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The SoilMoisture andOcean Salinity (SMOS) remote sensing satellitewas launched by the European Space Agen-
cy in 2009. The L-band brightness temperature observedby SMOShas beenused to produce estimates of both soil
moisture and τ, the optical thickness of the land surface. Although τ should theoretically be proportional to the
amount of vegetation present within a SMOS pixel, several initial investigations have not been able to confirm
this expected behavior. However, when the noise in the SMOS τ product is removed, τ in the U.S. Corn Belt, a re-
gion of extensive row-crop agriculture, has a distinct shape that mirrors the growth and development of crops.
We find that the peak value of SMOS τ occurs at approximately 1000 °C day (base 10 °C) growing degree days
after the mean planting date of maize (corn). We can explain this finding in the following way: τ is directly pro-
portional to the water column density of vegetation; maize contributes themost to growing season changes in τ
in the Corn Belt; and maize reaches its maximum water column density at its third reproductive stage of devel-
opment, at about 1000 °C day growing degree days. Consequently, SMOS τ could be used tomonitor the phenol-
ogy of crops in the Corn Belt at a spatial resolution similar to a U.S. county and a temporal frequency on the order
of days. We also examined the magnitude of the change in SMOS τ over the growing season and hypothesized it
would be related to the amount of accumulated solar radiation, but found this not to be the case. On the other
hand, the change in magnitude was smallest for the year in which the most precipitation fell. These findings
are rational since SMOS τ at the satellite scale is in fact a function of both vegetation and soil surface roughness,
and soil surface roughness is reduced by precipitation. To fully explain changes in SMOS τ in the Corn Belt it ap-
pears that itwill be necessary to use in situ and remotely-sensed observations alongwith agro-ecosystemmodels
to account for land management decisions made by farmers that affect changes in soil surface roughness and all
of the relevant biophysical processes that affect the growth and development of crops.

© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

The European Space Agency's Soil Moisture and Ocean Salinity
(SMOS) satellite remote sensing mission employs passive microwave
remote sensing to monitor Earth through the use of an L-band (f =
1.4 GHz, λ = 21 cm) radiometer (Kerr et al., 2010). At microwave fre-
quencies liquid water has a high dielectric constant (Grant, Buchanan,
& Cook, 1957) making it distinct from most other natural materials. At
L-band vegetation is semi-transparent and consequently Earth's terres-
trial brightness temperature is sensitive to the water content of the first
few cm of the soil surface (e.g., Escorihuela, Chanzy, Wigneron, & Kerr,
2010). In view of other microwave sensors currently in orbit, L-band is
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considered to be the optimum frequency for soil moisture remote sens-
ing because of its long wavelength.

While semi-transparent, the influence of vegetation on measured
brightness temperature is the single most important factor that affects
the retrieval of soil moisture (e.g., Holmes, Drusch, Wigneron, & de
Jeu, 2008). It is interesting to note that the sensitivity of L-band bright-
ness temperature, TB, toweakly-scattering vegetation is nearly the same
as the sensitivity to soil moisture, θv. Using the model that forms the
basis for the SMOS retrieval algorithm (Wigneron et al., 2007), it can
be shown that ∂TB/∂θv≈−2.5K per 0.010 m3 m−3 when τ, the optical
thickness of a vegetation canopy, which quantifies the degree to which
vegetation attenuates propagating radiation, is 0.10 Np or equivalent to
a knee-high maize (corn) canopy (Hornbuckle, England, De Roo,
Fischman, & Boprie, 2003). When τ increases to 0.40 Np (a chest-high
maize canopy), ∂TB/∂θv≈−1.1K per 0.010 m3 m−3. On the other
hand, when θv = 0.40 m3 m−3 (a wet soil), ∂TB/∂τ≈2.2K per
0.010 Np, and when θv = 0.10 m3 m−3 (a dry soil), ∂TB/∂τ≈1.0K per
0.010 Np.
changes in response to the growth and development of crops, crop
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Fortunately soil moisture and vegetation generally have opposite ef-
fects (as shown above), especially in the case of weakly-scattering veg-
etation (which is what is assumed by the SMOS retrieval algorithm): an
increase in θv (with no change in other variables) decreases TB; while an
increase in τ (again with no change in other variables) increases TB. The
SMOS team developed a solution to this problem of competing influ-
ences by designing an instrument that could retrieve both variables, θv
and τ, simultaneously. This is accomplished through the use of multiple
measurements of TB at a variety of incidence angles θ to quantify the ef-
fect of vegetation on propagating radiation as the observed path length
through the canopy changes with θ.

While the vast majority of the focus of the SMOS mission during its
first half-decade of operation has been on soil moisture, the SMOS
Level 2 τ product may also prove to be useful and perhaps more atten-
tion should be paid to this vegetation data product. Somework relating
τ to large-scale changes in vegetation has been done at higher micro-
wave frequencies. Jones, Jones, Kimball, andMcDonald (2011) retrieved
τ (which they call the vegetation optical depth, or VOD) from TB at
18.7 GHz observed by AMSR-E to examine global phenology. They
found that τ compared well with leaf area index (LAI) and visible and
near-infrared vegetation indices fromMODIS for 82% of Earth's surface.
The highest correlations were found for lower amounts of vegetation
(e.g., savannas). Recently Liu et al. (2015) used τ (VOD) from SSM/I,
AMSR-E, MWRI, and Windsat to estimate changes in aboveground bio-
mass carbon (ABC) in both forests and other ecosystems. Their observa-
tions indicated that ABC decreased from 1993 to 2003, but there has
been an overall gain in ABC over the last two decades.

It has been shown empirically that τ is directly proportional to the
mass of water contained within vegetation tissue per ground area,
also called the water column density of vegetation (Jackson &
Schmugge, 1991). Therefore τ should be a measure of the amount of
growing vegetation within a satellite pixel. While some work has been
done with L-band τ from SMOS, these initial investigations have not
been able to confirm this expected behavior. For example, Jackson
et al. (2012) examined τ in the Little Washita watershed, an area of
mainly rangeland in the state of Oklahoma, and found no seasonal pat-
tern. SMOS τ is expected to mirror the growth and senescence of vege-
tation, especially in agricultural regions. Wigneron et al. (2012)
investigated SMOS τ in Spain at the Valencia Anchor Station, a site
consisting of mostly vineyards, orchards, shrubs, and scattered pine
trees, and found higher values in the winter than in the summer.
Schlenz, dall'Amico, Mauser, and Loew (2012) evaluated SMOS τ in an
agricultural area in southern Germany. They found τ to be highly vari-
able and to not exhibit a clear seasonal pattern. The average value of τ
was higher than expected and positively correlated with SMOS re-
trieved soil moisture. Bircher, Skou, and Kerr (2013) examined SMOS
τ in an agricultural watershed in western Denmark and found it to be
noisy and too high on average. The expected seasonal trend of increas-
ing τ during the summer season was faint.

Two investigations of the use of SMOS τ to characterize forested
areas achieved some positive results. Rahmoune, Ferrazzoli, Kerr, and
Richaume (2013) developed a new version of the SMOS retrieval algo-
rithm customized for forests. They generated two global maps of τ
using data from the beginning of July and November, 2011, and found
that forested areas had larger τ values than non-forested areas. They
also found, as expected, that therewas little seasonal change in τ for for-
ests. This work was continued by Rahmoune et al. (2014) who com-
pared SMOS forest τ with LIDAR-estimated forest height from the
ICEsat satellite. They added two more time intervals in 2011 (February
and May) and found that τ increased as mean forest height increased
in each time interval. There was little difference in τ among the four
time intervals. One caveat to this work is that there was a six-year
time difference between the SMOS and LIDAR data.

Lawrence et al. (2014) revisited the behavior of SMOS τ in agricul-
tural regions. They compared τ with MODIS vegetation indices for ap-
proximately 500 SMOS pixels in the U.S. Midwest for which crops
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were the dominant landcover type, over a two-year period, from 2010
to 2011. The indices investigated were the MODIS Normalized Differ-
ence Vegetation Index (NDVI), the MODIS Enhanced Vegetation Index
(EVI), MODIS LAI, and a custom normalized difference water index
(NDWI) generated from other MODIS observation bands. They also
found SMOS τ to be noisy, with variations between 0.2 and 0.5Np in Au-
gust for pixels with greater than 0.9 crop fraction. Coefficient of deter-
mination (R2) values of only 0.32 to 0.35 were found for all
comparisons of τ with each vegetation index. Higher R2 values were
found for pixels which had more maize and soybean and lower values
for pixels with wheat and hay. On the other hand, τ and LAI values
started to increase at the same point in the growing season. The peak
value of τ occurred about 19 days later than the peak of LAI, consistent
with the fact that τ is sensitive to all canopy components and not just
leaves. NDVI, EVI, andNDWI reached saturation points during the grow-
ing season (values plateaued and did not increase further) but τ and LAI
did not.

It is certainly true that SMOS Level 2 τ data currently available from
the European Space Agency is quite noisy: large swings from relatively
small to large values occur over short periods of time, sometimes on
consecutive days. It is not known at present what causes this noise. An-
other complicating factor is that τ retrieved from satellite observations
actually depends on both the amount of vegetation and the roughness
of the soil surface (Njoku & Chan, 2006; Patton & Hornbuckle, 2013).
The SMOS retrieval algorithm currently assumes a static soil surface
roughness but in reality it changes over time, especially in agricultural
areas. Management such as tillage increases soil surface roughness,
while subsequent rainfall erodes and decreases it. Because of the noisi-
ness of τ data, the geographic locations in which it has been investigat-
ed, and potentially significant time-varying signals of soil surface
roughness, it is perhaps not so surprising that SMOS τ has not met ex-
pectations, especially since the SMOS mission has to date focused on
soil moisture retrieval and validation, and not on the retrieval and vali-
dation of optical thickness.

In the U.S. Corn Belt, however, the seasonal variation of vegetation is
large and a pattern does emerge from the noise. The majority of land
area in the Corn Belt is devoted to annual crops, primarily maize
(corn) and soybean. Patton and Hornbuckle (2013) found that a run-
ning average of SMOS λ increased in the late spring and early summer
as crops grew, and decreased in the fall as crops senesced (slowly
dried out and died) and were harvested. Besides sizable changes in
the amount of vegetation within an individual growing season, there
should also be significant changes in the year-to-year timing of the
growth and development of vegetation in the Corn Belt due to variabil-
ity in when various crop management practices, such as spring tillage
and the planting of crops, occur. This is illustrated by Fig. 1 which
shows the percentage of the total acres of maize planted in the Corn
Belt state of Iowa during each week of the spring for the past 37 years.
Tillage often precedes planting, and both tillage and planting cannot
be performed when the soil is too wet. Wet springs can significantly
delay crop management, sometimes until farmers are forced to plant
different types of crops that canmature in less time.Weather variability
over only the past six years has caused the date onwhich themajority of
maize was planted to vary by up to a month. This variability should be
evident in SMOS τ data.

Here we investigate how SMOS τ changes from year-to-year in the
Corn Belt. Our over-arching hypothesis is that we can both qualitatively
and quantitatively explain its year-to-year variability. We test two spe-
cific hypotheses in this investigation. First, since τ is most sensitive to
the water contained within vegetation tissue (Ulaby & El-Rayes, 1987;
Ulaby & Jedlicka, 1984), we hypothesize that the time at which SMOS
τ reaches a maximum value during the growing season corresponds
to the time that crops reach the developmental stage at which themax-
imum amount of water per unit ground area is contained within the
vegetation. Or in otherwords,we believe thatwe can explain the timing
of the maximum value of τ over the growing season. And second, we
changes in response to the growth and development of crops, crop
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Fig. 1. Variation in date of planting of maize in terms of percentage of total acres planted in eachweek of spring over the past 37 years in Iowa according to USDANASS Crop Progress and
Condition Reports.

Fig. 2. The locations of the five highlighted SMOS pixels for which we examine the change
in τ over time. The bold linesmark the border of the state of Iowa and the nine USDA Crop
Reporting Districts within the state. The faint outlines are the 99 Iowa counties. Also
shown are the locations of the NWS COOP and IEM Soil Moisture Network stations at
which meteorological data were recorded. The unnumbered SMOS pixel covers the
watershed of the South Fork Iowa River. Data for this pixel are used in Fig. 13.
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hypothesize that the increase in τ over the growing season (defined as
the difference between the maximum τ observed and the value of τ at
the beginning of the growing season) is directly related to the growth
of crops which is in turn related to the amount of solar radiation accu-
mulated from when crops emerge from the soil to the time of the max-
imum value of τ. Or in other words, we believe that we can explain the
magnitude of the maximum value of τ over the growing season.

2. Materials and methods

2.1. SMOS optical thickness

In order tominimize the influence of vegetation other than crops on
τ we only considered SMOS footprints in Iowa, a state in the Corn Belt,
that had the highest percentages of land area devoted to annual crops.
We used data from the United States Department of Agriculture
(USDA) National Agricultural Statistics Service (NASS) Cropland Data
Layer (Boryan, Yang, Mueller, & Craig, 2011) and the SMOS Level 2 soil
moisture product version 5.5.1. We did not attempt to account for the
effect of small lakes (which may alter the magnitude of τ but not the
change in τ from year-to-year), and we did not use flags to filter the
data, but we did not use τ retrievals when there was no corresponding
soil moisture retrieval or when there was no estimate of τ data quality.
Since SMOS observes Earth's surface at a variety of incidence angles,
footprint size varies; the nominal size is about 43 km. From this point
forwardwewill refer to non-overlapping circles of diameter 43 km cen-
tered on SMOS grid points as SMOS “pixels.” Iowa has 99 counties, or
political units just below the state level, and the average size of an
Iowa county is approximately the same as one SMOS pixel. Hence
there are roughly 100 unique SMOS pixels in the state.

We found 30 SMOS pixels in Iowa in which the percentage of land
devoted to annual crops was greater than 75% and as large as 85%.
These cropped areas are planted almost exclusively in maize and soy-
bean. All 30 of these pixels fall within the northwest half of the state,
and all but 6 reside within the northwest quarter. We chose to investi-
gate the behavior of τ in all 30 pixels, and to specifically highlight the be-
havior of τ in 5 of the 30 pixels which together represent the spatial
diversity of the 30 pixels. The locations of these highlighted pixels are
shown in Fig. 2. The first (Pixel 1) lies the farthest north and west.
Pixel 2 is the farthest north and east. Pixel 4 is the eastern-most pixel
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and Pixel 5 is the farthest south and west. Pixel 3 is roughly equidistant
from the other four. The percentage of each of the five pixels that is cov-
eredwith “nominal” or “low” amounts of vegetation forwhich SMOS at-
tempts soil moisture retrieval, and the fractions of row cropped land
planted to maize in each pixel from 2010 to 2013, are listed in Table 1.
2.1.1. Smoothing of SMOS optical thickness
SMOS optical thickness exhibits high-frequency noise (large varia-

tions on the order of a day). A representative example of τ data for a
SMOSpixel in north-central Iowa is shown in Fig. 3. Vegetation biomass,
especially at the satellite scale, should not vary disjointedly from one
day to the next as is shown in this record. Variations of more than 30%
in the value of τ within the month of August can be seen in Fig. 3. By
this time of the growing season crops in Iowa have reached a stage of
development (the grain-filling period) duringwhich plants are gradual-
ly increasing their mass. Patton and Hornbuckle (2013) speculated that
this high-frequency noise may be caused by low levels of radio
changes in response to the growth and development of crops, crop
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Table 1
Land cover characteristics for each of thefive numbered SMOSpixels shown in Fig. 2 along
with theirDGG identifiers. The “nominal fraction” is the fraction of each pixel coveredwith
“nominal” vegetation or vegetation whose water column density is low enough for SMOS
to attempt a soil moisture retrieval. The final five columns consider the cropped land in
each pixel planted in either maize or soybean, and lists the fraction of this land area that
was planted in maize according to USDA data.

Pixel DGG Nominal
fraction

Mean maize
fraction

2010 2011 2012 2013

1 194,406 0.9812 0.628 0.603 0.635 0.630 0.644
2 197,495 0.9469 0.640 0.627 0.656 0.653 0.625
3 200,052 0.8921 0.602 0.586 0.600 0.631 0.591
4 202,112 0.8556 0.587 0.569 0.605 0.590 0.584
5 203,632 0.9973 0.538 0.518 0.545 0.545 0.544
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frequency interference (RFI), anthropogenic emission of microwave ra-
diation from weather radars and other sources.

On the other hand, there are diurnal changes in the water content of
crops thatmay be significant at the satellite scale. Thewater potential of
plant tissue, and consequently plant water content, changes over the
course of a day as a result of transpiration, the movement of water
from the soil, into plant roots, through a plant's vascular system, and
eventually out of the stomata in its leaves (Slatyer, 1967). Hunt,
Niemeier, da Cunha, and Kruger (2011) observed this diurnal change
through the analysis of cellular signals propagating through a field of
maize. They found that signal strength was inversely proportional to
vegetation water content. A clear diurnal pattern, with vegetation
water content being largest at night and lowest during daylight hours,
appeared when the data was detrended to account for the seasonal
change.

Rowlandson, Hornbuckle, Bramer, Patton, and Logson (2012) found
that during the growing season in the Corn Belt, SMOS soil moisture re-
trieved at 6 AM solar time was wetter than soil moisture retrieved 12 h
earlier for periods when such measurements were available due to the
characteristics of the SMOS satellite's orbit. They only considered 12-
hour periods when no precipitation fell. They compared these differ-
ences in SMOS soil moisture to natural changes in soil moisture that
occur overnight. They found that the changes observed by SMOS were
significantly larger than changes observed by in situ soil moisture sen-
sors and predicted by an agro-ecosystem model. They concluded that
these changes in SMOS soil moisture were likely caused by an increase
in vegetation water content overnight that SMOS wrongly interpreted
as a change in soil moisture.

While significant diurnal variations in τ at the satellite scale may
exist, we analyze in this paper the seasonal change in τ. Therefore, our
use of a smoothing method that removes natural and possibly artificial
high-frequency variations in τ that occur over timeperiods of less than a
Fig. 3.Raw SMOS optical thickness τ, τ smoothed using a 21-day averagingwindow, and τ
smoothed using Fourier-based functional data analysis (FDA). Data is for a pixel inKossuth
County, IA, in 2010. Kossuth County is the largest county within the north-central Crop
Reporting District in Fig. 2.
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week is appropriate. Initially we used a simple moving-averagemethod
in which the mean value of sets of τ values centered over each point in
time are analyzed (Patton & Hornbuckle, 2013). In this investigationwe
use functional data analysis (FDA). An FDA method assumes that the
data is fundamentally smooth and continuous and can therefore be rep-
resented by a smooth and continuous function or superposition of
functions.

We used the R programming environment FDA package (Ramsay,
Wickham, Graves, & Hooker, 2013) to smooth the τ data using a Fourier
basis (sines and cosines)with a roughness penalty Λ thatminimizes the
magnitude of the second derivative of the fit function according to the
magnitude ofΛ. We allowed the periods of the sine and cosine functions
to vary between 12 h and 365 days. We chose to use Λ=104 since this
value allowed the fitting function to not react strongly to the high fre-
quency noise, as was the case for Λ = 103, and to not greatly reduce
the amplitude of the τ signal, as was the case for Λ = 105. Raw τ data,
τ smoothed using a 21-day moving average, and τ smoothed using
FDA are shown in Fig. 3. Our FDA method produced a τ signal similar
to one produced using a moving average. Both effectively eliminate
the high-frequency noise that is observed in the raw τ data.

For “well-behaved” data sets there are ways to determine Λ analyt-
ically. However, SMOS τ is not well-behaved. The noise has a period of
roughly 18 days and the covariance of the noise remains high, even
after 90 days (Patton, 2014). The exact repeat cycle of a SMOS swath
is 149 days. While 149 is prime, 18 is a factor of 144, so it is possible
that the noise is a function of the position of a pixel within the satellite's
swath. This positionwithin the swath determines howmany andwhich
incidence angles are available to make retrievals. It is also known that
there are biases in observed brightness temperature within the swath.
More investigation is needed to determine the cause of this high fre-
quency noise.

The resulting function for τ in Fig. 3 has a distinct peak in August, and
in this example for a pixel in Kossuth County (the largest county in the
North Central USDA Crop Reporting District in Fig. 2), another peak in
early November. Troughs occur in early June and at the beginning of Oc-
tober. The two troughs and the peak in August can be easily explained
by the growth cycle of annual crops. In Iowa, crops are typically planted
in late April or May, increase in water column density until sometime in
August, begin to senesce and dry out in September, and are harvested in
late September or October.

The second peak also has a physical explanation. SMOS τ is not only
affected by vegetation: changes in soil surface roughness cause SMOS τ
to change because soil surface roughness and vegetation affect terrestri-
al microwave brightness temperature in similar ways (Njoku & Chan,
2006; Patton & Hornbuckle, 2013). Since the SMOS retrieval algorithm
assumes that soil surface roughness is constant, temporal changes in
the soil surface roughnessmanifest themselves as changes in τ. The sec-
ondpeak in τ in Fig. 3 can thus be explained by an increase in soil surface
roughness caused by management (tillage) after crops are harvested in
late September and October (Patton & Hornbuckle, 2013).
2.2. Crop progress

We used USDA NASS data to determine the date of management ac-
tivities such as planting and harvest and the dates at which crops had
reached specific stages of crop development. The USDA posts weekly
National Crop Progress and Condition reports as well as data for Crop
Reporting Districts within individual states at http://www.nass.usda.gov
(accessed December 2015). Estimates of the timing of two management
activities (planting and harvest) and seven different developmental
stages formaize (emergence, tassle, silk, milk, dough, dent, andmaturity)
are reported. Twomanagement activities (planting and harvest) and five
different developmental stages are reported for soybean (emergence,
bloom, setting pods, leaves color, and dropping leaves). An example of
this data is shown in Fig. 4 which illustrates the timing of planting,
changes in response to the growth and development of crops, crop
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Fig. 4. Crop progress information for maize in the north-central district of Iowa (Fig. 2) for 2010–2013.

Table 2
Locations of National Weather Service Cooperative Observer Program (NWS COOP) sta-
tions atwhichdata on air temperature and precipitationwere acquired for each SMOSpix-
el shown in Fig. 2.

Pixel Name Latitude Longitude

1 Sheldon 43.2° N 95.9° W
2 IA NC Climate Division 43.0° N 93.5° W
3 Fort Dodge 42.5° N 94.2° W
4 Waterloo 42.6° N 92.4° W
5 IA SW Climate Division 41.1° N 95.1° W
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emergence, the third reproductive stage, and harvest for maize over the
four-year period of our investigation.

The data are collected via approximately 4000 visual surveys con-
ducted by people who are in frequent contact with farmers. The sur-
veyors are normally agricultural extension agents (liaisons between
state land-grant universities and the agricultural community) or USDA
employees. There is at least one survey completed in every county.
Since there are 9 USDA Crop Reporting Districts in Iowa, the smallest
district contains 9 counties, and there are 99 counties in Iowa, each
data point represents information from a minimum of approximately
10 surveys. Data are reviewed for reasonableness and consistency and
are weighted according to the land area of each county devoted to
crops. Since this data is given in terms of percentages of crops that
have reached specific developmental stages, we used the date on
which 50% of management activities had been completed or 50% of
the crops had reached the relevant developmental stage in our analysis.
As indicated in Fig. 2, Pixels 1, 2, and 5 reside wholly within separate
Crop Reporting Districts. In order to determine the timing of crop man-
agement and development events in the other two pixels, we weighted
the dates according to the fractions of Pixels 3 and 4 that laywithin each
Crop Reporting District.

2.3. Meteorology

The meteorological data used in our analysis were acquired from
three different sources. Daily maximum and minimum air temperature
and daily precipitation were provided by the National Weather Service
Cooperative Observer Program (NWS COOP) via the Iowa Environmen-
tal Mesonet (IEM). Gaps in the data were filled with estimates made by
the Iowa State Climatologist or the National Centers for Environmental
Information. NWS COOP stations are spaced roughly every 40 km
throughout the U.S. We made an effort to select weather stations locat-
ed within each of the 30 SMOS pixels. When this was not possible, the
station nearest to each pixel was used. The locations of the NWS COOP
sites for each of the five highlighted pixels are listed in Table 2 and
shown in Fig. 2. We also used daily precipitation data from Daymet
(Thornton, Running, & White, 1997; Thornton et al., 2014). The nature
of Daymet data allowed us to use estimated precipitation at the geo-
graphic center of each pixel.

Solar radiation as well as additional air temperature data relevant to
the five highlighted pixels were acquired from the IEM Soil Moisture
Please cite this article as: Hornbuckle, B.K., et al., SMOS optical thickness
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Network (http://mesonet.agron.iastate.edu/agclimate/, accessed De-
cember 2015). Missing data were gap-filled using linear interpolation
and/or spatial averaging of adjacent weather stations. Gap-filled data
accounted for less than 2% of the total data set. The locations of the
IEM Soil Moisture Network sites for each pixel are listed in Table 3
and shown in Fig. 2. The Sutherland station was replaced by Calumet
in 2013. Because of the limited number of sites, the sites do not match
the five SMOS pixels in Fig. 2 as well as the NWS COOP sites and the
same data were used for Pixels 3 and 4. However, the IEM Soil Moisture
Network provides another set of independent information collected di-
rectly in agricultural fields (as opposed to citieswheremanyNWSCOOP
volunteers reside and observe weather conditions) that strengthen our
conclusions.
2.4. Crop biomass

In order to characterize how the water column density of maize and
soybean change over time, we used in situ measurements from fields
nearMead, NE, wheremaize and soybeanwere grown at three different
sites from 2003 until 2011. The crops were irrigated. Planting dates
were recorded, and about every 10days destructive samples of crop bio-
mass were obtained (individual plants were cut at the soil surface and
were massed, dried, and massed again). The stage of development
was also recorded. The samples were used to calculate the column den-
sity of vegetation, defined as the mass of vegetation per ground area.
Both fresh, Mf, and dry, Md, column densities were measured directly
(kg m−2); Md after drying the fresh vegetation for several days. We
found the water column density of vegetation, Mw, the mass of water
containedwithin vegetation tissue per ground area, sometimes referred
changes in response to the growth and development of crops, crop
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Table 3
Locations of Iowa Environmental Mesonet (IEM) Soil Moisture Network stations at which
data on solar radiation and air temperature were acquired for each SMOS pixel shown in
Fig. 2.

Pixel Name Latitude Longitude

1 (2010–2012) Sutherland 42.9° N 95.5° W
1 (2013) Calumet 42.9° N 95.5° W
2 Kanawha 42.9° N 93.8° W
3 & 4 Gilbert 42.1° N 93.6° W
5 Lewis 41.3° N 95.2° W
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to as the vegetation water content or VWC, using the relationshipMf =
Mw + Md.

3. Theory

3.1. Optical thickness

Within a medium such as a vegetation canopy, the incremental
change in brightness temperature at each point is the sum of three ef-
fects (e.g., Ulaby, Moore, & Fung, 1981):

dTB ŝð Þ ¼ −κeTB ŝð Þdsþ κa T dsþ κs

4π

Z
4π
ψ ŝ; ŝ0
� �

TB ŝ0
� �

dΩ0 ds: ð1Þ

where ds is an incremental distance and dΩ is an incremental solid
angle. First, rays of radiation (traveling in some specific direction denot-
ed by ŝ) are attenuated in proportion to themedium's extinction coeffi-
cient, κe. Extinction is due to both absorption (denoted by κa, the volume
absorption coefficient) and scattering (denoted by κs, the volume scat-
tering coefficient) such that κe=κa+κs. Second, the medium emits ac-
cording to its temperature, T, in order to maintain thermodynamic
equilibrium. Finally, radiation from all other directions ŝ0 can potentially
be scattered into the ŝ direction according to the function ψðŝ; ŝ0Þ.

The SMOS retrieval algorithm employs what is commonly called the
τ−ω model (Kerr et al., 2011, 2012; Wigneron et al., 2007) to account
for the effect of soil moisture and vegetation on the brightness temper-
ature observed by the L-band radiometer onboard the SMOS satellite.
This model is a zero-order solution of Eq. (1) that neglects scattering
of radiation into the beam (the third term in Eq. (1)) and enforces
boundary conditions appropriate for a uniform layer of vegetation
with diffuse boundaries over a soil surface. The model can be written

TB;p ¼ Tsoil 1−Rsoil;p
� �

e−τp= cosθ

þ 1−ωp
� �

Tveg 1−e−τp= cosθ
� �

þ 1−ωp
� �

Tveg 1−e−τp= cosθ
� �

Rsoil;p e
−τp= cosθ:

ð2Þ

In Eq. (2): TB,p is the p-polarized (h=horizontally polarized and v=
vertically polarized) brightness temperature; Tsoil is the effective tem-
perature of the soil; Rsoil,p is the soil surface reflectivity; τp is the vegeta-
tion optical thickness; θ is the incidence angle; ωp is the single-
scattering albedo of the vegetation canopy; and Tveg is the effective tem-
perature of the vegetation. At low microwave frequencies TB,p is sensi-
tive to soil moisture since Rsoil,p in Eq. (2) is a strong, nearly linear
function of the volumetric water content of soil. The three terms of
Eq. (2) represent the three ways in which vegetation affects TB,p: emis-
sion from the soil is attenuated as it passes through the vegetation can-
opy; the vegetation self-emits; and emission from the vegetation
initially directed toward the ground is scattered by the soil surface
and attenuated as it passes back through the vegetation canopy.

It is important to note a few details. First, Eq. (2) should only be used
when κs is small enough relative to κa that the third term of Eq. (1) can
be neglected. This is only appropriate when scattering within the cano-
py is not significant such as when the components (leaves, stems, fruit)
of the canopy are small when compared to λ. The ωp parameter in
Please cite this article as: Hornbuckle, B.K., et al., SMOS optical thickness
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Eq. (2) represents the relative importance of scattering within the can-
opy such that

ωp ¼ κs;p

κe;p
¼ κs;p

κa;p þ κs;p
: ð3Þ

Therefore it must be small (ωpb b1) for Eq. (2) to be physically con-
sistent with Eq. (1). This condition is likely to be satisfied at L-band for
both maize (Hornbuckle et al., 2003) and soybean. The SMOS retrieval
algorithm currently uses ωp=0 for nominal vegetation.

Second, τp=κe ,pzveg where zveg is the height (vertical thickness) of
the vegetation canopy. In the SMOS retrieval algorithm it is further pa-
rameterized as

τp ¼ τNAD f θ;pð Þ ð4Þ

where τNAD is the optical thickness at nadir (θ=0∘) and f(θ,p) repre-
sents a function of θ and p that can account for anisotropy in the vegeta-
tion canopy. Currently f(θ,p)=1 is used for all types of vegetation and
τNAD is assumed to be independent of polarization. Furthermore, it has
been shown for many types of vegetation (including maize and soy-
bean) that τNAD is directly proportional to Mw (Jackson & Schmugge,
1991).

τNAD ¼ bMw ð5Þ

The proportionality constant is called the “b parameter” and is in re-
ality a function of frequency, polarization, and theway inwhichwater is
distributed in stems and leaves (which is related to the type of vegeta-
tion). The b parameter for crops should be allowed to change over
time as a function of crop development but it is normally kept constant.
The model in Eq. (5) is consistent with the fact that κe ,p≈κa ,p when
ωpb b1, and κa ,p=2ko Im{nveg} where ko=2π/λ and nveg is an effective
index of refraction for a vegetation canopy, which would be dominated
by the refractive index of water (Ulaby et al., 1981).

Third, soil surface roughness (mm-scale variations in the height of
the soil surface) has a strong effect on Rsoil ,p (Choudhury, Schmugge,
Chang, & Newton, 1979). The SMOS retrieval algorithmuses the general
model

Rsoil;p ¼ 1−Qð ÞRp þ Q Rq
� �

e−H cosNp θð Þ ð6Þ

where: Rp is the reflectivity of a specular soil surface; q is the opposite
polarization as p; the Q parameter allows for polarization mixing; H is
a function of the root-mean-square height of the soil surface and possi-
bly soil moisture (Wigneron, Laguerre, & Kerr, 2001); and Np allows for
dependence on θ. Currently values of Q=0, Nv=0, and Nh=2 are used
and Eq. (6) can be written as

Rsoil;p ¼ Rp e−hp ð7Þ

where hp represents the effect of soil surface roughness which SMOS
currently assumes depends on θ but does not change with time.
Patton & Hornbuckle (2013) showed that when Eq. (7) is used in Eq. (2)

Δhp ¼ 2
cos1þNp θð ÞΔτNAD ð8Þ

whichmeans that changes in soil surface roughness, Δhp, have a similar
effect on TB ,p as changes in τNAD,ΔτNAD. The consequence is that because
hp is currently not a function of time in the SMOS retrieval algorithm, ac-
tual changes in soil surface roughness (e.g., caused by tillage) result in
changes in τNAD.

The SMOS mission retrieves soil moisture and τNAD by minimizing a
cost function,which is essentially the difference between: TB ,p predicted
by Eq. (2) using auxiliary information; and observed TB ,p (Kerr et al.,
2011). The unique design of the SMOS instrument produces a large
changes in response to the growth and development of crops, crop
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number of observations of TB ,p as a function of θ for each pixel which re-
sults in a higher level of confidence in retrieved soil moisture and τNAD.
The SMOS Level 2 soil moisture processor has been tuned to give opti-
mal soil moisture retrievals. However, future versions of the processor
are expected to address the effect of temporal changes in soil surface
roughness and potentially use specific values ofωp and f(θ,p) for differ-
ent types of vegetation.

It is readily apparent from Eq. (5) that since a large percentage of
vegetation is water, τNAD increases as the amount of vegetation in-
creases, as long as the distribution of water in the vegetation (as repre-
sented by b in Eq. (5)) does not change significantly. For simplicity, we
use the symbol τ and the terminology “optical thickness” to refer to
τNAD, the nadir optical thickness, the quantity that is actually retrieved
by the SMOS algorithm. It is also imperative to keep in mind that be-
cause of the assumptions made by the retrieval algorithm, changes in
τ represent both changes in the amount of vegetation and changes in
the roughness of the soil surface, and, as found by Schlenz et al.
(2012), possibly changes in soil moisture.

3.2. Crop development

Maize and soybean are annual crops and hence the mass of individ-
ual plants changes significantly over the growing season. Each progress
through vegetative and reproductive stages of development
(Abendroth, Elmore, Boyer, & Marlay, 2011; Pedersen, 2009). During
the vegetative stages plant mass changes rapidly as new leaves appear
and the stem increases in size. The first vegetative stage is emergence
(VE) which occurs when a plant first protrudes from the soil. Subse-
quent vegetative stages correspond to the number of leaves (compound
leaves for soybean) present: there is one leaf at V1; three leaves at V3;
etc. For maize, there could be 17 to 22 vegetative stages before a tassel
is visible, at which time the plant has reached VT (vegetative stage, tas-
sel) and is now ready to begin the reproductive stages. For soybean, the
vegetative and reproductive stages overlap, with the reproductive stage
starting approximately at V8 while the plant eventually reaches V20.

Once a maize plant reaches the reproductive stages, its focus is on
the development of the ear. A maize plant first produces silks which
transfer pollen produced by tassels to each individual kernel on the
ear (R1). After the kernels are fertilized they grow in size and the
plant progresses through blister (R2), milk (R3), dough (R4), dent
(R5), and full maturity (R6). Stages R2 through R5 describe the appear-
ance of the kernels as they accumulate drymatter and decrease inmois-
ture content. At R6 the plant has reached full maturity and no longer
adds dry matter to the ear. A soybean plant progresses through similar
reproductive stages. A senescence period during which annual plants
cease photosynthesis, relocate nutrients from leaves and stems to re-
productive organs, and rapidly decrease in water content overlaps
with the reproductive stages.

Crops progress through developmental stages according to the
temperature of their environment. The coldest temperature at
which development occurs is called the base temperature, Tbase.
Through experimentation Tbase for maize has been found to be
about 10 °C (Abendroth et al., 2011). Above Tbase maize development
is directly proportional to temperature, up to a temperature Tceiling of
about 30 °C. The amount of time that a maize plant accumulates
above Tbase and below Tceiling multiplied by the temperature above
Tbase is called thermal time (e.g., Campbell & Norman, 1998). The
progression of the stages of development for a maize plant can be ac-
curately predicted through the calculation of thermal time. Typically
thermal time for maize is given in units of °C day and called growing
degree days (GDD). The amount of GDD accumulated on a single day
are normally calculated with sufficient accuracy as follows:

GDD ¼ Thigh þ Tlow

2
−Tbase ð9Þ
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where Thigh and Tlow are the daily high and low air temperature.
Specific amounts of GDD accumulated over a number of days are
needed for a maize plant to progress from one developmental stage
to another. For example, emergence requires about 60 °C day. The
developmental process for soybean is more complex than maize. In
addition to GDD, soybean plants are sensitive to the period of sun-
light (photoperiod) (Pedersen, 2009).

3.3. Crop growth

Monteith and Moss (1977) observed for several different crops that
Md is directly proportional to the amount of accumulated solar radiation
intercepted by a green vegetation canopy such that

Md∝e f S S ð10Þ

where fS is the fraction of incident solar radiation S intercepted by the
canopy and e is often called the radiation use efficiency (RUE) (Singer,
Meek, Sauer, Prueger, & Hatfield, 2011) or light use efficiency (LUE)
(Anderson, Norman, Meyers, & Diak, 2000). In reality, the amount of
absorbed photosynthetically-active radiation (PAR) determines how
much photosynthesis occurs and hence howmuch carbon a crop assim-
ilates (andMd increases), but PAR is essentially directly proportional to S
(Campbell & Norman, 1998).

4. Calculation

We used the in situ crop data described in Section 2.4 to determine
how theMw of maize and soybean crops change over a typical growing
season since changes in Mw directly affect τ according to Eq. (5). Fig. 5
displays what we found. The vertical axis of Fig. 5 is the column density
(kg m−2, measured using destructive sampling) of either water
contained within the crop (Mw) or the dry column density (Md = Mf–
Mw). The black symbols are for maize (circles for maize Mw, stars for
maize Md) and the red symbols are for soybean (squares for soybean
Mw, hexagrams for soybean Md). The horizontal axis of Fig. 5 is time
over a growing season in terms of GDD (Tbase=10∘C) calculated using
Eq. (9). We started this time reference at GDD = 0 when the maize
crop was planted each year. Air temperature for the calculation of
GDD was obtained from an NWS COOP station nearby. Note that this
data consists of all of the measurements made in three different fields
(two maize and one soybean) over the nine-year period described in
Section 2.4.

As expected, Md for both crops steadily increase or remain constant
over time up until harvest at the end of the growing season as they ac-
cumulate dry matter as described by Eq. (10). In contrast, Mw for both
maize and soybean rises and then falls, with a peak roughly in the mid-
dle of the period of the maize life cycle and about three-fourths of the
way through the life cycle of soybean. Since the 30 SMOS pixels we in-
vestigated in Iowa contain both maize and soybean, we estimated
what the total Mw of a hypothetical SMOS pixel might be using the av-
erage fraction of cropland planted in maize over the four-year period
for the five pixels in Fig. 2, 0.599, calculated using the information in
Table 1. This estimate of the total Mw that would be expected to occur
within a typical SMOS pixel in Iowa is the solid line in Fig. 5.

Note that total pixelMw peaks at close to 1000 °C day. Changing the
fraction of corn (and consequently soybean) to a value other than the
four-year mean value (as shown in Table 1) to match a specific year
will only slightly increase or decrease the magnitude of the solid line
in Fig. 5. It will not change when this line reaches its maximum value,
at roughly 1000 °C day.

5. Results

An example of the temporal variation of SMOS τ (smoothed using
the procedure described in Section 2.1.1) for the 2010, 2011, 2012,
changes in response to the growth and development of crops, crop
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and 2013 growing seasons is shown in Fig. 6. This example is for Pixel 2
in Fig. 2. SMOS τ reached its peak value earliest in 2012 and latest in
2013. Accumulated meteorological data for each pixel and for each
year from April 1 to the end of the year are given in Table 4. Note that
Pixel 2 accumulated the most GDD in 2012 and the least in 2013. Fur-
thermore, the order of accumulated GDD (2012, 2010, 2011, 2013) ex-
actly matches the timing of the peak values of τ. We found this
pattern also to be true for Pixels 1 and 4. The value of τ in Pixels 3 and
5 also peaked the earliest in 2012, the year in which all pixels accumu-
lated themost GDD. Besides differences in timing among the four years,
there are also significant differences in the peak value of τ.

We tested the two hypotheses in Section 1 using the data described
in Section 2. For each test, we computed Pearson correlation coefficients
R and p-values with MATLAB software version R2013a. The correlation
coefficient R indicates whether a linear relationship exists between
two phenomena. Its value ranges between −1 and 1 (values that
imply perfect negative and positive linear relationships, respectively)
and a value of R=0 implies that no linear relationship exists. The square
of R, or R2, is called the coefficient of determination and is an estimate of
the fraction of the variance in the dependent variable in a linear rela-
tionship that can be explained by the independent variable. One inter-
pretation of the p-value is the probability that the null hypothesis is
true, or in other words, that there is no relationship between two phe-
nomena. Another interpretation of the p-value is the probability of get-
ting a correlation as large as the observed correlation R by random
chance, if the true value of R is zero.

5.1. Hypothesis 1: timing

To test our first hypothesis regarding the timing of the maximum
value of SMOS τ, we used the vegetation data in Section 2.4 to deter-
mine at what developmental crop stage we expected pixel Mw, and
therefore τ, to be the largest. Since maize accounted for the majority
(59.9% on average) of the cropped area in the pixels that we examined,
maizeMw ismuch larger than soybean, and consequently the overallMw

of a hypothetical SMOS pixel (the solid line in Fig. 5) peaks whenmaize
Mw peaks, we searched for the developmental stage at whichmaizeMw

was largest. Of the 20 sets of maize data, one indicated that maize Mw

was largest at R1 (silk), 8 indicated that Mw was largest at R2 (blister),
5 at R3 (milk), 3 at R4 (dough), and 3 at R5 (dent). Not all stages were
Fig. 5. Water column density, Mw, and dry column density, Md, of irrigated maize and
soybean as a function of growing degree days since maize was planted. The data was
collected in agricultural fields near Mead, NE. Both the maize and soybean were
irrigated to ensure that the plants always had adequate soil water. The solid line is an
estimate of the resulting theoretical overall water column density of a hypothetical
SMOS pixel with a corn fraction of 0.599, the average corn fraction across the four years
and five pixels in Fig. 2 according to Table 1.
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sampled in each set, so it is not surprising that the largest values of
Mw were observed at a variety of reproductive stages. The data appear
to indicate that maximum maize Mw occurs at roughly R2 to R3.

Since the R2 stage is not reported by the USDA, we examined the re-
lationship between the day of year of maximum τ and the day of year at
which 50% of themaize cropwithin the relevant Crop Reporting District
for each of the five SMOS pixels had reached R3. The result is shown in
Fig. 7. The relationship has a high value of R=0.81 and a low p-value of
1.5×10−5. The values of these two statistical descriptors are impressive
considering the nature of the USDA survey data and the size of SMOS
pixels relative to the size of the Crop Reporting Districts.

To further test our first hypothesis, we determinedwhen 1000 °C day
of GDD had been accumulated from the time of maize planting, since the
data in Fig. 5 indicate thatwhen this amount of thermal time has been ac-
cumulated,Mw for a hypothetical mixed pixel containing both maize and
soybeanwould be largest.We compared the day of year atwhich 1000 °C
day had been accumulated to the day of year of the maximum value of
SMOS τ. We used the date on which 50% of maize had been planted in
the respective Crop Reporting District as the date of maize planting for
each pixel. The results are shown in Figs. 8 and 9. In Fig. 8, we calculated
GDD using the NWS COOP data, and in Fig. 9 we used air temperature
from the IEM Soil Moisture Network.

The values of R and p for each figure are again impressive consider-
ing the nature of the data:R=0.74 and p=1.8×10−4when usingNWS
COOP data; and R= 0.78 and p=4.3×10−5 when using data from the
IEM Soil Moisture network. Both figures appear to indicate that SMOS τ
peaks at close to 1000 °C day or perhaps slightly later. Pixels 3–5 in Fig. 8
each exhibit the following pattern.Without exception, if the day of year
of maximum τwas later in one year than another year, then the day on
which 1000 °C day had been accumulated was later than (or equal to in
the case of 2010 and 2011 for Pixel 4) the day onwhich 1000 °C day had
been accumulated for the other year. Among all five of the pixels, only
two data points, for Pixel 1 in 2013 and Pixel 2 in 2011, do not follow
this pattern. For Fig. 9 there is only one outlier, in 2011 for Pixel 1. We
have no explanations for these outliers: all are wholly contained within
their respective Crop Reporting District (the northwest district for Pixel
1 and the north-central for Pixel 2); each pixel has a high nominal frac-
tion according to Table 1; and our procedure for verifying the quality of
the NWS COOP and IEM data did not indicate any unusual behavior.

Data similar to Figs. 8 and 9 but for all 30 SMOS pixels in Iowa with
greater than75% coverage bymaize and soybean is shown in Fig. 10. The
value of R=0.73 is similar to what we found for the five representative
pixels using both the NWS COOP and IEM data, and p=2.6×10−21.
Note that the extreme years of 2012 (highest accumulation of GDD)
Fig. 6. Temporal variation of smoothed SMOS optical thickness, τ, from 2010 to 2013 for
Pixel 2 in Fig. 2.

changes in response to the growth and development of crops, crop
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Table 4
Accumulation of meteorological variables beginning April 1 extending through end of
year. For each combination of pixel and value, bold type indicates year of greatest accumu-
lation and italicized type denotes year of lowest accumulation. Growing degree days
(GDD) are calculated using air temperature from NWS COOP data, precipitation is from
Daymet, and solar radiation is from the IEM Soil Moisture Network.

Pixel Year GDD (°C day) Precip (mm) Solar rad. (MJ m−2)

1 2010 1.53 × 103 957.6 4.15 × 103

2011 1.43 × 103 476.7 3.61 × 103

2012 1.64 × 103 417.4 3.81 × 103

2013 1.40 × 103 629.6 4.87 × 103

2 2010 1.66 × 103 891.3 4.21 × 103

2011 1.60 × 103 529.7 3.55 × 103

2012 1.77 × 103 426.5 3.86 × 103

2013 1.55 × 103 750.6 4.07 × 103

3 2010 1.61 × 103 1120.0 4.12 × 103

2011 1.48 × 103 511.7 3.41 × 103

2012 1.67 × 103 526.3 3.80 × 103

2013 1.52 × 103 739.2 4.22 × 103

4 2010 1.75 × 103 1130.0 4.12 × 103

2011 1.63 × 103 659.0 3.41 × 103

2012 1.81 × 103 517.2 3.80 × 103

2013 1.63 × 103 894.1 4.22 × 103

5 2010 1.95 × 103 873.1 4.42 × 103

2011 1.91 × 103 799.8 3.76 × 103

2012 2.12 × 103 534.8 4.23 × 103

2013 1.82 × 103 709.5 4.21 × 103

Fig. 7. The day of year at which 50% of maize had reached the R3 (milk) stage in each
pixel's USDA Crop Reporting District versus the day of year the maximum value of SMOS
τ was observed, for each of the five highlighted pixels and each year.

Fig. 8. The day of year at which 1000 °C day GDD were accumulated since the planting of
maize according to NWS COOP air temperature data, versus the day of year themaximum
value of SMOS τ was observed, for each of the five highlighted pixels and each year.
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and 2013 (lowest) according to Table 4 are clearly grouped. These re-
sults support our choice of using 5 pixels to represent the entire set of
30 pixels.

5.2. Hypothesis 2: magnitude

To test our second hypothesis regarding the increase in SMOS τ over
the growing season, we plotted the increase in τ frommaize emergence
to themaximumvalue of τ, a quantity thatwewill refer to asΔτv, versus
the accumulated solar radiation over the same time period. Again, we
used the date on which 50% of the maize crop had emerged in each
pixel's Crop Reporting District as the date of maize emergence. The re-
sult is shown in Fig. 11. The value of R = −0.38 is low and the data
are negatively correlated.We conclude that the amount of accumulated
solar radiation is notwhat causes the value ofΔτv to change fromyear to
year.

We also investigated the relationship between Δτv and the fraction
of cropland in each pixel planted in maize. We obtained values of R =
0.40 and p=0.083 (not shown) which suggest that while maize Mw is
larger than soybean, the presence of more maize may only explain a
small portion of the differences in Δτv among the four years.

6. Discussion

Our first hypothesis regarding the timing of the maximum value of
SMOS τ in the Corn Belt is supported by the data in Figs. 7, 8, 9, and
10. There are some additional interesting features in Fig. 10. The maxi-
mumvalue of τ for each of the 30 pixelswas, in general, reached earliest
in the 2012 season, followed by 2010, 2011, and then 2013. However,
note that Fig. 1 indicates that each year's most intense periods of plant-
ing (the week during each year that the highest percentage of maize
was planted) occurred first in 2010, two weeks earlier than in 2011,
and threeweeks earlier than in 2013. In 2012 therewere two important
planting periods, one occurring between the 2010 and 2011 periods,
and the other after the 2011 period. Although planting occurred later
in 2012 than in 2010 and 2011, the first 1000 °C day of GDD must
have accumulatedmore rapidly in 2012 than in the other years, causing
crops to develop at a faster rate and resulting in the earliest maximum
value of τ. This conclusion is consistent with the data in Table 4 which
indicate that 2012 was the warmest of the four years (each of the five
highlighted pixels accumulated the most GDD in 2012).
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On the other hand, we did not find our second hypothesis to be true.
The change in τ from maize emergence to its maximum value ranges
from about Δτv=0.13 to 0.27 Np according to Fig. 11. Using Eq. (5),
these changes in Δτv can be interpreted in terms of changes in Mw.
Since the SMOS mission retrieves τ directly, there is no need to set a
value for the b parameter. Another L-band satellite, NASA's Soil Mois-
ture Active Passive (SMAP) mission (Entekhabi et al., 2010), assumes
b = 0.110 for “croplands” (O'Neill, Chan, Njoku, Jackson, & Bindlish,
2015). Using b = 0.110, a Δτv of 0.13 to 0.27 Np would be equivalent
to an increase in Mw of 1.2 to 2.5 kg m−2. This is much less than what
is indicated by Fig. 5, which shows an increase in pixel-scale Mw of
about 4.0 kg m−2 over the growing season.

There are five things to take into account. First, we assume that the
maximum value of Mw is correlated with the maximum value of Md

and therefore S according to Eq. (10). Second, despite the large fraction
of maize and soybean in each of the five pixels, 15 to 25% of each pixel is
some other type of landcover. In Iowa, the majority of this land area
would be pasture (grass). For pasture we would expect smaller grow-
ing-season changes in τ. It is also possible that SMOS products could
contain errors if significant urban areas or forests are present within a
changes in response to the growth and development of crops, crop
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Fig. 9. The day of year at which 1000 °C day GDD were accumulated since the planting of
maize according to IEMSoilMoisture Network air temperature data, versus the day of year
the maximum value of SMOS τ was observed, for each of the five highlighted pixels and
each year.

Fig. 11. The increase in SMOS τ from the time of maize emergence to the observed
maximum value of τ, Δτv, versus accumulated solar radiation (proportional to
accumulated PAR) during the same time period.
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pixel, since the products are only given for the portion of the pixel for
which a successful retrieval is anticipated (the nominal fraction of the
pixel, i.e. bare soil and “low” vegetation). This is done by modeling
and subtracting out the contributions of urban areas and forests to the
overall brightness temperature. However, Table 1 indicates the nominal
fractions of the five representative pixels are high and therefore it is
likely that the other 15 to 25% of each pixel would tend to reduce the
value of Δτv.

Third, since SMAP uses ω=0.05 (O'Neill et al., 2015), the appropri-
ate value of b for SMOS, which assumes ω=0, would be slightly less
than the SMAP value. This would increase the magnitude of the corre-
sponding changes in Mw. Fourth, the data in Fig. 5 are for irrigated
crops and therefore represent the maximum increase in Mw that
would be observed. Irrigation is extremely rare in Iowa and hence
crops may experience water stress at some point during the growing
season which would stunt their growth and reduce Δτv.

Finally, recall that changes in soil surface roughness are manifested
as changes in SMOS τ. After tillage, soil surface roughness decreases
Fig. 10. The day of year at which 1000 °C day GDDwere accumulated since the planting of
maize according to NWS COOP air temperature data, versus the day of year themaximum
value of SMOS τ was observed, for all 30 pixels in Iowa for which more than 75% of land
area was devoted to maize and soybean, and each year.
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exponentially in response to precipitation as raindrops hit and erode
the soil surface (Zobeck & Onstad, 1987). According to Patton &
Hornbuckle (2013), a decrease in SMOS τ of between 0.11 and
0.18 Np can occur simply due to rain that falls over the growing season:
the value of the soil surface roughness of freshly tilled soil at the begin-
ning of the growing season is greater than the value of soil surface
roughness before harvest. Assuming b = 0.110, this is equivalent to a
change in Mw of 1.0 to 1.6 kg m−2. Adding this effective change in Mw

caused by a decrease in soil surface roughness (and not by changes in
vegetation) to the observed change in Mw derived from Δτv results in
actual changes inMw of between 2.2 to 4.1 kgm−2, which encompasses
the change in pixel-scale Mw indicated by Fig. 5.

6.1. Potential effect of precipitation on the magnitude of τ

Since precipitation decreases soil surface roughness and therefore
SMOS τ, we investigated the possible effect of year-to-year variability
in precipitation on the magnitude of τ by comparing Δτv with Daymet
precipitation accumulated over the same time period. The results are
shown in Fig. 12. The R=−0.76 and p=1.2×10−4 values indicate a
significant negative relationship between the two variables: smaller
growing season increases in τ occurred in years in which more precipi-
tation fell. On the other hand, similar changes in Δτv occur each year in
Pixel 5. Comparable results were found using NWS COOP data (R=−
0.66, p=1.5×10−3).

We can think of two explanations. First, too much rainfall negatively
affects crop growth. When soils are saturated, plant roots do not have
adequate access to oxygen and respiration is impaired. Inadequate
root growth can limit crops to soil water near the soil surface which
can be depleted more readily than deeper soil moisture, leading to re-
duced plant growth. Excess water can also leach nitrate, which supplies
nitrogen, an essential crop nutrient, out of the root zone which will re-
sult in reduced crop growth and hence a lower water column density
(Connor, Loomis, & Cassman, 2011). But this does not explain why Δτv
in Pixel 5 was the same in 2010 as it was in 2011 and 2012.

The other possibility is that the large amount of precipitation in 2010
(see Table 4) resulted in significantly different changes in soil surface
roughness in 2010 as compared to the other three years. According to
Eq. (8), smaller values of Δτv could result from: a larger decrease in
soil surface roughness between crop emergence and the day at which
the maximum value of τ was reached; or from less of an increase in
soil surface roughness between crop emergence and the day at which
the maximum value of τ was reached.
changes in response to the growth and development of crops, crop
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The total change in soil surface roughness will depend on three
things: the types of management activities, such as tillage and fertilizer
application, that occur before, during, and after crops are planted; the
weather conditions that follow the planting of crops; and the timing
of the weather conditions, since precipitation that precedes the point
in time at which crops have grown sufficiently to shield the soil surface
would result in larger reductions of the roughness of the soil surface.
However, the anomalous behavior of Pixel 5 is perhaps a clue that man-
agement practices may also play a role. The topography of southwest
Iowa is stronger than in the other regions of the state in which Pixels
1–4 reside. The greater the slope, themore soil is susceptible to erosion.
It is desirable to keep soil in the field. Consequently, different manage-
ment strategies that reduce the potential for soil erosion (e.g., reduced
tillage, different methods of fertilizer application) and which result in
less of a change in soil surface roughness between maize emergence
and the maximum value of τ from year-to-year, regardless of weather
conditions, may be practiced in Pixel 5.

Recall that Schlenz et al. (2012) found SMOS τ and SMOS soil mois-
ture to be correlated. In theory, there should be little correlation be-
tween these two SMOS products in the Corn Belt: while soil is wet
from the surface by precipitation, crop roots extend much farther
below the emitting depth at L-band; and much of the soil water used
by crops during the growing season originates from precipitation that
occurs outside of the growing season. We examined SMOS θv and τ for
a pixel in central Iowa that encompasses a large part of an in situ soil
moisture network in the watershed of the South Fork Iowa River that
has been established for SMAP validation. This SMOS pixel is one of
three examined by Rondinelli et al. (2015). The correlation between
SMOS soil moisture and τ is shown in Fig. 13 for the three years that
the in situ soil moisture network has been in operation.

Rondinelli et al. (2015) found that SMOS soilmoisturewas positively
correlated with the mean value of the 20 monitoring sites of the net-
work at which soil moisture is measured with buried sensors at a
depth of 5 cm. For the pixel in Fig. 13, the correlation between SMOS
and the network was R=0.64 with an RMSE of 0.08 m3 m−3. On the
other hand, note that there is essentially no correlation between
SMOS soil moisture and τ in Fig. 13 for the 2014 and 2015 growing sea-
sons. We did find a significant correlation of R=−0.41 for 2013. How-
ever, this correlation can be explained by a wet spring followed by a
long dry-spell later in the summer such that low values of τ occurred
during a period of high surface soil moisture and high values of τ in
the middle of the growing season occurred during a period of low sur-
face soil moisture. We find the same relationships for the two other
Fig. 12. The increase in SMOS τ from the time of maize emergence to the observed
maximum value of τ, Δτv, versus accumulated precipitation according to Daymet data
during the same time period.

Please cite this article as: Hornbuckle, B.K., et al., SMOS optical thickness
management, and weather, Remote Sensing of Environment (2016), http://
SMOS pixels that overlap the South Fork in situ soil moisture network.
Consequently, SMOS θv and τ products in Iowa do not appear to be cor-
related and therefore this idea cannot be used to explain the relation-
ships between Δτv and precipitation shown in Fig. 12.

6.2. Other environmental factors affecting the magnitude of τ

The are other possible explanations for the observed differences in
Δτv over the four years and among the five pixels. Perhaps peak Mw is
not correlated with peak Md and the relationship between dry matter
and water in crops may be more complex and variable than what is il-
lustrated by Fig. 5. While the accumulation of dry matter is known to
be directly proportional to intercepted PAR as illustrated by Eq. (10),
perhaps the ratio ofMw toMd varies in response to environmental con-
ditions and is more variable in rain-fed systems as compared to the irri-
gated system in our study. If in fact the ratio ofMw toMd is conserved, if
our meteorological data is representative of the five SMOS pixels, and if
crops did not experience water stress (either from too little or toomuch
water) during the four years we examined, then the observed variation
in Δτv shown in Fig. 11 should be approximately the same as the ob-
served variation in S in Table 4 according to Eq. (10) if fs and e are con-
stant. However, we find that the correlation in Fig. 11 is low and has the
wrong sign, andwhileΔτv varied between 0.13 to 0.27Np or±35%, S in
Table 4 only varied from 3410 to 4870 MJ m−2 or ±18% (about half as
much).

Another factor that could explain these observations is if fS is indeed
not constant in space and/or time. Under normal conditions, modern
crops attain values of fS approaching unity (Koester, Skoneczka, Cary,
Diers, & Ainsworth, 2014). Management factors such as planting date,
rowwidth, and planting density can affect the timing and rate of canopy
development and impact fS. Temperature and precipitation can also im-
pact fS by affecting growth rate and developmental factors which deter-
mine when vegetative and reproductive growth occurs. Because fS
depends on growth it is actually also controlled to some extent by e. It
has been shown that e has a range of observed values under field condi-
tions (Zhu, Long, & Ort, 2010). In a meta-analysis conducted by Slattery
& Ort (2015), observed values of e for maize were nearly double that of
soybean but show similar ranges of magnitude.

Variability in available solar radiation (and therefore PAR) among
growing seasons may be small as compared to variability in soil water,
which influences crop growth in both positive and negative ways. Opti-
mum values of soil water promote growth, while both extremely low
and high values of soil water (as noted in Section 6.1) can inhibit
growth. When soil water content decreases to the wilting point, roots
are not able to draw water from the soil. The stomata of plants close
in an effort to conserve water by decreasing transpiration. Since plants
access CO2 through the same stomata, photosynthesis and the assimila-
tion of carbon decreases and so does the accumulation of drymatter,Md.
Water stress can reduce e by inducing stomatal closure and reducing the
uptake of CO2. Temperature affects e, with maximal values occurring at
the optimum temperature for photosynthesis, which also varies be-
tween maize and soybean (Sage & Kubien, 2007).

6.3. Effect of the retrieval and smoothing algorithm on the magnitude of τ

Finally, the magnitude of the current SMOS τ product may be incor-
rect, and it is also possible that the smoothing method described in
Section 2.1.1 adequately resolves the timing of the maximum values
of τ but not its value. As noted earlier in Section 3.1, soil moisture re-
trieval from SMOS observations has been a higher priority, and as a re-
sult, adjustments to various parameters made to improve soil
moisture statistics may have introduced errors in τ. In addition, the re-
trieval of θv and τ can only be as good as the model used in the estima-
tion process. At present the retrieval process is not optimized for maize
and soybean but for generic vegetation with Mw low enough for which
soil moisture retrievals can be made. Before more work on interpreting
changes in response to the growth and development of crops, crop
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Fig. 13. The relationship between SMOS soilmoisture and SMOS τ for a pixel in central Iowa (DGG 200057) between April and October for 2013–2015. This pixel encompassesmuch of the
extent of an in situ soil moisture network in the watershed of the South Fork Iowa River. The colors correspond to the three years during with this in situ network has been in operation.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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SMOS τ is attempted, it may be useful to generate crop-specific values of
τ using crop-specific values of ω (like that for forests (Rahmoune et al.,
2013)). Efforts should also bemade to refine the SMOS retrieval process
in order to eliminate or at least reduce the noise in τ.

7. Conclusions

The SMOS Level 2 retrieval algorithm simultaneously estimates over
land areas both soil moisture and τ, the optical thickness of vegetation,
from observed L-band brightness temperature. The τ parameter has
been shown to be directly proportional to vegetation water column
density, Mw, the mass of water contained within vegetation tissue per
ground area (also called VWC in the literature). We used a smoothing
technique to remove large day-to-day variations in SMOS Level 2 τ
that do not appear to be caused by natural factors. The resulting τ has
a distinct shape in the U.S. Corn Belt that mirrors the annual growth
and development of crops. SMOS τ increases after crops are planted,
reaches a peak value, and then decreases as crops senesce and lose
water.

We were able to explain the timing of the annual peak value of the
smoothed τ signal and its variation over a four-year period by examin-
ing SMOS pixels in the Corn Belt state of Iowa for which the fraction of
croplandwas between 75 and 85%. Approximately 60% of these cropped
areas were planted in maize (corn) and the balance in soybean. We
found that the day of year on which the maximum value of SMOS
Level 2 τ occurred was positively correlated (R=0.81 and p=
1.5×10−5) with the day of year on which 50% of maize fields within
the pixel had reached the third reproductive stage of development
(R3 or “milk”). We also found that the day of peak τwas positively cor-
related with the day on which 1000∘C day growing degree days had ac-
cumulated after maize planting (R=0.73 and p=2.6×10−21).

We hypothesized that the magnitude of the change in SMOS τ, Δτv,
defined as the difference between the peak value of τ and the value of
τ atmaize emergence, would be related to the amount of solar radiation
(and therefore PAR) accumulated during the same time period. Our hy-
pothesis assumed that crops accumulate more Mw in proportion to dry
matter which is correlated to accumulated PAR. However, this hypoth-
esis was not supported by our data. On the other hand, we found that
Δτv was smallest for the year in which the most precipitation fell. This
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could be due to the fact that SMOS τ is a function of both vegetation
and soil surface roughness. Soil surface roughness decreases with pre-
cipitation, and soil surface roughness may have been reduced the
most during this wet year. However, the total change in soil surface
roughness over a growing season will also depend on the type and
timingof cropmanagement activities such as tillage, planting, and fertil-
ization, all of which disturb the soil surface.

Our work is significant for the following reasons. First, SMOS Level 2
τ could be used tomonitor the growth and development (phenology) of
crops and thus be used to estimate the timing of harvest and potentially
crop yield. Currently the USDA uses ground-based visual surveys to re-
port crop development in Crop Reporting Districts. In Iowa, these dis-
tricts encompass 10 or more SMOS pixels. Hence SMOS τ could
improve the spatial resolution of estimates of crop development by a
factor of 10. Increasingly, crop models are being used within climate
models to better simulate exchanges of energy and moisture between
the land surface and the atmosphere that are modulated by annual
changes in vegetation. In order for a crop model to provide a benefit
over static vegetation, the timing of the growth and senescence of annu-
al crops must be captured correctly. For example, Levis et al. (2012)
based the time of planting on the accumulation of growing degree
days starting on an arbitrary day in the spring. However, actual planting
dates depend on other environmental factors (e.g., soil moisture which
determines whether agricultural equipment can get into the field) and
human decisions. Satellite estimates of crop development could be as-
similated into crop models to determine whether actual crop develop-
ment has been estimated correctly or not.

Second, SMOS Level 2 τ could be used as a measure of changes in
vegetation that is distinct and yet complementary to traditional vegeta-
tion indices.While the spatial resolution of SMOS τ is quite large (about
40 km), L-band radiation emitted by the soil passes through the entire
canopy and hence represents the integrated effect of the entire canopy
(stems and leaves) in contrast to visible and near-infrared vegetation in-
dices which are only sensitive to the very top of the canopy (upper-most
leaves). This sensitivity to the entire vegetation canopymay prove key in
the Corn Belt and other agricultural regions as commercial-scale cellulosic
biorefineries become more common. These biorefineries, in contrast to
grain ethanol production plants, are fueled by stover, the “leftover”
plant material (stems and leaves) normally left in the field after harvest.
changes in response to the growth and development of crops, crop
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SMOSLevel 2 τhas thepotential to produce timely and accurate estimates
of the total production of crop biomass over the growing season, and
hence crop stover. This data could be key to meeting bioenergy produc-
tion goals (Perlack et al., 2005).

Third, SMOS Level 2 τ can be more rigorously justified from a theo-
retical standpoint than τ produced using observations from higher
frequency satellite radiometers. The model most commonly used to in-
terpret terrestrial brightness temperature is a zero-order solution of ra-
diative transfer in vegetation. The zero-order solution is only validwhen
scattering within the canopy is small. Scattering depends on the electri-
cal size of canopy components (stems, leaves, reproductive organs), the
size of these components relative to the wavelength of radiation. Scat-
tering becomes more significant as the electrical size of potential scat-
terers increases. For SMOS, λ=21 cm, which is about a factor of 10
larger than thewidth of stems and leaves of crops likemaize and soybean.
On the other hand, thewavelength used by Jones et al. (2011) at 18.7GHz
is λ=1.60 cm. Hence the simpler zero-order solution ismuchmore likely
to be valid at L-band than at othermicrowave frequencies currently avail-
able from existing satellite radiometers.

Future research on SMOS Level 2 τwill need to focus on determining
the relationship between Mw and Md, the mass of dry vegetation per
ground area (which can be predicted with existing crop models), and
will likely have to do so in a crop-specific manner. To our best knowl-
edge, this can only be resolved by conducting empirical experiments
under a range of environmental conditions for each crop of interest. Fu-
ture investigationsmust also implement modeling frameworks capable
of simulating the effects of crop management and the environment on
fS, the fraction of solar radiation intercepted by crops, and e, the radia-
tion use efficiency of crops. The complex relationships that ultimately
determine crop growth are difficult to resolve if only statistical relation-
ships are considered. However, mechanistic photosynthesis models
such as those based on the Farquhar, von Caemmerer, & Berry (1980)
biochemical model are powerful tools for resolving the effects of envi-
ronmental factors on plant growth (Bernacchi et al., 2013). Agro-eco-
system models that incorporate both management and environmental
factors (e.g., Kucharik, 2003) are an example of the logical next step in
addressing variations in Δτv as they relate to Mw and Md and changes
in soil surface roughness.

Finally, the SMOS Level 2 τ product itself needs to be improved. It is
not known how much of the observed noise in τ is due to diurnal vari-
ations in Mw and how much is caused by other factors. Perhaps a first
step would be to use crop-specific parameters in the retrieval process.
It will also be necessary to quantitatively validate τ at the satellite
scale to the same degree as SMOS soil moisture.

Acknowledgments

The authors received support from: NASA Earth and Space Sciences
Fellowship NNX11AL44H; grant G11AP20079-2016IA265B from the
Iowa Water Center, a Water Resources Research Institute administered
by the USGS; and the Department of Agronomy at Iowa State University.
The authors also appreciate the constructive comments made by the re-
viewers. This research was performed as part of Iowa Agriculture and
Home Economics Experiment Station project IOW05387.

References

Abendroth, L. J., Elmore, R. W., Boyer, M. J., & Marlay, S. K. (2011). Corn growth and devel-
opment. Tech. Rep. PMR 1009. Ames, IA: Iowa State University Extension.

Anderson, M. C., Norman, J. M., Meyers, T. P., & Diak, G. D. (2000). An analytical model for
estimating canopy transpiration and carbon assimilation fluxes based on canopy
light-use efficiency. Agricultural and Forest Meteorology, 101, 265–289.

Bernacchi, C. J., Bagley, J. E., Serbin, S. P., Ruiz–Vera, U.M., Rosenthal, D. M., & Vanloocke, A.
(2013). Modelling C3 photosynthesis from the chloroplast to the ecosystem. Plant,
Cell & Environment, 36(9), 1641–1657.

Bircher, S., Skou, N., & Kerr, Y. H. (2013). Validation of SMOS L1C and L2 products and im-
portant parameters of the retrieval algorithm in the Skjern River Catchment, western
Denmark. IEEE Transactions on Geoscience and Remote Sensing, 51(5), 2969–2985.
Please cite this article as: Hornbuckle, B.K., et al., SMOS optical thickness
management, and weather, Remote Sensing of Environment (2016), http://
Boryan, C., Yang, Z., Mueller, R., & Craig, M. (2011). Monitoring US agriculture: The US De-
partment of Agriculture, National Agricultural Statistics Service, Cropland Data Layer
program. Geocarto International, 26(5), 341–358.

Campbell, G. S., & Norman, J. M. (1998). An introduction to environmental biophysics. New
York: Springer–Verlag.

Choudhury, B. J., Schmugge, T. J., Chang, A., & Newton, R. W. (1979). Effect of surface
roughness on the microwave emission from soils. Journal of Geophysical Research,
84, 5699–5706.

Connor, D. J., Loomis, R. S., & Cassman, K. G. (2011). Crop ecology: Productivity andmanage-
ment in agricultural systems. New York: Cambridge University Press.

Entekhabi, D., Njoku, E. G., O'Neill, P. E., Kellogg, K. H., Crow, W. T., Edelstein, W. N., ... Van
Zyl, J. (2010). The Soil Moisture Active Passive (SMAP) mission. Proceedings of the
IEEE, 98(5), 704–716.

Escorihuela, M. J., Chanzy, A., Wigneron, J. -P., & Kerr, Y. H. (2010). Effective soil moisture
sampling depth of L-band radiometry: A case study. Remote Sensing of Environment,
114(5), 995–1001.

Farquhar, G., von Caemmerer, S. v., & Berry, J. (1980). A biochemical model of photosyn-
thetic CO2 assimilation in leaves of C3 species. Planta, 149(1), 78–90.

Grant, E., Buchanan, T., & Cook, T. (1957). Dielectric behavior of water at microwave fre-
quencies. The Journal of Chemical Physics, 26, 156–161.

Holmes, T. R. H., Drusch, M., Wigneron, J. -P., & de Jeu, R. A. M. (2008). A global simulation
of microwave emission: Error structures based on output from ECMWF's operational
integrated forecast system. IEEE Transactions on Geoscience and Remote Sensing, 46(4),
846–856.

Hornbuckle, B. K., England, A. W., De Roo, R. D., Fischman, M. A., & Boprie, D. L. (2003).
Vegetation canopy anisotropy at 1.4 GHz. IEEE Trans. Geosci. Remote Sensing, 41(10),
2211–2223.

Hunt, K. P., Niemeier, J. J., da Cunha, L. K., & Kruger, A. (2011). Using cellular network sig-
nal strength tomonitor vegetation characteristics. IEEE Geoscience and Remote Sensing
Letters, 8, 346–349.

Jackson, T. J., & Schmugge, T. J. (1991). Vegetation effects on the microwave emission of
soils. Remote Sensing of Environment, 36, 203–212.

Jackson, T. J., Bindlish, R., Cosh,M. H., Zhao, T., Starks, P. J., Bosch, D. D., ... Leroux, D. (2012).
Validation of Soil Moisture and Ocean Salinity (SMOS) soil moisture over watershed
networks in the U.S. IEEE Trans. Geosci. Remote Sensing, 50(5), 1530–1543.

Jones, M. O., Jones, L. A., Kimball, J. S., & McDonald, K. C. (2011). Satellite passive micro-
wave remote sensing for monitoring global land surface phenology. Remote Sensing
of Environment, 115, 1102–1114.

Kerr, Y. H., Waldteufel, P., Richaume, P., Davenport, I., Ferrazzoli, P., & Wigneron, J. -P.
(2011, Dec). Algorithm theoretical basis document (ATBD) for the SMOS Level 2
soil moisture processor development continuation project. Tech. Rep. SO-TN-ESL-
SM-GS-0001, v3.g. Toulouse, France: CESBIO.

Kerr, Y. H., Waldteufel, P., Richaume, P., Wigneron, J. P., Ferrazzoli, P., Mahmoodi, A., ...
Delwart, S. (2012). The SMOS soil moisture retrieval algorithm. IEEE Transactions on
Geoscience and Remote Sensing, 50(5), 1384–1403.

Kerr, Y. H., Waldteufel, P., Wigneron, J. -P., Delwart, S., Cabot, F., Boutin, J., ... Mecklenburg,
S. (2010). The SMOS mission: New tool for monitoring key elements of the global
water cycle. Proceedings of the IEEE, 98(5), 666–687.

Koester, R. P., Skoneczka, J. A., Cary, T. R., Diers, B. W., & Ainsworth, E. A. (2014). Historical
gains in soybean (glycine maxmerr.) seed yield are driven by linear increases in light
interception, energy conversion, and partitioning efficiencies. J. Experiment. Botany,
65(12), 3311–3321.

Kucharik, C. J. (2003). Evaluation of a process-based agro-ecosystem model (Agro-IBIS)
across the US Corn Belt: Simulations of the interannual variability in maize yield.
Earth Interactions, 7(14), 1–33.

Lawrence, H., Wigneron, J. -P., Richaume, P., Novello, N., Grant, J., Mialon, A., ... Kerr, Y.
(2014). Comparison between SMOS vegetation optical depth products and MODIS
vegetation indices over crop zones of the USA. Remote Sensing of Environment, 140,
396–406.

Levis, S., Bonan, G. B., Kluzek, E., Thornton, P. E., Jones, A., Sacks, W. J., & Kucharik, C. J.
(2012). Interactive crop management in the Community Earth System Model
(CESM1): Seasonal influences on land–atmosphere fluxes. Journal of Climate, 25,
4839–4859.

Liu, Y. Y., van Dijk, A. I. J. M., de Jeu, R. A. M., Canadell, J. G., McCabe, M. F., Evans, J. P., &
Wang, G. (2015). Recent reversal in loss of global terrestrial biomass. Nature
Climate Change, 5, 470–474.

Monteith, J. L., & Moss, C. J. (1977). Climate and the efficiency of crop production in Britain
[and discussion]. Philosophical Transactions of the Royal Society of London B: Biological
Sciences, 281(980), 277–294.

Njoku, E. G., & Chan, S. K. (2006). Vegetation and surface roughness effects on AMSR-E
land observations. Remote Sensing of Environment, 100, 190–199.

O'Neill, P., Chan, S., Njoku, E., Jackson, T., & Bindlish, R. (2015). Soil Moisture Active Passive
(SMAP) algorithm theoretical basis document level 2 & 3 soil moisture (passive) data
products. Tech. Rep. JPL D-66480. National Aeronautics and Space Administration
(NASA) Jet Propulsion Laboratory (JPL).

Patton, J., & Hornbuckle, B. (2013). Initial validation of SMOS vegetation optical thickness
over Iowa. IEEE Geoscience and Remote Sensing Letters, 10(4), 647–651.

Patton, J. C. (2014). Comparison of SMOS and SMAP vegetation optical thickness. Ph.D. thesis
Iowa State University of Science and Technology.

Pedersen, P. (2009). Soybean growth and development. Tech. Rep. PMR 1945. Ames, IA:
Iowa State University Extension.

Perlack, R. D., Wright, L. L., Turhollow, A. F., Graham, R. L., Stokes, B. J., & Erbach, D. C.
(2005). Biomass as feedstock for a bioenergy and bioproducts industry: The technical
feasibility of a billion-ton annual supply. Tech. rep. (DTIC Document).

Rahmoune, R., Ferrazzoli, P., Kerr, Y. H., & Richaume, P. (2013). SMOS Level 2 retriev-
al algorithm over forests: Description and generation of global maps. IEEE Journal
changes in response to the growth and development of crops, crop
dx.doi.org/10.1016/j.rse.2016.02.043

http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0005
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0005
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0010
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0010
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0010
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0015
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0015
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0020
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0020
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0020
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0025
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0025
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0025
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0030
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0030
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0035
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0035
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0035
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0040
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0040
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0045
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0045
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0050
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0050
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0050
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0055
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0055
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0055
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0060
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0060
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0065
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0065
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0065
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0065
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0070
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0070
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0075
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0075
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0075
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0080
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0080
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0085
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0085
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0090
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0090
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0090
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0095
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0095
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0095
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0100
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0100
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0105
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0105
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0110
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0110
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0110
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0110
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0115
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0115
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0115
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0120
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0120
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0120
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0125
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0125
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0125
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0130
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0130
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0135
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0135
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0135
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0140
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0140
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0145
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0145
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0145
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0145
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0150
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0150
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0155
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0155
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0160
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0160
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0165
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0165
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0170
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0170
http://dx.doi.org/10.1016/j.rse.2016.02.043


14 B.K. Hornbuckle et al. / Remote Sensing of Environment xxx (2016) xxx–xxx
of Selected Topics in Applied Earth Observations and Remote Sensing, 6(3),
1430–1439.

Rahmoune, R., Ferrazzoli, P., Kumar Singh, Y., Kerr, Y. H., Richaume, P., & Al Bitar, A.
(2014). SMOS retrieval results over forests: Comparisons with independentmeasure-
ments. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,
7(9), 3858–3865.

Ramsay, J. O., Wickham, H., Graves, S., & Hooker, G. (2013). FDA: Functional data analysis.
R package version 2.3.6.

Rondinelli, W. J., Hornbuckle, B. K., Patton, J. C., Cosh, M. H., Walker, V. A., Carr, B. D., &
Logsdon, S. D. (2015). Different rates of soil drying after rainfall are observed by the
SMOS satellite and the South Fork in situ soil moisture network. Journal of
Hydrometeorology, 16, 889–903.

Rowlandson, T. L., Hornbuckle, B. K., Bramer, L. M., Patton, J. C., & Logson, S. D. (2012).
Comparisons of evening and morning SMOS passes over the Midwest United
States. IEEE Transactions on Geoscience and Remote Sensing, 50(5), 1544–1555.

Sage, R. F., & Kubien, D. S. (2007). The temperature response of C3 and C4 photosynthesis.
Plant, Cell & Environment, 30(9), 1086–1106.

Schlenz, F., dall'Amico, J. T., Mauser, W., & Loew, A. (2012). Analysis of SMOS brightness
temperature and vegetation optical depth data with coupled land surface and radia-
tive transfer models in southern Germany. Hydrology and Earth System Sciences, 16,
3517–3533.

Singer, J. W., Meek, D. W., Sauer, T. J., Prueger, J. H., & Hatfield, J. L. (2011). Variability of
light interception and radiation use efficiency in maize and soybean. Field Crops
Research, 121, 147–152.

Slattery, R., & Ort, D. (2015). Photosynthetic energy conversion efficiency: Setting a base-
line for gauging future improvements in important food and biofuel crops. Plant
Physiology, 168(2), 383–392.

Slatyer, R. S. (1967). Plant–water relationships. New York: Academic Press.
Please cite this article as: Hornbuckle, B.K., et al., SMOS optical thickness
management, and weather, Remote Sensing of Environment (2016), http://
Thornton, P. E., Running, S. W., & White, M. A. (1997). Generating surfaces of daily mete-
orological variables over large regions of complex terrain. Journal of Hydrology, 190,
214–251.

Thornton, P. E., Thornton, M. M., Mayer, B. W., Wilhelmi, N., Wei, Y., Devarakonda, R., &
Cook, R. B. (2014). Daymet: Daily surface weather data on a 1-km grid for North
America, version 2. (Available from Oak Ridge National Laboratory Distributed Active
Archive Center, Oak Ridge, TN, USA).

Ulaby, F. T., & El-Rayes, M. A. (1987). Microwave dielectric spectrum of vegetation — part
II: Dual-dispersion model. IEEE Transactions on Geoscience and Remote Sensing, GE–
25(5), 550–557.

Ulaby, F. T., & Jedlicka, R. P. (1984). Microwave dielectric properties of plant materials.
IEEE Transactions on Geoscience and Remote Sensing, GE–22(4), 406–415.

Ulaby, F. T., Moore, R. K., & Fung, A. K. (1981). Microwave remote sensing: Active and pas-
sive. 1, Norwood, MA: Artech House.

Wigneron, J. -P., Kerr, Y., Waldteufel, P., Saleh, K., Escorihuela, M. -J., Richaume, P., ...
Schwank, M. (2007). L-band microwave emission of the biosphere (L-MEB) model:
Description and calibration against experimental data sets over crop fields. Remote
Sensing of Environment, 107, 639–655.

Wigneron, J. -P., Laguerre, L., & Kerr, Y. H. (2001). A simple parameterization of the L-band
microwave emission from rough agricultural soils. IEEE Transactions on Geoscience
and Remote Sensing, 39, 1697–1707.

Wigneron, J. -P., Schwank, M., Lopez Baeza, E., Kerr, Y., Novello, N., Millan, C., ...
Mecklenburg, S. (2012). First evaluation of the simultaneous SMOS and ELBARA-II
observations in theMediterranean region. Remote Sensing of Environment, 124, 26–37.

Zhu, X. -G., Long, S. P., & Ort, D. R. (2010). Improving photosynthetic efficiency for greater
yield. Annual Review of Plant Biology, 61, 235–261.

Zobeck, T. M., & Onstad, C. A. (1987). Tillage and rainfall effects on random roughness: A
review. Soil & Tillage Research, 9, 1–20.
changes in response to the growth and development of crops, crop
dx.doi.org/10.1016/j.rse.2016.02.043

http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0170
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0170
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0175
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0175
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0175
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0180
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0180
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0185
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0185
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0185
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0190
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0190
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0195
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0195
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0200
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0200
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0200
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0200
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0205
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0205
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0205
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0210
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0210
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0210
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0215
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0220
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0220
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0220
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0225
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0225
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0225
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0230
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0230
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0230
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0235
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0235
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0240
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0240
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0245
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0245
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0245
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0250
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0250
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0250
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0255
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0255
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0260
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0260
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0265
http://refhub.elsevier.com/S0034-4257(16)30071-2/rf0265
http://dx.doi.org/10.1016/j.rse.2016.02.043

	SMOS optical thickness changes in response to the growth and development of crops, crop management, and weather
	1. Introduction
	2. Materials and methods
	2.1. SMOS optical thickness
	2.1.1. Smoothing of SMOS optical thickness

	2.2. Crop progress
	2.3. Meteorology
	2.4. Crop biomass

	3. Theory
	3.1. Optical thickness
	3.2. Crop development
	3.3. Crop growth

	4. Calculation
	5. Results
	5.1. Hypothesis 1: timing
	5.2. Hypothesis 2: magnitude

	6. Discussion
	6.1. Potential effect of precipitation on the magnitude of τ
	6.2. Other environmental factors affecting the magnitude of τ
	6.3. Effect of the retrieval and smoothing algorithm on the magnitude of τ

	7. Conclusions
	Acknowledgments
	References


