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A B S T R A C T

Progress towards combatting land degradation as intended by Sustainable Development Goal 15.3.1 will be
monitored using three sub-indicators, of which productivity of vegetation is one. This indicator is to be measured
using trends in a remotely-sensed vegetation index. The use of vegetation indices is well-established and re-
motely-sensed data are readily available. However, their uses for monitoring production that is relevant to
sustainable livelihoods have received little attention. This review identifies four areas in the currently-proposed
monitoring methodology that are in need of further development. The first is the derivation of primary pro-
duction from vegetation indices, which requires attention to physiological processes such as light-use efficiency
and plant respiration. The second concerns the subsequent steps, in which ecological processes transform the net
production into production of goods and services, such as crop products. The third is the need for explicit
baselines or reference conditions that specify the productivity in the absence of anthropogenic degradation. The
fourth, and most difficult, is to distinguish anthropogenic causes of degradation from potentially similar effects
of natural environmental processes. Some of these issues are difficult to tackle with remote sensing alone, al-
though several improvements are available, and others are in development. However, the current use of vege-
tation indices alone to remotely-sense degradation of ecosystem services does not provide an adequate SDG
15.3.1 productivity indicator.

1. Introduction

The United Nations General Assembly's Sustainable Development
Goal (SDG) 15.3.1 concerns degradation of life on land - “to combat
desertification, restore degraded land and soil, including land affected
by desertification, drought and floods, and strive to achieve a land
degradation-neutral world” (Sims et al., 2019). The official indicator of
degradation is the “proportion of land that is degraded over total land
area”. Three sub-indicators form the overall SDG: i. Land cover and land
cover change; ii. Land productivity; and iii. Carbon stocks above and
below ground (Sims et al., 2019). For large areas, the productivity in-
dicator (ii) is to be measured by negative trends in remote sensing (RS)
of multispectral vegetation indices (VIs, e.g. NDVI). Nevertheless, as
acknowledged by the “Framework and Guiding Principles for a Land
Degradation Indicator” (UNCCD, 2016) “significant challenges remain”.

The development in the 1980s of RS techniques capable of mea-
surement of vegetation at a frequency adequate to track its sub-seasonal
and annual changes, revolutionized major aspects of the biospheric
sciences. Spectral VIs are now used in a wide variety of routine and
research applications including monitoring primary production. There
has been enormous improvement in many aspects of the VIs, among

which are radiometric precision, atmospheric corrections, geospatial
location, spatial resolution, and frequency of acquisition (Yengoh et al.,
2016). However, the complexity of the physiological and ecological
processes that determine how changes in VIs are related to degradation
of ecosystem services (Millenium Ecosystem Assessment, 2005) is not
one of them.

SDG 15.3.1 requires measurement of anthropogenic land degrada-
tion, but natural environmental processes can result in the exact same
symptoms. For example, erosion can be initiated by human activities or
natural geomorphological processes and salinization can be a result of a
natural movement of water towards the surface or by excessive irriga-
tion, or both. However, natural and human-induced stresses obviously
have different origins. Detection of the anthropogenic component and
understanding the nature of the interactions with natural processes is
not easy. It is further complicated by the fact that the relationships of
stress and productivity may be non-linear (Walker et al., 2002). The
type of response of the vegetation has important implications, parti-
cularly for restoration. For instance, land degraded by anthropogenic
stress may be resilient, recovering once the stress is relieved, or it may
enter a permanent state of degradation from which recovery is im-
possible, no matter the amount of reduction in stress. Rarely, if ever, is
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this distinction discussed, yet it is well known in vegetation science and
has enormous significance for the management of degradation.

Measurement of degradation requires more than detection of tem-
poral trends of VIs. The “Good Practice Guidance document” (Sims
et al., 2017) provides a number of methods for measurement of pro-
ductivity for SDG 15.3.1. Nonetheless, it makes no reference to the steps
needed to link productivity to human livelihoods. The complete re-
lationship between remotely-sensed VIs and ecological services that are
the determinants of sustainable development (Sims et al., 2019), in-
volves multiple steps which are currently omitted. Maps showing trends
of VIs are compelling but are not direct measurements of the type of
degradation that is relevant to sustainability. Without attention to how
VIs are used to infer degradation of ecosystem services, their use is
misleading and may be completely meaningless.

2. Normalization

Since both anthropogenic and natural processes can cause de-
gradation, it is critical that these two are distinguished for monitoring
of SDG 15.3.1 (Orr, 2011). A number of methods have been used to
eliminate natural degradation and thereby reveal any anthropogenic
component. For example, because productivity is strongly related to
precipitation in drylands, a common normalization transforms NDVI to
NDVI per unit precipitation, known as the rain use efficiency (RUE;
Prince et al., 1998). Le Houérou (1984) used RUE to indicate the bio-
geographic relationships of average productivity with climatological
precipitation at a regional scale, as have others (e.g. Huxman et al.,
2004; Ruppert et al., 2012). However, there is an important distinction
between Le Houérou's application of RUE to biogeography, and its use
for normalization of productivity to detect degradation since it is at the
scales of individual pixels and short periods of time (Prince et al.,
1998). These two applications are often confused.

More recently the residual trend (RESTREND) technique has be-
come popular (Wessels et al., 2007). It consists of calculation of the RUE
of non-degraded pixels, followed by plotting the residuals of subtraction
of the VIs of degraded from the estimated non-degraded pixels against
time. Negative trends in residuals are interpreted as degradation and
positive trends as recovery. Variations in other limiting factors can be
normalized similarly (Cho et al., 2015; Rishmawi and Prince, 2016;
Wylie et al., 2008). RUE highlights the precipitation-productivity re-
lationship while RESTREND emphasizes temporal trends; however,
they are both transforms of the same variables. Trends in short time-
series of residuals can be summarized with a linear regression, but
longer sequences of data often show changes in trends, and so piecewise
regression is now widely used (Verbesselt et al., 2010; Liu et al., 2019).
A valuable feature of RUE/RESTREND is that they track single pixels
(or whatever spatial units are used). Consequently, they automatically
allow for any static environmental differences (e.g. soil, topography,
fertility) that are not relevant to anthropogenic degradation.

RUE/RESTREND generally assume that precipitation is entirely
available to vegetation, but the amount of water that reaches the root
zone can be significantly different from the annual total precipitation
(Prince et al., 1998; Rodriguez-Iturbe, 2000; Kutsch et al., 2008). “Ef-
fective” precipitation is determined by many aspects beyond annual or
growing season totals. These include (Prince et al., 1998): i. Seasonal
timing, since there are differences in the growth response at different
stages in the growing season (Ivits et al., 2012; Rishmawi et al., 2016);
ii. Losses due to direct soil evaporation and from canopy interception;
iii. High rain rate which results in run-off; iv. The amount of infiltration
(Kumar et al., 2002); v. Run-off and run-on from adjacent land; vi.
Drainage from the rooting zone; vii. Low soil hydraulic conductivity
which reduces flow from the surface to the root zone; and viii. Existing
water stored in the soil or vegetation. Some of these components of the
water cycle may be susceptible to degradation, and so it is not sur-
prising that RUE/RESTREND values are frequently still related to pre-
cipitation even after annual precipitation normalization (Fensholt and

Rasmussen, 2011). Furthermore, because these components often vary
between sites, geographical differences in RUE/RESTREND do not ne-
cessarily indicate degradation.

Not infrequently, precipitation in preceding years (“antecedent”) is
correlated with production in the following years, a phenomenon
sometimes referred to as “memory” or “lags” (Goward and Prince,
1995; Ruppert et al., 2012). There are several possible causes of lags: i.
Formation of more or fewer seeds or perennating buds that result in
changes in production in subsequent years. ii. Changes in allocation of
assimilated carbon to storage organs that may alter production in fol-
lowing years. iii. Changes in species composition, leading to differences
in competitive relationships in subsequent years. iv. Changes in soil and
crustal microbial communities, leading to changes in nutrient miner-
alization. v. Changes in litter accumulation that can change infiltration
in the following years. A particularly important source of delayed re-
sponses is fire, which can both increase (e.g. by release of nutrients
from biomass) and reduce productivity during regrowth (e.g. slow post-
fire seedling establishment, slow regrowth of fire-resistant species).

A wide variety of factors in addition to precipitation can affect
productivity, and some more comprehensive environmental normal-
izations could usefully be considered for SDG 15.3.1. For example, in
the Sahel, Rishmawi et al. (2016) used a soil-vegetation-atmosphere-
transfer model calibrated at flux sites and found that temperature,
specific humidity, and the seasonal distribution and total precipitation
were significantly related to productivity. In the Negev, Gutterman
(2000) found day length, rate of seed maturation, and dispersal of seeds
were important factors as well as the amount and seasonality of pre-
cipitation.

A more fundamental problem with RUE/RESTREND is that pro-
ductivity, or growth, is slow and therefore responds relatively slowly -
from weeks to years - to environmental changes, be they anthropogenic
or natural. Precipitation, on the other hand, typically varies from
minutes to years. Thus, productivity has a “slow” response while pre-
cipitation is a “fast” variable (Carpenter and Turner, 2000). The mis-
match of temporal scales can cause dramatic temporal fluctuations in
RUE/RESTREND without any change in productivity. For example,
even with no difference in productivity, RUE (production/precipita-
tion) will be high in dry years (low denominator) and low (high de-
nominator) in wet years. Valid use of RUE/RESTREND for normal-
ization, therefore, requires scaling temporal variation of precipitation
to the temporal response of productivity. A simple approach is aver-
aging the precipitation and production over a number of years (Prince
et al., 1998), however, the appropriate number can be uncertain.

3. Reference baselines

Degradation is a relative condition - a change compared to a non-
degraded condition. Thus, degradation can only be measured by com-
parison with a reference (Cowie et al., 2018; Prince et al., 2018). An
obvious approach would be a comparison with known, non-degraded
sites (Verón and Paruelo, 2010; Wessels et al., 2004), but the locations
of such sites are, unfortunately, rarely known. Furthermore, they may
not exist in the study area, the entire area may have been degraded in
the past, or there may be no degradation present.

In the absence of known, non-degraded field sites, RUE/RESTREND
substitutes the production per unit precipitation, estimated by the
coefficient of a linear regression of the production of non-degraded sites
on precipitation. Other environmental variables can be added if they
also affect productivity. Unfortunately, since which pixels (if any) are
not degraded is unknown, all pixels, including degraded, must be in-
cluded and the regression coefficient therefore underestimates the re-
ference condition. Upper quantile regression has been used to reduce
the effect of the mixture (Rishmawi and Prince, 2016; Ruppert et al.,
2012). However, the non-degraded, potential production is inevitably,
still underestimated.

RESTREND also needs a reference for interpretation of trends.
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Generally, the significance of the slope coefficient is used (Wessels
et al., 2012). If a longer time-series is available, it can be segmented and
individual regressions fitted to shorter periods in order to resolve
changes in degradation and recovery within the time-series (Burrell
et al., 2017). However, these are arbitrary baselines, since the condition
with least degradation is unknown, or degradation may have occurred
before the time-series begins. An inverse method is sometimes used, by
identification of sites that are fully degraded. For example, the “grazing
gradient” technique which uses the conditions around livestock water
sources as a fully-degraded reference and compares it with the rest of
the study area (Pickup and Chewings, 1994).

Local NPP Scaling (LNS) is a quite different approach which at-
tempts to identify reference sites without the need for external
knowledge of non-degraded or fully degraded sites (Ivits and Cherlet,
2013; Jackson and Prince, 2016(a); Noojipady et al., 2015; Prince et al.,
2009). It starts with classification of the entire study area into homo-
geneous land capability classes (LCCs) using all available environ-
mental factors that affect productivity, other than anthropogenic fac-
tors. It is assumed that all pixels in a single LCC would have the same
productivity in the absence of degradation. Without the LCCs, there
would be a danger of mixing intrinsically more and less productive
land. For example, a large Navaho reservation in SW USA appeared to
be degraded, but the use of LCCs identified it as an area of intrinsically
lower productivity (Noojipady et al., 2015), questioning the common
opinion that the entire reservation had been poorly managed. The
designation of LCCs is followed by an analysis of a frequency dis-
tribution of the productivity of all pixels in an LCC to identify the pixels
with the maximum productivity. To suppress outliers, the productivity
at an arbitrary limit is used rather than the absolute maximum. This
maximum production is used as a best estimator of areas that are not
degraded. The degree of degradation in each LCC is determined by
subtraction of the production of every pixel from the non-degraded,
reference NPP. Since LNS is in production units, it is directly relevant to
degradation. The principal drawbacks of LNS are the assumptions that
the LCCs are sufficiently internally homogeneous and that the max-
imum productivity in each LCC is a good estimate of the potential.

4. Degradation and vegetation dynamics

4.1. Vegetation processes

Degradation of vegetation is not simply determined by the en-
vironment, be it natural or anthropogenic, rather there are vegetation
processes that can modify or even reverse the effects of reduction in
productivity (Scoones, 1992). Changes in VIs are often interpreted as
evidence for degradation without consideration of these processes
(Fig. 1). This is a gross oversimplification. In reality, there is a sequence
or chain of stages between remote sensing and the ecosystem service

(Sims et al., 2019). Hierarchy theory (Bergkamp, 1995; Prince, 2002)
addresses the sequence in complexity and clarifies point in the chain
responsible for any subsequent modifications in productivity and hence
on human livelihoods.

The place of RS in measurement of degradation is at the start of the
chain (Fig. 1, stage 1) in which reflectances are used in generally,
simple radiative transfer modeling (stage 2) to derive information about
vegetation, typically VIs. This is followed by physiological (stage 3) and
ecological (stage 4) processes, from which the functional variables that
affect ecosystem services emerge (stage 5). In the physiological stage,
absorbed photosynthetically-active radiation (APAR) drives photo-
synthesis which leads to primary production. However, the relationship
between APAR and biomass production is subject to additional pro-
cesses that are far from constant (Porporato and Rodriguez-Iturbe,
2002; Schulze et al., 2005), including respiration, allocation of pro-
duction to above and below ground parts, phenological constraints and
other differences in plant functional types. In simple light use efficiency
models of NPP, these factors are summarized in an efficiency parameter
(Prince, 1991; Ruimy et al., 1994) but its measurement is difficult.

In the ecological stage, community processes transform the NPP into
products available for human use. However, an increase in NPP might
be confined to non-economic components of the vegetation, in which
case a decline in the VIs does not indicate degradation of ecosystem
services. The ecological stage includes plant competition, decomposi-
tion and mineralization in the soil, herbivory and disease. The processes
involved in the ecological services, the final step (stage 5), are not
considered here since they are in the realm of socio-economics and
human choices (van der Esch et al., 2017). This is not to say these are
unimportant (Turner et al., 2007; Walker et al., 2002), rather they
belong to the overall interpretation of the SDGs, not 15.3.1 alone.

Each link in the chain uses outputs from the previous one, often
with additional inputs, ultimately leading to ecological services (stage
5, crop products). The input from the previous stage may be linearly
related to its output, in which case omitting it only affects the units. For
example, VIs are often used as a surrogate for primary production,
which can hold true in some conditions (Fensholt et al., 2006), although
it is actually related to the gross primary production (GPP). In most RS
of degradation, the results are given as VIs or production calculated by
regression on NPP obtained from other sources (e.g. MODIS MOD13Q1;
Bai et al., 2008(a)). However, the output of any stage may be damped in
the next one and have little further effect, or may even be amplified
(Ash et al., 2002; Herrmann and Tappan, 2013). The current method for
derivation of the SDG 15.3.1 productivity indicator depends on VIs
alone which are therefore assumed to be directly related to livelihoods,
skipping the physiological (3) and ecological (4) stages in the chain.
The omission of these stages means that changes in VIs may or may not
indicate ultimate degradation of livelihoods in stage 5. The Famine
Early Warning System (FEWS, Funk et al., 2019) is an example of how

Fig. 1. The logical sequence of stages be-
tween (1) remotely-sensed measurements
and (5) degradation of ecosystem services -
illustrated using provision of food. The
stages are: (1) Spectral radiances measured
by remote sensing; (2) Radiative transfer
modelling to derive surface reflectances and
vegetation indices; (3) A physiological stage
in which vegetation indices provide an es-
timate of absorbed photosynthetically-ac-
tive radiation (APAR), used to model net
primary production (NPP); (4) An ecological
stage in which NPP is transformed into crop
yield; And (5), the effect of degradation of

productivity on human livelihoods - in this example harvested crop products. In each stage there are additional factors (examples are shown in the lower, dashed
boxes), some of which can also be subject to degradation. The current indicator for SDG 15.3.1 (productivity sub-indicator) uses only the outcome of stage 2 to
measure degradation (upper boxes), skipping further processes that affect human livelihoods. (Note; there are more complex representations of these processes that
include, for example, feedbacks and interactions, but the simple representation here is adequate to illustrate the point.)
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VIs and other factors contribute to a final assessment of productivity
relevant to an ecosystem services goal.

4.2. Stress responses

There is a multiplicity of factors that can stress vegetation and de-
grade productivity (Schulze et al., 2005). However, the term (“stress”)
is misleading since what are normally regarded as forms of anthro-
pogenic degradation can actually increase productivity. For example,
conversion from grassland to intensive cultivation, the excessive use of
artificial fertilizers, nitrogen deposition from a polluted atmosphere,
anthropogenic increases in carbon dioxide and anthropogenic climate
changes that can all lead to increases in produvtivity.

Differences in the intensity of anthropogenic and/or environmental
stress lead to complexity in vegetation dynamics (Fig. 2). In years and
sites with very low stress and productivity is at a maximum (Fig. 2,
stage 1). As stress increases (anthropogenic or environmental or both
(Prince et al., 2018)), there is an approximately linear phase (stage 2) in
which productivity is directly related to the stress. Finally, at high
stress, productivity drops to a very low value (stage 3) and changes very
little, even if the stress continues to increase. This relationship can be
illustrated by a “response curve” (Fig. 2) (Schulze et al., 2005). Since
stress induces little change in productivity in both low (1) and high (3)
stress, they can be impossible to distinguish by productivity measure-
ments alone, without a baseline.

In most RS studies the effect of a stressor is assumed to be linear
throughout, omitting stages 1 and 3. Bai et al. (2008(b)) and others
eliminated pixels where NDVI had no significant correlation with pre-
cipitation which, while avoiding confusion between the initial and final
invariants stages, confined the analysis to pixels in the linear, resilient
phase. However, productivity under stress may not follow a simple
logistic response curve (Lockwood and Lockwood, 1993). There are
three concepts that can relate the different aspects of the stress re-
sponses to each other. First, succession (Schulze et al., 2005), in which
productivity actually does follow a simple response curve. It has

dominated thinking about vegetation for the last 100 years and it is
widely used to manage rangeland. While the traditional concept of
succession is uni-directional, from a pioneer to a semi-stable climax
sate, in its application to degradation it can be reversed by stress, so
productivity can increase and decrease repetitively as the intensity of
stress changes (represented by the lines in Fig. 2) (Wessels et al., 2004).
The response of productivity to fluctuations in stress is called “resi-
lience” (Walker et al., 2002). A second parameter, “resistance” is
sometimes used to describe the rate at which productivity changes as a
result of a change in stress.

The second concept of vegetation dynamics, sometimes known as
the threshold model, envisages a situation in which vegetation, initially
in stage 1, is subject to an increase in stress and proceeds to the resilient
stage 2. Then, at some point (stage 4), productivity drops suddenly, and
the vegetation enters a degraded condition (stage 2’) (Eve et al., 1999).
Most important, it cannot recover to stage 2, no matter how much the
anthropogenic and environmental stressors decline (Ratajczak et al.,
2014; Rietkerk et al., 2004; Walker et al., 2002). At the threshold
(sometimes called a tipping or bifurcation point) there are changes in
resilience and resistance (Hu et al., 2018). There are also fundamental
changes in processes (Kinzig et al., 2006), including positive feedbacks
(Rietkerk et al., 2004) and other mechanisms that maintain or reinforce
the new state. For example, in drylands, transitions among various
grassland types and their productivity can be reversible with grazing
management (resilient), but excessive grazing or an extreme event such
as fire can lead to invasion and dominance by woody species
(Fuhlendorf and Smeins, 1997). No amount of reduction of livestock
numbers will reverse the transition and the vegetation has entered a
stable degraded state. This transition is very important since production
is lost and can only be restored by drastic management procedures
(Walker et al., 2002) that are usually prohibitively expensive. For ex-
ample, restoration after the 1930s US “Dust Bowl” in the southern
plains of the US (Hurt, 1986) cost approximately $17 billion (in 2017
US$ value) (Baveye et al., 2011).

In addition to the succession and threshold concepts, there is a third,
the “state and transitions”model (Helman et al., 2014; Stringham et al.,
2003), which includes multiple transitions separated by thresholds.
This concept actually encompasses the successional and threshold
models (Briske et al., 2005) (Fig. 2). Evidence for the existence of
multiple stable states detected in RS data has been provided by Wessels
et al. (2004), while assessing the effects of human-induced land de-
gradation in the former homelands of South Africa. It was found that
the degraded state persisted in spite of subsequent increases and de-
creases in precipitation. In a wet year, the productivity of a degraded
site was sometimes higher than a non-degraded one in a drier year,
providing evidence of resilience within a degraded state, as indicated
by curves 2’ and 2″ in Fig. 2. Interestingly, the differences in pro-
ductivity between degraded and non-degraded sites, even in years with
extreme low and high precipitation, was almost constant at only 9%,
suggesting that further transitions might be possible, as included in the
state and transitions concept.

All three of the models described above refer strictly to the dy-
namics of useable production (see the ordinate in Fig. 2). Examples
where parts of the total production are not useable include bush en-
croachment (Ratajczak et al., 2014) and invasion by Pteridium aquilinum
in UK (Marrs et al., 2000), but in which the invader increases total NPP
(Birhane et al., 2017). In this case, if total NPP is used as a metric of
degradation, it may seem that degradation is reversed. Another critical
point is the effect of drastic changes in land use, such as clearance of
natural vegetation, which might initially be thought of as degradation.
However, following the transition, the low stress condition is the one in
which useable production (e.g., crop yield, lumber offtake) occurs, and
the causes of increase in stress includes the new management factors
such as over application of fertilizers and pesticides, less control of
weeds, and over irrigation. Once under human management, the an-
thropogenic and environmental factors that determine productivity are

Fig. 2. Response of productivity to stress caused by humans and/or the natural
environment. At low stress there is no effect on productivity, as indicated by the
horizontal line in stage 1. As stress increases, productivity declines (stage 2),
ultimately to very low values (stage 3). In stage 2, productivity is resilient,
increasing or decreasing depending on the prevailing intensity of stress. Under
certain conditions, however, productivity can diverge, passing over a threshold
(stage 4), to a new resilient trajectory (2′). Once over a threshold, productivity
cannot naturally return to the previous level, no matter how much the stress is
alleviated. One or more thresholds may occur (stages 4 and 4′), each followed
by new resilient stages (2′ and 2″). The succession model is illustrated by stage
2, 2′ and 2″, the threshold model by the trajectory from stage 2 to 2′ and 2′ to
2″, and the state and transition model by all stages. Note, the production shown
in the figure is just that component of total primary production that is useable
by humans.
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radically changed, and the response curve models should be reset.

5. Discussion

The current productivity indicator for SDG 15.3.1 consists of trends
in VIs, but application to detection of degradation needs to go beyond
this. The “Good Practice Guidance” (Sims et al., 2019) recommends
RUE/RESTREND for measurement of degradation. While these are le-
gitimate metrics their interpretation is not straightforward (Ruppert
et al., 2012).

One issue is the need to control (“normalize”) factors that affect
productivity but are not related to degradation, including anthro-
pogenic degradation. RUE/RESTREND uses single or multiple in-
dividual variables as divisors, but this assumes oversimplified re-
lationships with productivity (Ardö, 2011). This is a significant
problem, and it is difficult to imagine a complete solution using current
methods. For the future, a promising approach is the use of simulation
models that use representations of the actual physiological and ecolo-
gical processes, rather than statistical models such as regressions (Ardö,
2011; Boer and Puigdefábregas, 2005; Conijn et al., 2013; Tracol et al.,
2006). If run without anthropogenic effects, process-based models
could provide a more appropriate measure of non-degraded reference
productivity. All models, however, are limited by the availability, ac-
curacy and spatial resolution of the inputs. Currently the resolutions are
often very coarse (Ali et al., 2005), albeit with high temporal resolution.
Thus, applications at present are limited to large-area processes such as
overgrazing in extensive pastoralism, degradation by atmospheric pol-
lution or regional climate change. However, improvements in RS data
are in progress giving new types of data, greater accuracy and the finer
resolution which is relevant to human activities.

Beyond RS of VIs there are aspects of degradation that involve in-
trinsic processes of the vegetation, in both physiological (Izaurralde
et al., 2005) and ecological (Hu et al., 2018) stages. Although not in-
cluded in the indictors for SDG 15.3.1, these are the proximate causes of
degradation of ecosystem services (van der Esch et al., 2017) and apply
no matter what the spatial and temporal scales. In by far the majority of
reports of degradation the vegetation is actually in a resilient phase
which, by definition, is capable of reversal and recovery when the
causative stressors are reduced or cease. For example, RESTREND often
has both negative and positive periods that extend over several years
(Bai et al., 2008(b)). According to some definitions, this does not con-
stitute “degradation”, even though it may appear so for a period of time
(Sheikh and Soomro, 2006). There is confusion on this point and, in
many cases, the meaning is not specified (Secretariat of the United
Nations, 1999). A salutary example of this confusion is the supposed
degradation (“desertification”) of the Sahel during the 1980s drought
(Herrmann and Sop, 2016). This apparently permanent degradation,
which became an icon of desertification, was reversed when the
drought ended and the vegetation recovered. On the other hand, the
“Dust Bowl” of the southern plains of the United States (Hurt, 1986) did
not reverse naturally, even when the drought and inappropriate culti-
vation ceased. In this case, the degradation was permanent. Because of
the enormous significance of these differences in relation to manage-
ment and human livelihoods, there is good reason to distinguish the
two, perhaps with terms such as “permanent degradation” and “tem-
porary degradation”. The “Good Practice Guidance” (Sims et al., 2017)
does not recognize this distinction.

There are a wide-range of data that would augment detection of
degradation by VIs alone. More detailed mapping of land cover using
high spatial resolution, multispectral data at 4m or finer resolution is
very promising (Zhihuan et al., 2018) since it enables detection of de-
gradation at the scale of human activities. At present, the use of this
high-resolution RS data is limited to qualitative, visual interpretation.
However, there is scope for the application of automated pattern-re-
cognition (Cheng and Han, 2016; Holloway and Mengersen, 2018;
Zhihuan et al., 2018) to discriminate more conditions and provide more

objective data. This would also improve the land cover sub-indicator of
SDG 15.3.1. Land cover classification could also be improved with
imaging spectrometry (Asner and Heidebrecht, 2003).

Other aspects of degradation of vegetation are also available. These
include measurement of dry season, standing dead vegetation using the
cellulose absorption index (CAI) (Daughtry, 2001; Jackson and Prince
2016(b)), important because the amount of standing dry biomass is the
proximate control of livestock production in the dry season. The spatial
patterns of vegetation and biomass can be measured using LiDAR
(Fisher et al., 2015) and some types of RADAR (de Jong et al., 2011;
Metternicht et al., 2010). Some progress is also being made in detection
of species composition (e.g. Hunt et al., 2003). Better known methods
include detection of bare ground using albedo (Zhao et al., 2018), in-
creases in diurnal temperature ranges (Zhou et al., 2007), fire (Potter
et al., 2003), and dust emissions (Ginoux et al., 2012).

6. Conclusions

Consistent, long-term data on trends and other aspects of vegetation
are of great value for monitoring degradation of productivity. RS pro-
vides the only techniques to do this from local to global scales.
However, the methods currently recommended are only a first step to
detection of degradation of ecosystem services, which is the focus of the
Sustainable Development Goals. Currently, determination of the re-
lationship of VIs to productivity, detection and exclusion of non-an-
thropogenic processes and establishment of valid baselines, are all ab-
sent from the recommendations for measurement. Beyond these is the
matter of the vegetation processes that connect NPP to the broader
context of SDG 15.3 and its interactions with other SDGs. A cogent
example of an application of RS of VIs that goes beyond the use of VIs
alone, is the Famine Early Warning System (FEWS, Funk et al., 2019).
The current oversimplifications (Sims et al., 2019) lead to mis-
understanding of the significance of the productivity indicator. Of
course, in some cases, VIs may be all the information that is available,
but the relevance to human livelihoods is likely to be limited and
should always be stated explicitly.

RS has and will continue to make a fundamental contribution to the
assessment of degradation but monitoring of productivity for SDG
15.3.1 cannot be achieved using spatial and temporal comparisons of
VIs alone. Progress will depend on matching the continuing effort put
into the development of new “retrievals” of surface properties by RS
science with attention to the physiological and ecological processes that
make net production relevant to ecosystem services. Progress beyond
VIs is possible and has been applied in some cases (Herrmann et al.,
2014; Seaquist et al., 2009; Symeonakis and Drake, 2004). However, a
fundamental difficulty is the separation in disciplines between RS and
ecological sciences. Since current techniques do not provide the in-
formation expected from SDG 15.3.1, there is an urgent need for co-
ordinated and comprehensive research and development (Yengoh et al.,
2016). Enhanced communication between research in RS technology
and users of RS for measurement of degradation is needed. This inter-
action will most likely occur in a formalized research and development
program that is not entirely subject to the vagaries of institutional re-
search funding.
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