodicity in non-saline soils is
an issue that can bias the salinity assessment models. Indeed, several
portions of the WSJV are characterized by non- and slightly saline soils
having high pH values (pH > 9) suggesting the presence of sodic soils
(Scudiero, Skaggs, et al., 2014). Additionally, halophytic weed communi-
ties have salinity tolerances that vary from species to species (Flowers &
Colmer, 2008), the transition from vegetated and bare-soil fallow land
could be a major reason for uncertainty in the predictions over vegetat-
ed, extremely saline soils.

A possible issue could arise when trying to assess soil salinity at much
greater scales (e.g., California-, USA-, and World-wide) than the one in-
vestigated. The ability of remote sensing data to capture soil-plant rela-
tionships changes according to geographical context (Allbed & Kumar,
2013; Hadjimitsis et al., 2010) due to a number of factors, including lith-
ologic and meteorological settings. If such changes in soil salinity accura-
cy of multi-year ETM 4 canopy reflectance and soil/environmental
covariates are of a strong non-linear nature, a single linear model
(e.g., Eq. (7)) would not be reliable if the region were too big. This matter
should be further investigated in future research, as there is much need
for state-, national-, and global-scale salinity inventories.

4.2. On spatial cross-validation

The lofo spatial CV methodology proposed here is for regional-scale
salinity models using ground truth observations from different fields.
Consistent with the observations of Ruf§ and Brenning (2010) for a
field-scale spatial CV, the lofo CV is less optimistic than traditional CV
methods. Indeed, using a classic k-fold CV (with k = 22) for Eq. (7)
outputs a better observed-predicted relationship, with R? = 0.679
(11% greater than lofo), and MAE = 2.53 dS m™' (13% lower than
lofo). Similar biased validation outputs were observed in the non-,
slight, moderate, strong, and extreme salinity intervals, with prediction
MAEs being, respectively, 12,9, 10, 19, and 9% more optimistic with the
traditional k-fold than with the lofo, and in the per-field scores, with
more optimistic MAEs for field average, minimum, and maximum salin-
ity (9, 15, and 13%, respectively).

4.3. On field edge effect

The assessment model in this case study was built over ground-truth
data not including the field edges. It is well known that plant perfor-
mances at the field edges (i.e., “headlands”) are reduced compared to
the rest of the field (i.e., lower VI values), due to a variety of factors
(Sparkes, Jaggard, Ramsden, & Scott, 1998), including: compaction from
traffic on field edges, reduced water content due to field settings, intensi-
fied weed and insect pressure, and different evapotranspiration condi-
tions. Additionally, the resolution of L7 does not allow distinguishing
between actual field edges and features that can be found along the
edges of the fields (e.g., roads, water canals, etc).

Table 4 reports the statistics on salinity assessment over the 608
field-edge pixels. When soil salinity was predicted using Eq. (7)

Table 4
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calibrated over the full-field dataset, ca. 70% of the pixels returned an
overestimated salinity values. Clearly, and consistent with the literature
(Sparkes et al., 1998), crop performance at the field edges is lower than
that observed over the rest of the field, regardless of the influence of soil
salinity. If shape files with the field borders are not available, it is there-
fore advisable to not include field edges in the calibration dataset. Alter-
natively, a buffer area can be calculated for field edges and the salinity
assessment models can be computed with different parameter values
for the two cases.

4.4. A note on the evaluation of salinity assessment models

When trying to describe the relationships between canopy reflec-
tance and soil salinity, linear regression methods are by far the most pop-
ular in recently published studies (e.g., Lobell et al., 2010; Zhang et al.,
2015; Wu, Al-Shafie, et al., 2014; Taghizadeh-Mehrjardi et al., 2014).
However, there are several limitations to this approach that should be
considered when building the salinity assessment model(s) and when
presenting the results.

The R? and other goodness-of-fit measurements (e.g., MAE, RMSE,
and Ratio of Performance to Deviation) are a function of the range and
variance of the ground-truth observations (Ji & Peters, 2007; Minasny,
2013; Achen, 1982). They should be used solely to compare different
models nested on the same dependent variable dataset, not to compare
goodness-of-fit across studies using different databases, as is done too
often in the literature (Hyndman & Koehler, 2006). As shown by
Scudiero, Skaggs, and Corwin (2014), it is reasonable to expect a higher
R? when high salinity values are included in the model. High R? values
can be obtained with fairly good predictions for non-productive, ex-
tremely saline soils (e.g., EC. > 50 dS m™!), but with massive errors in
the EC. < 16 dS m~! salinity ranges, where crops can grow (Wu,
Al-Shafie, et al., 2014; Nawar et al., 2015; Taghizadeh-Mehrjardi et al.,
2014; Allbed et al.,, 2014; Yang et al,, 2015). In other words, a +
10 dS m~! prediction error over a 100 dS m~! soil would still qualify
a soil as “wasteland”/“uncultivable”, whereas the same prediction
error over a 10 dS m~! soil would lead to highly erroneous/uncertain
decision-making. Greater attention should be given to building models
with low prediction errors in the cultivable ranges of soil salinity.

5. Conclusions

We explored the potentials and limitations of developing regional-
scale soil salinity maps using multi-year ETM + CRSI data. For the first
time, a reliable (i.e., low cross-validation errors) regional-scale salinity
model is presented in the environmentally and agronomically relevant
ranges of soil salinity (EC. <20 dS m~"). Alone, CRSI explained 56% of
the variance of the measured soil salinity spatial variability over 22
fields in the western San Joaquin Valley. Including information for
crop type and meteorological data in the model (Eq. (7)) remarkably
improved the accuracy and precision of the EC: predictions (fitted
R? = 0.728, cross-validation R? = 0.611), with greater accuracy obtain-
ed over the entire dataset, in the different salinity classes, and at the per-
field level. The results also suggest that the prediction power of the

Use of Eq. (7) over the 608 Landsat 7 pixels at the field edges: (1) extrapolated predictions using the model parameters calibrated over the full-fields dataset; (2) model re-calibration using

edge pixels data; and (3) leave-one-field-out (lofo) cross-validation for the edge pixels.

Scenario R? Mean absolute error (dSm™")

Entire dataset Non-saline soils

Slightly saline soils

Moderately saline soils ~ Strongly saline soils ~Extremely saline soils

(0-2dsSm™") (2-4dSm™1) (4-8dSm™") (8-16dSm™") (>16dSm™")
(1) Full-fields calibration applied to  0.361 4.35 2.75 4.81 4.69 4.79 2.88
edge pixels
(2) Re-calibration to edge pixel data 0.476 3.17 1.76 2.78 243 4.56 6.40
(3) lofo CV for edge pixels 0454 3.36 1.75 3.55 3.20 3.50 9.64
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salinity assessment models would be further improved if high resolu-
tion ancillary data on soil texture were available.

Future research will focus on the creation and independent valida-
tion of salinity maps for the San Joaquin Valley and, possibly, for other
sensible agricultural areas in California, such as the Coachella and Impe-
rial Valleys. To map salinity over large scales, a mosaic of different tiles
of Landsat ETM + is needed. Fortunately, this service is available from
USGS, thanks to the Web-enabled Landsat data (WELD) project (Roy
et al,, 2010). Once the regional scale maps are made, the long term an-
thropological (e.g., management) and natural (e.g., drought, climate
changes) effects on soil quality can be assessed, by comparing the re-
mote sensing estimations with past salinity inventories.
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