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ARTICLE INFO ABSTRACT

Keywords: Mangrove forests are highly productive ecosystems that typically dominate the intertidal zone of tropical and
Mangrove subtropical coastlines. The history of mangrove remote sensing (RS) can be traced back to 1956. Over the last six
Re“}me sensing decades, hot spot topics in the field of mangrove RS have evolved from mangrove distribution mapping, bio-
Review . physical parameters inversion, to ecosystem process characterization. Although several review articles have been
;i?:::::ezomcs published to summarize the progress in this field, none of them highlighted the key milestones of historical

developments pertinent to major research topics or key drivers that stimulate such milestones.

In this review, we aim to identify key milestones in mangrove RS by associating the emergence of major
research topics with the occurrence of new sensors in four historical phases, i.e. before 1989, 1990-1999,
2000-2009, and 2010-2018. For each identified research topic, an in-depth theoretical understanding was
achieved by analyses of both the first published article and the most-cited article. Based on the analyses, the
current state of knowledge as well as existing limitations were summarized. In addition, in order to gain insights
on driving forces for emergence of new research topics, we compared the chronological evolution of mangrove
RS with that of terrestrial forest RS.

Interestingly, we found that key research topics in mangrove RS replicated those of forest RS yet with varying
time lags. This can be attributed to the following two facts: 1) mangrove forests often appear as more elongated
patches than terrestrial forests; 2) field work is more challenging in mangrove habitat. Along with the RS sensors'
advancement, various topics that had been studied in terrestrial forests were later transformed to mangrove
studies. Based on the projected growth of foreseeing earth observation capacity, insights on future research
directions in mangrove RS were also presented.

Driving factors

1. Introduction

Mangrove forests are tropical trees and shrubs that grow along
coastlines, mudflats, and river banks in many parts of the earth (Field,
1999). They are among the most productive and biologically significant
ecosystems because they supply numerous goods and services to the
society in addition to benefitting both coastal and marine systems (Giri
et al., 2011b; Valiela et al., 2001). However, over the last two decades
of the 20th century, around 35% of the world's mangrove forests has
disappeared, putting mangroves in peril (Bosire et al., 2008; Valiela
et al., 2001).

Because of the harsh environment in mangrove ecosystems, remote
sensing (RS) has served as a sustainable tool in studies of mangrove
forests (Blasco et al., 2001; Kumar et al., 2013; Vaiphasa, 2006). For
several decades now, with the development of earth observation
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capacity, RS of mangroves was not limited to mapping their extents, but
also in many complex topics, such as biophysical parameters inversion
and ecosystem process characterization. To date, over 1300 scientific
papers published on various topics in the field of mangrove RS, but the
key milestones are not highlighted, so that the developing process,
historic contributions, and drive forces are still not clear.

To our knowledge, six review papers have focused on mangrove RS
since 2010 (Cardenas et al., 2017; Giri, 2016; Heumann, 2011b;
Kuenzer et al., 2011; Purnamasayangsukasih et al., 2016). Among these
post-2010 reviews, Kuenzer et al. (2011) provided comprehensive
overview of all the sensors and methods undertaken in mangrove re-
search, and further discussed their potential and limitations. Heumann
(2011b) and Wang et al. (2018a) reviewed recent advancements in RS
data and techniques and described future opportunities.
Purnamasayangsukasih et al. (2016) reviewed the uses of satellite data
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in mangrove RS with the main focus on the abilities, benefits, and
limitations of optical and radar imagery data. Giri (2016) gave a brief
summary of the nine papers published in a special issue, and also em-
phasized recent improvements of mangrove RS that have been achieved
in terms of RS data availability, classification methodologies, com-
puting infrastructure, and availability of expertise. Cardenas et al.
(2017) intended to challenge scientists to take advantage of all pub-
lically available imagery, processing facilities and datasets, then em-
phasized the need for scientists to acquire programming skills.

These reviews could serve as good starting points for researchers
who want to learn about mangroves RS. However, there still exist three
critical gaps: 1) Most of the existing reviews organize papers according
to data types, but not research topics. The only exception is Heumann
(2011b). Regardless, the chronological evolution of research topics is
not discussed. Consequently, it is hard to understand why different
research topics on mangrove were proposed in the past, and more im-
portantly, what are the potential research topics in the near future; 2)
Key milestones on mangrove RS are not clear. Existing reviews are
made based on a large number of published articles, which overwhelms
general audience as many of them are overlapped with regards to their
topics and methods. On the other hand, it is imperative to understand
the main stream of research in mangrove RS. This can be only made
available by identification of key milestone associated with distinctive
research topic. Specifically, a) who first initiated a new topic, b) in
which year, and ¢) which work received most attention. 3) driving
forces are not mentioned. The most pressing question for mangrove RS
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is to predict the future potential research topics. Solution to this
question can be only sought by understanding of driving forces to the
existing research topics. At this point, none of the review articles at-
tempted to reveal these forces. It's non-trivial to identifying such forces
so as to project the future research topic.

Based on the above analysis, this article does not intend to make an
all-embracing review, but aims to find the skeleton of mangrove RS
developing process by organizing scientific papers according to their
research topics in the chronological order. For each identified research
topic, only the first publications and most cited article will be in-
troduced as the key milestones, and the current state of knowledge will
also be given. Thus, the objectives of this study are: 1) to identify key
milestones of RS of mangrove forests to provide a historical overview of
this research field in the chronological order; 2) to discover key drivers
for the evolution of different milestones so as to analyze theoretical
developments of mangrove RS; and 3) to project future research di-
rections in mangrove RS.

2. Evolution of mangrove RS

We summarized the historical evolution of mangrove RS in Fig. 1,
according to the research topics, RS techniques, and sensors. In the
following subsections, we provide more detailed descriptions of the
evolution for each decade, namely before 1989, 1990-1999, 2000-2009,
and 2010-2018.

Remote Sensing of Mangrove Forests
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Fig. 1. Evolution of mangrove RS since 1956. Yellow, pink, and green boxes represent studies on distribution mapping, biophysical parameters inversion, and
ecosystem process characterization, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this

article.)
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Fig. 2. Literature on RS-based mangrove extent mapping.

2.1. Before 1989, mangrove extent

Mangrove forests are highly productive ecosystems dominating the
intertidal zones along tropical and subtropical coastlines (Kathiresan
and Bingham, 2001; Lugo and Snedaker, 1974; Wang et al., 2004a). To
effectively study mangrove areas and to monitor their changes over
time, accurate, timely, and cost-effective mapping techniques are re-
quired (Green et al., 1998).

The history of mapping mangrove extent with RS data can be traced
back to 1970s. Most of the mangrove extent mapping works before
1989 with RS data were conducted without accuracy assessment
(Everitt and Judd, 1989; Lewis and MacDonald, 1972; Lorenzo et al.,
1979).

Subsequently, two studies of mapping mangrove extent were con-
ducted with accuracy assessment using Landsat TM, SPOT XS or air-
borne images during 1990-2000 (Gao, 1999; Green et al., 1998). Then,
with the accumulation of RS data over the few past decades, some
studies about mangrove forest temporal change detections were con-
ducted during 2000-2010 (Fromard et al., 2004; Kovacs et al., 2001).
Afterwards, Spalding et al. (2010) provided the first truly global as-
sessment of the state of the world's mangroves. Then, several studies of
mapping mangrove extent at large scale were following by using
medium-low spatial resolution RS images after 2000 (Giri et al., 2015;
Giri et al., 2011b; Jia et al., 2014). In 2017, Chen et al. (2017b) mapped
the spatial extent of China's mangroves. The advantage of this study is
that they developed a phenology-based algorithm to identify mangrove
forests by analyzing a large volume of satellite images using Google
Earth Engine (GEE), a cloud-computing platform.

Approximately 435 studies on mapping mangrove extent have been
published to date (Fig. 2). Giri et al. (2011a) mapped the status and
distributions of global mangroves using available Landsat data which
leading the number of citations sharply increased. All publications can
be grouped into two categories. Before 2011, most of the studies fo-
cused on mapping mangrove forest extent by exploring different types
of RS data (Green et al., 1998; Kovacs et al., 2001). After 2011, studies
aiming to map mangrove extent at large scales has drawn more atten-
tion (Chen et al., 2017a; Giri et al., 2011a).

2.2. During 1990-1999, mangrove LAI

Leaf area index (LAI) is one of the most important indicators for

predicting photosynthesis, respiration, carbon and nutrient cycling,
transpiration and rainfall interception (Doughty and Goulden, 2015;
Wang et al., 2016b).

Most works on LAI estimation before 1990 used ground-based
methods (Lugo et al., 1975; Weaver et al., 1986), which were extremely
time consuming and difficult to acquire the large-scale spatial and
temporal variability of LAI (Clough et al., 2000; Kamal et al., 2016;
Sumnall et al., 2016), especially over difficult terrains, such as man-
grove forests in the intertidal zone (Lagomasino et al., 2014). Most of
the mangrove forests grow in relatively small patches and linear stands.
The spatial resolution of existing satellite RS data (e.g. Landsat TM)
before 1990 was low, which could not distinguish these details, and the
results were difficult to verify (Green et al., 1997).

The emergence of high-resolution satellites image SPOT-1 after
1990 provided the possibility of mangrove LAI inversion. Ramsey and
Jensen (1996) established the relationship between in-situ canopy
spectra and mangrove LAI, which provided reference for the inversion
of mangrove LAI from satellite data. Green et al. (1997) found SPOT
and Landsat image derived NDVI (normalized difference vegetation
index) in good correlation with ground measured LAI. This study
mapped mangrove LAI with RS image for the first time, which has
opened the door to new sources of data to effectively characterize
mangrove LAIL

Approximately 64 studies on mapping mangrove LAI have been
published to date (Fig. 3), most of which were after Ramsey and Jensen
(1996) and Green et al. (1997). These publications mainly focused on
exploring the potentials of the different types of RS data, which in-
cluded in-situ hyperspectral data (Ramsey and Jensen, 1996), high-re-
solution imagery (Kovacs et al., 2004; Kovacs et al., 2005a), medium
resolution imagery (Ramsey and Jensen, 1996), airborne hyperspectral
data (Green et al., 1998), radar data (Kovacs et al., 2008c), and most
recently unmanned aerial vehicle (UAV) multispectral images (Tian
et al., 2017).

2.3. During 2000-2009

With the preliminary problem of extent mapping solved to some
extent by 1999, the hotspot of mangrove RS studies during 2000-2009
turned to more detailed characterizations, specifically, species classifi-
cation, vertical structure mapping (height, biomass and carbon stock),
and health condition retrieval. The solution of these problems has
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Fig. 3.

largely benefitted from the launching of new spaceborne RS sensors,
especially those providing global high spatial resolution data.

2.3.1. Species classification

In the previous decade, most research focused on mangrove extent
mapping, but was not able to distinguish different mangrove species.
The major obstacle is that mangroves of one species usually form
narrow strips or small patches, thus not identifiable in satellite images
(Blasco et al., 1998; Green et al., 1998). Airborne high resolution data,
although reported useful for mangrove species classification (Held
et al., 2003; West, 1956), is site-specific and not available to all areas.
The launching of high spatial resolution satellite sensors since 1999 has
enabled the efficient mapping of mangrove species in large areas.

Wang et al. (2004a) was the first research to successfully classify
mangrove species. Using IKONOS 1-m panchromatic and 4-m multi-
spectral images, three mangrove species (i.e. red, black, and white
mangroves) along the Caribbean coast of Panama were separated with
70%-98% accuracy. This study demonstrated the necessity of in-
tegrating object-based image analysis (OBIA) into mangrove species
classification, and has been the most influencing publication on this
problem. The critical issue of optimal scale parameter selection for
object segmentation was solved by searching for the highest classes'
separability (Wang et al., 2004a). In addition, a comparison between
the first high resolution satellites images found that better accuracy was
achieved using IKONOS than QuickBird while QuickBird is more af-
fordable (Wang et al., 2004b).

Approximately 310 species-level mangrove RS studies have been
published to date (Fig. 4), most of which were after Wang et al. (2004a)
and Wang et al. (2004b). Starting from 2011, the number of publica-
tions start to take off, marking the recognition of mangrove species
mapping as a mature procedure. These publications can be grouped into
three categories. First, one type of works continued on improving
mangrove species classification by modifying the algorithm or using
new data (Heumann, 2011a; Myint et al., 2008). Second, some studies
investigated for different mangrove species the other parameters such
as LAI (Kovacs et al., 2005b). Furthermore, with species-level in-
formation available, multi-temporal analysis are implemented to study
the dynamics of mangroves at individual species level (Ghosh et al.,
2016; Satyanarayana et al., 2011).

2.3.2. Vertical structure and biomass
After achieving some success on mapping the horizontal extent of
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Literature on RS-based mangrove LAI estimation.

mangroves in the past three decades, the hotspot of mangrove study has
turned to the retrieval of 3D parameters, more specifically the estima-
tion of height and biomass. Biomass, generally defined as the amount of
organic matters, can be further used to estimate carbon stock, which is
the quantity of carbon in mangroves (http://www.fao.org/docrep/007/
ael56e/AE156E03.htm#P240_10382).

The correlation between mangrove structure parameters and RS
data (e.g. spectra, radar) has been found significant last century
(Mougin et al., 1999; Ramsey and Jensen, 1996). On this basis, re-
searchers have tried to retrieve the structure and biomass of mangroves
using airborne data (Lucas et al., 2002). However, large scale mapping
of mangrove vertical structure has been lacking due to the high density
of mangrove trees and roots as well as their flooded habitats.

Simard et al. (2006) successfully estimated mean tree height and
biomass in the Everglades National Park in south Florida using shuttle
radar topography mission (SRTM) elevation data and has been the most
cited publication on this topic. By calibrating the SRTM elevation with
airborne LiDAR data using a quadratic function, mean mangrove height
was estimated with 2.0m RMSE (root mean square error). Subse-
quently, stand level biomass was estimated from mean height using the
linear allometric equation constructed from field surveyed biomass and
tree height.

To date, 71 articles worked on mangrove height and 157 worked on
mangrove biomass, the most of which overlap (Fig. 5, Fig. 6). Mangrove
height is estimated from a canopy height model, which is usually de-
rived from LiDAR data where height is directly measured (Chadwick,
2011) or image stereopairs where 3D model can be constructed
(Lagomasino et al., 2015a). With height information available, biomass
is then estimated from height using predefined allometric equations
(Chadwick, 2011; Fatoyinbo et al., 2008). To improve the accuracy of
biomass estimation, effort has been put into constructing better allo-
metric equations (Olagoke et al., 2016). In addition, the uncertainty
analysis of mangrove height products has also drawn attention
(Lagomasino et al., 2016). Another approach to estimate mangrove
biomass followed the inspiration by Mougin et al. (1999) and Lucas
et al. (2002), and estimated biomass according to its relationship with
spectral reflectance or radar backscattering parameters (Li et al., 2007;
Pham et al., 2018; Proisy et al., 2007).

2.3.3. Carbon stock estimation
Mangrove carbon stock refers to the amount of carbon stored in
mangroves. Depending on the specific task, the ‘carbon stock’ can mean
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Fig. 4. Literature on RS-based mangrove species classification.

carbon in the mangrove plants (i.e. ‘biomass carbon stock’) or carbon in
the mangrove ecosystems (i.e. biomass carbon plus carbon in soil and
sediments).

With the increasing awareness of mangroves as an effective long-
term carbon sink, the impact of mangroves on global carbon dynamics
becomes more and more recognized (Chave et al., 2005; Donato et al.,
2011). As a result, mangrove RS started to estimate the carbon stock. In
the new decade, the systematic study of mangrove carbon stock esti-
mation has developed as a new branch in mangrove RS studies.

Fatoyinbo et al. (2008) tried to estimate mangrove biomass carbon
stock, assuming that 50% of the dry biomass is carbon. With the bio-
mass estimated from SRTM derived tree heights, the biomass carbon
stock was assessed. However, the accuracy was not assessed. Wicaksono
et al. (2011) was the first study that focused on the carbon stock
mapping of mangrove ecosystems. Both above ground carbon (AGC)
and below ground carbon (BGC) were calculated from Landsat ETM +
imagery. After comparing different vegetation indices and mangrove
fraction derived by spectral unmixing, the maximum accuracy was

achieved using the linear regression with global environment mon-
itoring index (GEMI). For AGC, 62% variation of carbon stock was
explained, with standard error of 93.5 Tg C/ha. For BGC, 56.18%
variation of carbon stock was explained, with standard error of 26.98
Tg C/ha.

Although still in the emerging stage, publications on mangrove
carbon using RS have reached 90 (Fig. 7). Following Fatoyinbo et al.
(2008), one approach is to estimate biomass carbon stock by assuming
45%-50% of the biomass is carbon (Patil et al., 2014). Most studies
used this to provide carbon estimate from field surveyed biomass to
provide reference data (Friess et al., 2016; Wicaksono et al., 2011). On
the other hand, following Wicaksono et al. (2011), one approach is to
estimate carbon stock using regression models from vegetation indices
and parameters (Friess et al., 2016; Wicaksono et al., 2016).

2.3.4. Health conditions retrieval
Mangroves are considered the most productive in all ecosystems,
presuming that they are in good health condition (Ramsey and Jensen,
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1996). However, when temperature, salinity and other factors are sub-
optimal, mangrove plants become stressed, thus their function as the
“coastal kidney” gets hampered.

It has long been noticed that mangroves of different health condi-
tions can be differentiated from radar (Kovacs et al., 2005b). However,
the health of mangroves depends on a set of climatological and tidal
variables and their interactions (Imhoff et al., 1986). As a result, little
attention has been put to monitoring health conditions of mangroves.

Kovacs et al. (2008a) concluded that multi-polarized spaceborne
synthetic aperture radar (SAR) could be used to distinguish healthy and
degraded mangroves because a significant correlation between the
backscattering coefficients of ENVISAT SAR and LAI was found
(R? = 0.82). LAI was used as the indicator of mangrove health because
a distinctive increase of LAI was noticed from the sample white man-
grove plots of dead (LAI~0), poor (LAI~1) and healthy conditions
(LAI~2.3). In terms of spectral reflectance, Wang and Sousa (2009)
found out the difference in leaf reflectance between healthy and
stressed mangroves. Four band ratio indices (R695/R420, R605/R760,
R695/R760, and R710/R760) were constructed using narrow band

reflectance from laboratory hyperspectral measurements. ANOVA re-
vealed that these indices can effectively distinguish healthy and
stressed mangroves of the same species (red, white, and black man-
groves).

Only 78 studies have been published regarding health conditions of
mangroves (Fig. 8), which can be separated to two different ap-
proaches. First, following Kovacs et al. (2008a) and Wang and Sousa
(2009), vegetation indices and parameters derived from hyperspectral
or radar data were used as proxy of mangrove health condition. These
indices include but are not limited to LAI, photochemical reflectance
index (PRI) (Song et al., 2011), NDVI (Chellamani et al., 2014), percent
tree cover (PTC) (Ishtiaque et al., 2016), enhanced vegetation index
(EVI) (Ishtiaque et al., 2016), and leaf Chl-a concentration (Flores-de-
Santiago et al., 2013). Second, classification methods have also been
used to distinguish mangroves of different health status (Vidhya et al.,
2014; Zhang et al., 2014; Zhang et al., 2013).
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Fig. 7. Literature on RS-based mangrove carbon stock estimation.



L. Wang, et al.

15 — | | | | | | | |

[""INumber of Publications (7otal: 78)
Number of Citations  (7otal: ll75)v

10

Number of Publications

-
N

[

=3
=)

2

2003 ‘::j

1994

2000

2001 —
00

o

Remote Sensing of Environment 231 (2019) 111223

200
180
160
140
120

100

1D JO 1oquuinN

/ 80

60

8

2013
2014
2015
2016 —
2017
2018 —

I
]
Q

2007
00
2009
2010 —
2011

2

Fig. 8. Literature on RS-based mangrove health assessment.

2.4. During 2010-2018

With the extensive ongoing studies of RS-based mangrove forests
(species) mapping and structure inversion, results of mangrove extents,
species distributions, and primary parameters are accurate enough to
carry out further research. At the same time, the development of
mangrove ecological functions and global climate change research has
pushed the RS-based mangrove analyses to a comprehensive level.
From 2010 to 2018, the most significant improvement of RS-based
mangrove research is that mangroves are considered as a coupled
ecosystem participating in global carbon cycling and energy balance,
and responding to global climate change. These new studies can be
concluded to three topics as follows.

2.4.1. Carbon fluxes

Carbon flux, defined as the rate of exchange of carbon between
pools (reservoirs), directly refers to the global carbon cycling. Due to
the high rates of carbon sequestration (1.5TgCha~'yr~') and the
specific position at the terrestrial-ocean interface (potential exchange
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with coastal waters), mangrove forests are considered to have a unique
contribution to global carbon cycling and received significant attention
in carbon fluxes research (Bouillon et al., 2008; Eong, 1993; Twilley
et al., 1992).

However, until now only 12 papers focused on RS-based mangrove
carbon fluxes (Fig. 9). This limited amount is a combination result of
challenges associated with in situ flux studies (there is only one man-
grove flux tower site available in the Fluxnet website, http://fluxnet.
fluxdata.org/) and rarely accessible high temporal resolution RS data.

In 2012 and 2013, tower-based CO, eddy covariance (EC) in con-
junction with EVI derived from the Moderate Resolution Imaging
Spectroradiometer (MODIS) were utilized to estimate seasonal and
annual CO, fluxes and canopy-scale photosynthetic light use efficiency
of mangrove forests in Florida Everglades (Barr et al., 2013; Barr et al.,
2012). The model developed in these studies provided the first frame-
work for estimating CO, fluxes of mangroves using RS data and en-
vironmental factors.

In 2013, Zulueta et al. (2013) measured CO, fluxes of mangroves,
desert, and marine ecosystem from an aircraft which incorporated
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Fig. 9. Literature on RS-based mangrove carbon flux characterization.
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Fig. 10. Literature on RS-based mangrove echohydrology.

instrumentation for eddy covariance measurements (mobile flux plat-
form) and low-level RS. They concluded that mangroves showed the
highest uptake of CO,.

2.4.2. Ecohydrology

Evapotranspiration (ET) is the sum of evaporation and plant tran-
spiration from the Earth surface to the atmosphere. RS has proved to be
an effective tool for estimating ET rates and other energy balance
parameters in different ecosystems such as agricultural lands (Boegh
et al., 2002) and terrestrial forests (Chen et al., 2005). However, due to
the limitation of data source, very limited studies focused on RS-based
estimation of mangrove ET and other energy balance parameters
(Fig. 10).

In 2015, Lagomasino et al. (2015a) combined long-term datasets
acquired from Landsat TM and the Florida Coastal Everglades Long-
Term Ecological Research project to investigate ET, latent heat, and soil
heat flux of mangrove ecotone in the Everglades. Modeled results from
Landsat data were calibrated and tested using the environmental and
meteorological parameters collected from the eddy-covariance tower
and weather tower, providing relationships between energy and water
balance components which also applied to other mangrove systems.

2.4.3. Impact of climate change on mangroves

Threats to the mangroves from changes in sea-level and temperature
are the greatest compared to other factors such as atmospheric com-
position and land surface alterations (Alongi, 2002).

According to Alongi (2008), mangroves would be set landward or
disappear due to the continuous rise in sea-level and no change in se-
dimentary. Furthermore, most mangroves would be degraded, because
the areas for mangrove landward migration are already occupied by
man-made structures such as ports, dams, and ponds in many parts of
the world (Jia et al., 2015, 2018).

However, until now only two RS-based research provided particular
discussion on how climate factors impacted mangroves. Due to the lack
of long-term continuous climatic variables dataset (for example, the
sea-level rise records is only available from 1993), most studies did not
analyze the relationship between climate change and mangroves
(Fig. 11).

In 2015, Srivastava et al. (2015) integrated RS data and meteor-
ological data to assess the impacts of climate change on the mangrove
ecosystem. Their results showed that (1) rainfall and sea-level rise
significantly affected the extent and density of mangrove species, (2)

mean sea level and wind speed were inversely related to mangrove
area, and (3) increment of temperatures could cause the mangrove
extent to decrease. In 2018, Pastor-Guzman et al. (2018) presented the
first regional characterisation of mangrove phenology, and concluded
that cumulative rainfall in cold and dry season has a direct impact on
mangrove phenology.

3. Discussion (analysis of key drivers for the evolution and
current limitation)

As a unique type of forest, mangroves are found along the coasts of
tropics or subtropics, occupying only 0.4% of global forests (FAO,
2010). To detect driving forces of mangrove RS development, we as-
sume that research of mangrove RS have certain relations with research
of forest RS. In total, 1208 mangrove RS papers and 37,152 forest RS
papers were published to date (Fig. 12). Basically, current literatures on
mangrove RS can be divided into three sub-fields depending on the
complication of ecological issues that can be addressed by RS applica-
tions: (1) mangrove distribution mapping, (2) biophysical parameters
inversion, and (3) ecosystem process characterization (Fig. 13). This
study compares the evolution of mangrove RS with terrestrial forest RS
in the abovementioned three aspects.

3.1. Mangroves distribution mapping

Vegetation distribution mapping is a traditional and essential task of
RS. According to our literature survey, mangroves distribution mapping
can be concluded into two stages: extent mapping (mangroves or non-
mangroves) and species distribution mapping.

Historically, extent mapping of both mangroves and terrestrial for-
ests were first conducted using aerial photography before 1970 (Aldrich
et al., 1959; Colwell, 1964). Then, the development of satellite sensors
promoted extent mapping to individual species level. Terrestrial forests
species mapping started from early 1970s, but studies with acceptable
classification accuracy (over 80%) were published around 1985 by in-
terpreting Landsat TM imagery (Moore and Bauer, 1990; Shen et al.,
1985; Toll, 1985). Although terrestrial forests species can be dis-
tinguished from Landsat TM, these data were unable to discriminate
mangrove species (Green et al., 1998). This is probably due to the
coarse spatial resolution of Landsat TM (30 m) and the patchy growth
forms (narrow strips or small patches usually less than 30 m wide) of
mangrove stands. The first high accurate mangrove species mapping
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Fig. 11. Literature on RS-based studies of climate impact on mangroves.

paper was published after the launch of high resolution satellite sensors
(IKONOS in 1999, QuickBird in 2001), Wang et al. (2004a) used high
resolution satellite imagery of IKONOS to map mangroves species in
Punta Galeta, Panama, and achieved an average accuracy of 91.4%.
Vast mangrove species mapping research have appeared since the
successful of this study, most of which are based on high resolution
satellite imagery (Dahdouh-Guebas et al., 2005; Everitt et al., 2008).
Therefore, we conclude that the huge time lag between terrestrial
forest species mapping and mangrove species mapping is caused by the
availability of proper RS data. In other words, the development of
mangrove distribution mapping is driven by sensor progress.

3.2. Biophysical parameters inversion

Forests biophysical parameters are important for studies of the
carbon cycle and global climate (Disney et al., 2006). According to our
literature survey, mangroves biophysical parameters inversion can be
concluded into two types: LAI inversion, and biomass estimation.
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The time lag between the first remote-sensing-based terrestrial
forests LAI research and the first mangrove LAI research was not long.
The first RS based study focused on forest ecosystem was published in
1987 (Peterson et al., 1987). Shortly after this, Jensen et al. did an
intensive in situ sampling of mangroves in Florida in 1988, and related
mangrove canopy LAI to a vegetation index generated from the SOPT
XMS sensor (Jensen et al., 1991).

RS based terrestrial forests biomass estimation started from 1987.
Wu (1987) suggested a potential application of multipolarization SAR
data for pine-plantation biomass. Mangrove biomass estimation was
first published by Mougin et al., 1999, using multifrequency and mul-
tipolarization Polarimetric AIRSAR data to retrieve information on the
structure and biomass of mangroves in French Guiana. Although man-
groves' high productivity and essential role in supplying organic ma-
terials to coastal ecosystems was conscious since 1980s (Hutching and
Saenger, 1987), the time lag between studies of terrestrial forests bio-
mass and mangrove biomass is notable (over 10 years). This lag can be
explained in two aspects: first is the lack of fundamental ground truth
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Fig. 12. Literature on mangrove RS.



L. Wang, et al.

A
2020 =
20 Vegetation P
'z distribution mapping o
g 2010 — . ) ' .
f Biophysical o
s parameters inversion ',"
g .
S 2000 —| Ecosystem ‘
~ O 2 L
P process characterization ,*
@n 0
2 32
S 1990 — O
— .
< .
'q”, 1980 — ‘o'
o=t .
7} o
=
.
1970 —
.
K
-
<&
.
.
T T T T T 7
1970 1980 1990 2000 2010 2020

Mangrove Forests Remote Sensing

Fig. 13. Temporal relationship between mangrove RS and terrestrial forest RS.

information due to the numerous difficulties encountered during field
studies in coastal environments (Mougin et al., 1999); second and the
most important is the lack of proper RS data (Mougin et al. (1999) used
airborne data which is rarely acquired).

Therefore, we conclude that the time lag between terrestrial forest
biophysical parameters inversion and mangrove biophysical parameters
inversion is caused by the availability of proper RS data. In other words,
the development of mangrove biophysical parameters inversion is
driven by sensor progress.

3.3. Ecosystem process characterization

Critical research problems involving forest response to global
change require characterization of ecosystem processes (Running et al.,
1989). Current RS based research of mangrove ecosystem processes
include carbon fluxes and evapotranspiration (ET).

Studies of RS-based estimation of terrestrial forests ecosystem pro-
cesses were published since the late 1980s. Running et al. (1989)
mapped regional forest ET by combining satellite data (AVHRR/NDVI)
with ecosystem simulation. Waring et al. (1995) used seasonal RS data
(acquired by ultralight aircraft) and longtime meteorological data (ac-
quired by meteorological sensors installed at the top of a 30 m tower) to
estimate forests CO, exchange in Harvard Forest. Although many field
and greenhouse studies have investigated the rate and mechanisms of
mangrove productivity, to date only a few studies have been conducted
to use RS for the estimation of carbon and water exchanges in mangrove
ecosystems. The first studies focusing on mangrove's carbon fluxes and
ET were published in 2012 and 2015, respectively (Barr et al., 2012;
Lagomasino et al., 2015b). Both studies were conducted based on long
term medium resolution RS data and carbon fluxes tower data acquired
from the only mangrove tower in Everglades National Park. The huge
time lag between terrestrial forests and mangrove forests can be ex-
plained in three aspects: 1) The total area of mangroves is small, oc-
cupying only 0.4% of global forests (FAO, 2010; Giri et al., 2011b). As a
result, their role in global carbon cycle was neglected in the early time.
2) Traditional high temporal resolution satellite data with coarse spatial
resolution, such as AVHRR, were not suitable for mangrove studies,
because mangrove pixels in these images are often mixed with other
coastal land covers. 3) Ecosystem process characterization needs
amount of field work, especially long term critical field measurements
of carbon and water fluxes. To date, there are 177 terrestrial forest
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carbon fluxes towers enrolled in FLUXNET with the first tower built in
1990. However, there is only one mangrove carbon fluxes tower which
was built in 2003 (http://fluxnet.fluxdata.org/).

Therefore, we conclude that the time lag between terrestrial forest
ecosystem process characterization and mangrove ecosystem process
characterization is caused by the availability of carbon fluxes tower and
appropriate RS data. In other words, the development of ecosystem
process characterization is driven by data accessibility.

4. Future opportunities

As discovered in the previous section, sensor advancement has led
to emergence of key milestones in the history of mangrove RS. Although
a significant number of remote sensors have been launched in the last
decades, an unparalleled amount of new sensors have been set forth to
launch in the years to come. As such, in the following section, we share
our insights on how new opportunities will arise for six existing re-
search topics as well as a new one.

4.1. Extent mapping

Mangrove forests mapping (mangroves or non-mangroves) is the
basis of other mangrove RS topics. Although extent mapping has been
studied for more than 60 years, there are still great challenges and
opportunities. In our opinion, two major improvements can be made in
the future research.

(1) Conducting dense-temporal and fine-spatial resolution global
mapping.

In 2011, Giri et al. (2011b) mapped global mangrove forests for the
first time using RS images, which demonstrated substantial advance-
ment toward global mangrove monitoring efforts. In 2016, Hamilton
and Casey (2016) created a 30m spatial resolution annual global
mangrove database from 2000 to 2012. However, the spatio-temporal
resolution is rather coarse.

Two recent developments in the earth observation sector have the
potential to significantly improve the efficacy of mangrove monitoring
across the globe. First, the European Sentinel-2A and —2B satellites
comprise the global multi-spectral mission whose data is open to the
global public. Launched by the European Space Agency (ESA) in June
2015 and March 2016, respectively, these two satellites provide 5-day
repeat and 10m spatial resolution imagery globally, enabling high
spatio-temporal monitoring of mangrove forests (Verhegghen et al.,
2016; Xiong et al., 2017). Second, the novel computing platform of
GEE, which houses a complete and continually updated archive of pre-
processed Sentinel-2 data, has enabled the efficient development of
global-scale data products (Chen et al., 2017a; Gorelick et al., 2017).

(2) Considering the tidal influences.

Mangrove extent monitored by satellite RS could be varied de-
pending on the instantaneous tidal level at the time satellite images
were taken (Cardenas et al., 2017; Giri et al., 2007; Saito et al., 2003).
Although this limitation has been proposed for more than 15 years, we
still lack understanding about how tidal level affects the reflectance of
mangrove forests.

In recent years, the wide use of flexible UAV offers great opportu-
nities to quantitatively address the effects of tidal height on spectral
reflectance. UAVs can be used to acquire images of mangroves at almost
any time during local flood and ebb tide. Therefore, we could estimate
mangrove extent by combining spectral reflectance from satellite
images and instantaneous tidal height from UAV. Furthermore, if so,
current mangrove maps would be effectively improved. It should be
noted that UAVs also have disadvantages such as limited aerial extent
and relatively lower steadiness compared to other RS platforms (Tian
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et al., 2016a; Yin and Wang, 2019). So we recommend using UAV to
collect data at small areas to facilitate large-scale projects.

4.2. Species mapping

Composition and distribution of mangrove forest species are es-
sential for conservation efforts and further mangrove investigation (Jia
et al., 2018). In our opinion, two major improvements are feasible.

(1) Continental- or global-scale species distribution mapping.

To date, all mangrove species mapping studies were conducted in
local scales, but continental or global-scale species distribution results
are unavailable. There are two major barriers. First, due to the frequent
clouds and cloud shadows in the mangrove swamps, high quality fine-
resolution RS data that fully cover a large-scale are difficult to acquire,
even commercially. Second, operating algorithms on a large number of
image archives requires specialized expertise and software, powerful
computing facilities, and significant time dedication (Alonso et al.,
2016).

Two recent developments in the earth observation sector have the
potential to significantly improve large scale mangrove species map-
ping. First, better multi-source data can be combined. Dense series of
multispectral satellite data (e.g. Landsat-8, Sentinel-2) provide a good
basis for the large-scale mapping of mangrove forest composition
(Wang et al., 2018b), while further data may be added from recently
launched SAR missions such as Sentinel-1 SAR. Although significant
increase in accuracy is not guaranteed by adding SAR, the free avail-
ability of most of the data could be a motivation to investigate toward
such approaches. Second, the novel cloud computing platform of GEE,
with its large archive of pre-processed satellite datasets and its powerful
parallel computing capacity, further facilitates large-scale mangrove
species mapping.

(2) Distinguishing more mangrove forest species.

Globally, there are over 100 species of mangroves. Vaiphasa et al.
(2007) proved that at least 16 mangrove species could be distinguished
by six hyperspectral channels. However, in most published RS appli-
cations, no more than five species were discriminated. The recently
available dense series of multitemporal Landsat-8 and Sentinel-2 data
better capture mangrove phenology (Pastor-Guzman et al., 2018),
which could possibly assist species discrimination. However, whether
phenology information can be used to reliably identify mangrove spe-
cies remains a question to be explored.

(3) Building a spectral library.

The spectral characteristics of different mangrove species have not
been fully defined. Therefore, to assist the species classification, we call
for researchers in mangrove RS to collectively build a definitive spectral
library of mangrove species under various environmental conditions. It
should be noted that mangroves under some environment conditions
are not accessible. To collect the hyper-spectra of those mangroves, we
suggest mounting high resolution hyperspectral sensors on UAVs.
Nevertheless, UAV hyperspectral RS is an emerging protocol, the ro-
bustness of which still needs improvement.

4.3. LAI

LAI is one of the most significance indicator of primary productivity
in mangrove wetland ecosystem, associated with many biological and
physical processes of mangrove. Current RS-based methods for re-
trieving LAI can be grouped into two categories according to the types
of RS data: passive optical and active LiDAR. However, both of them
remain critical obstacles for the inversion of mangrove LAL
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(1) Passive optical RS-based methods.

Although successful inversion of mangrove LAI with passive optical
RS images have been reported in many studies (Carlson and Ripley,
1997; Chen et al., 2002; George et al., 2018; Kamal et al., 2016), the
challenges associated with the interference from complex background
and various mangrove species have not been effectively controlled yet.
Most of the existing studies applied to extracting LAI has the common
characteristics that the species is singular and the background is
homogeneous. However, in the mangrove forest, it is likely that both of
the background and species are various.

UAV platforms provide various types of very high spatial resolution
RS data at flexible acquisition time intervals (Bhardwaj et al., 2016;
Hardin and Jensen, 2011; Liu and Wang, 2018), which offers terrific
opportunities to eliminate the effects of background and species in the
estimation of mangrove LAI (Guo et al., 2018; Tian et al., 2017). In
addition, some satellite RS images (e.g. Sentinel-2) at relatively lower
spatial resolution but higher spectral resolution than UAV images also
have great potentials for solving the background and species issues
(Wang et al., 2016a).

(2) LiDAR RS-based methods.

Airborne LiDAR can provide detailed forest vertical dimension in-
formation estimation (Chen et al., 2007; Popescu et al., 2011). How-
ever, it is often logistically difficult to use airborne LiDAR for multi-
temporal and large-scale forest monitoring. The first spaceborne LiDAR
system, Geoscience Laser Altimeter System (GLAS), has been success-
fully used for collecting repetitive and extensive forest LAI (Garcia
et al., 2012; Tian et al., 2015; Tian et al., 2016b). To the best of our
knowledge, GLAS has not been applied on retrieval of mangrove LAI to
date because of its sparse spatial distribution. Ice, Cloud, and land
Elevation Satellite-2 (ICESat2) and Global Ecosystem Dynamics In-
vestigation (GEDI) LiDAR have been launched in 2018, which will
generate a large amount of spaceborne LiDAR data at a frequent revisit
(Nie et al., 2018). Therefore, it is worthwhile to explore new methods
for estimating mangrove LAI at a continental- or global-scale with
spaceborne LiDAR data in the near future.

It should be noted that, besides the passive optical RS-based and
LiDAR RS-based methods, radar data was also utilized for mangrove LAI
inversion in some existing studies, e.g. (Kovacs et al., 2008b). However,
the high moisture content in mangrove forests has hindered research on
leaf area index inversion with radar data.

4.4. Structure, biomass, and carbon stock

The main obstacles for RS-based retrieval of mangrove structure,
biomass and carbon stock include: (1) only a small number of structure
parameters (mainly height) are estimated; and (2) ground truth data is
hard to collect.

We consider that the research can be improved in the following
three aspects.

(1) Individual tree characterization.

Individual tree detection methods have been widely used to count
and measure individual trees to build forest inventory datasets, but are
rarely applied to mangrove studies (Edson and Wing, 2011; Hirata
et al., 2010; Yin and Wang, 2016). Previous studies have shown that
individual tree characterization can increase the accuracy of forest
parameter estimation (Hyyppa et al., 2001; Xu et al., 2014). Therefore,
to assess mangrove structure and biomass at individual tree level may
lead to great improvement of mangrove parameter estimation, but has
largely been limited by the relatively low spatial resolution of datasets
(Heenkenda et al., 2015; Kamal and Johansen, 2017; Wannasiri et al.,
2013). With the increased spatial resolution of RS data, especially the
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use of UAVs, individual mangrove characterization is worth in-
vestigating. Recently, the first UAV LiDAR-based individual mangrove
delineation work has been published (Yin and Wang, 2019). Yet more
individual mangrove studies are encouraged to test the robustness of
the algorithms and to improve the accuracy.

(2) Retrieving more structural parameters.

LiDAR technique has been quickly advancing, with increased point
density and decreased cost (Guo et al., 2017). Therefore, mangrove
structure can be represented with more details. If more parameters
besides tree height (e.g. crown size, diameter at breast height) are re-
trieved from the LiDAR datasets, the 3D structure of mangroves can be
described more comprehensively, which may furthermore lead to im-
proved estimation of biomass and carbon stock (Lim et al., 2003).

(3) Ground truth datasets.

The estimation of biomass and carbon stock rely heavily on allo-
metric equations (Chadwick, 2011; Fatoyinbo et al., 2008). Because the
accurate measurement of biomass requires destructive field surveys,
which is not encouraged for the already rapidly disappearing man-
groves, the equations are usually borrowed from other studies. How-
ever, studies have shown that the allometric equations vary with spe-
cies and locations (Komiyama et al., 2008; Yuen et al., 2016).
Therefore, we call for the mangrove research community to enlarge the
pool of publicly available standardized ground truth datasets.

4.5. Health conditions

Mangrove health analysis, compared to other mangrove problems,
is relatively less conducted using RS. We consider that mangrove health
research may be further developed in the following two aspects.

(1) LiDAR-based health analysis

Previous studies are mostly based on multispectral or hyperspectral
imagery (Song et al., 2011; Wang and Sousa, 2009). Laser-induced
fluorescence (LIF) LiDAR, the effectiveness of which on vegetation
monitoring has been confirmed two decades ago, can provide another
efficient tool for mangrove health analysis through leaf chlorophyll
concentration estimation (Giinther et al., 1994; Lavrov et al., 2012;
Saito et al., 2000; Saito et al., 1997). In addition, with the ability to
accurately estimate the chlorophyll concentration, LIF-LiDAR can be
used in field survey to provide more detailed validation data for man-
grove health status monitoring (Saito et al., 2002).

(2) Red-edge reflectance from satellite images.

Many of the vegetation indices for mangrove health analysis use
reflectance around 700 nm, which are usually available from hyper-
spectral datasets (Wang and Sousa, 2009). However, hyperspectral
datasets are often lacked and not easy to collect for large areas. The
recently launched Sentinel-2 satellite carry multi-spectral sensors that
collect reflectance data at three red-edge bands (705 nm, 740 nm, and
780 nm), which provide essential information for mangrove health
analysis (Clevers and Gitelson, 2013; Ferndndez-Manso et al., 2016;
Mubhsoni et al., 2018). With its 20 m spatial resolution and 5-day revisit
frequency, utilizing Sentinel-2 images will facilitate the timely large-
scale monitoring of mangrove health.

4.6. Carbon flux and ecohydrology
Carbon and ecohydrology flux are important for understanding the

ecosystem process of mangrove forests. RS has proved to be an effective
tool for estimating carbon flux and ecohydrology (Lagomasino et al.,
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2015b). However, compared to other ecosystems, RS based carbon flux
and ecohydrology studies in mangrove forests were rarely conducted.
There are two major obstacles: (1) difficulties in acquiring the eco-
system flux data, and (2) difficulties in field survey. In our opinion,
recent progress in RS and in-situ instrument may offer two great op-
portunities in carbon flux and ecohydrology.

(1) Satellite drives large scale carbon flux estimation.

Now, global carbon emissions are monitored from space, by three
pioneering satellites: NASA's Orbiting Carbon Observatory-2 (OCO-2),
which was launched in 2014 and measures CO,, Japan's Greenhouse
Gases Observing Satellite (GOSAT), which was launched in 2009 and
observes CO, and methane, and China's TanSat, which was launched in
2016 and examines carbon sources with extremely high precision.
Scientists are still trying to figure out how to track greenhouse gases
from space (Tollefson, 2016). Meanwhile, a new series of satellites have
been lined up to support a larger monitoring effort. Japan launched
GOSAT-2 in 2018. NASA is preparing OCO-3 for launch in April 2019.
All these satellites could serve as main data sources of global mangrove
carbon flux estimation.

(2) In-situ flux tower drives high precision local Carbon flux and
ecohydrology estimation.

To our knowledge, except one mobile flux platform study, all RS-
based mangrove carbon flux and ecohydrology studies were conducted
in Everglade state park, where there is a carbon flux tower. Recently,
more and more mangrove carbon flux towers are built worldwide, such
as Sundarbans (India), Zhangjiangkou (China), Zhanjiang (China), etc.
These towers could serve as high precision data source in local carbon
estimations.

4.7. New topics

Significant advances in the field of RS of mangroves were identified
in the benefit of the development of earth observation capacity. While
recent advances have used some new RS data for existing mangrove
research topics, there remain opportunities to explore new topics.

One new topic in RS-based mangrove forests research that we sug-
gest is to map mangrove productivity. Mangrove forests have been
considered to be high productivity ecosystem for a long time. However,
compared to other ecosystems, less studies focused on mangrove pro-
ductivity. Moreover, no RS-based researches has been conducted to
map mangrove productivity. Nowadays, with intensive mangrove in-
situ surveys (Yang et al., 2018) and more flux towers, great opportu-
nities have been offered to the research of mangrove productivity
mapping.

5. Conclusion

In this review article, we identified key milestones in mangrove RS
by associating emergence of major research topics with occurrence of
new sensors in four respective historical phases, i.e. before 1989,
1990-1999, 2000-2009, and 2010-2018. For each identified research
topic, an in-depth theoretical understanding was achieved by analyses
of both the first published article and most-cited article. Based on the
analyses, current state of knowledge as well as existing limitations was
summarized. In addition, in order to gain insights on driving forces for
emergence of new research topics, we compared the chronological
evolution of mangrove RS with that of terrestrial forest RS.

Interestingly, we found out that key research topics in mangrove RS
repeats those of forest RS yet with varying time lags. This can be at-
tributed to the following two facts: 1) mangrove forests often appear as
more elongated patches than terrestrial forests; 2) field work is more
challenging in mangrove habitat. Along with the remote sensors' ad-
vancement, various topics that had been studied in terrestrial RS were
later transformed to mangrove studies. Based on the projected growth
of foreseeing earth observation capacity, insights on future research
directions in mangrove RS are also presented.
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