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A B S T R A C T   

Light detection and ranging (lidar) data acquired from airborne or spaceborne platforms have revolutionized 
measurement and mapping of forest attributes. Airborne data are often either acquired using multiple overlapped 
flight lines to provide complete coverage of an area of interest, or using transects to sample a given population. 
Spaceborne lidar datasets are unique to each sensor and are sample- or profile-based with characteristics driven 
by acquisition mode and orbital parameters. To leverage the wealth of accurate vegetation structural data from 
these lidar systems, a number of approaches have been developed to extend these observations over broader 
areas, from local landscapes to the globe. In this review we examine studies that have utilised modelling ap
proaches to extend air- or space-based lidar data with the aim of communicating methods, outcomes, and ac
curacies, and offering guidance on linking lidar metrics and lidar-derived forest attributes with broad-area 
predictors. Modelling approaches are developed for a variety of applications. In some cases, generation of 
spatially-exhaustive layers may be useful for forest management purposes, driving management and inventory 
decisions over smaller focus areas or regions. In other cases, outputs are designed for monitoring at regional or 
global scales, and may be – due to the spatial grain of the structural estimates – insufficiently accurate or reliable 
for management. From the reviewed studies, we found height, aboveground biomass and volume, derived from 
either upper proportions of a large-footprint full-waveform lidar profiles, or statistically modelled from discrete 
return small-footprint lidar point clouds, to be the most commonly extended forest attributes, followed by canopy 
cover, basal area and stand complexity. Assessment of the accuracy and bias of the extrapolated forest attributes 
varied with both independent and model-derived estimates. The coefficient of determination (R2) was the most 
often reported, followed by absolute and relative (i.e., as a proportion of the mean) root mean square error 
(RMSE and RMSE% respectively). Compilation of the stated accuracies suggested that the variance explained in 
predictions of forest height ranged from R2 = 0.38 to 0.90 (mean = 0.64), RMSE from 2 to 6m and RMSE% from 
12 to 34%. For volume, R2 ranged from 0.25 to 0.72 (mean = 0.53) and RMSE from 60 to 87 m3/ha and for 
aboveground biomass (AGB) R2 ranged from 0.35 to 0.78 (mean = 0.55) and RMSE from 28 to 44 Mg/ha. There 
was no consensus on the level of accuracy required to support successful extension over larger areas. Ultimately, 
the review suggests that the information need motivating the spatial extension over larger areas drives the choice 
of the type of lidar data, spatial datasets and related grain. We conclude by discussing future directions and the 
outlook for new approaches including new lidar-derived response variables, advances in modelling approaches, 
and assessment of change.   
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1. Introduction 

1.1. Extending forest attribute information over space 

Demand for spatially-explicit and synoptic forest attribute data is 
continually growing to meet an ever-increasing suite of management, 
reporting, and research information needs. Over the last decade, re
quirements for information describing forested landscapes has grown, 
with global, national and local agencies all seeking precise and accurate 
spatially-explicit information on forest resources (Næsset, 2014; Mag
nussen et al., 2018). Forest biomass, for example, is recognised by the 
Global Climate Observing Systems as an Essential Climate Variable 
(Duncanson et al., 2019) and its systematic characterization is important 
for reporting on afforestation, reforestation, and deforestation cate
gories globally (Herold et al., 2019). As a result, regional and global 
products suitable for monitoring are required at sufficiently fine spatial 
scales and at an adequate level of accuracy to observe changes in forest 
ecosystems as driven by both natural and anthropogenic activities. 
These estimates then provide policy makers with enhanced knowledge 
of carbon resources, regional biodiversity, and improved strategies for 
sustainable resource development (Duncanson et al., 2019). In contrast, 
regional and local spatially- explicit information on attributes such as 
forest volume and height are the cornerstone of enhanced forest in
ventories (White et al., 2013), and are required to meet forest stew
ardship responsibilities (White et al., 2016), at operational and tactical 
planning levels. In these cases, the coverage of the resultant products is 
generally more spatially limited in scope, with a more refined list of 
forest attributes, and with higher accuracy requirements to support 
forest inventory and other management scale decision making. Whether 
for global monitoring or local management, forest characterization ap
proaches based upon remotely sensed data have benefits including the 
capacity to predict forest attributes across all forests, and they are not 
spatially limited to areas captured in forest inventory programs or the 
related compilation time step (Wulder et al., 2020). Likewise, predicted 
attributes can include a wide range of forest attributes including 
aboveground biomass (AGB), height, volume, crown cover and canopy 
complexity, with applications ranging from habitat assessment, species 
distributions, informing fire risk and fire severity among many others. 

1.2. Light detection and ranging 

The rapid uptake of light detection and ranging (lidar) technologies 
on a variety of acquisition platforms (see Table 1 for a summary of lidar 
platforms relevant to this review) has revolutionized the capture of 
forest structure information through the acquisition of precise three 
dimensional information. The technology is highly adaptive with 
ground (or terrestrial), unmanned aerial systems (UAS), and aircraft- or 
satellite-based instruments, all successfully being applied to extract a 
range of forest structural attributes at varying spatial scales (White et al., 
2016). In general, lidar has seen rapid development from scientific tests 
to operational application (Nelson, 2013) with associated costs going 
down concurrent with an increase in sensors available and acquisition 
platforms/scenarios (Table 1). 

Airborne laser scanning systems, including systems with lidar 
mounted on an aircraft (ALS) or on a UAS, use the returned energy from 
emitted laser pulses to describe the three dimensional structure of 
aboveground vegetation. Airborne systems come in a variety of config
urations (White et al., 2016). Small footprint ALS systems typically re
cord between 1 and 5 returns per laser pulse in discrete mode, or a fully 
digitized vertical profile of the returned energy in full-waveform mode 
(Wulder et al., 2008, 2013). Typically, these systems produce footprint 
sizes of 0.1–2 m (Wulder et al., 2008; Lim et al., 2003) and can achieve 
sub-meter accuracy of terrain surface heights (Blair et al., 1999; Lefsky 
et al., 2002). Large footprint lidar systems utilise a different approach 
(Lefsky et al., 2002). A key example, NASA’s Land, Vegetation, and Ice 
Sensor (LVIS) has a footprint size that can vary between 10 and 80 m in 
diameter, with a 25 m footprint typically used as shown by Drake et al. 
(2002). The footprint depends on the altitude of the aircraft (Lim et al., 
2003), with the instrument recording the full waveform of the reflected 
laser pulse. The number of aircraft-based, large-footprint systems is 
limited, and these systems are often used to simulate space-based 
measurements. Satellite laser sensors such as the Geoscience Laser 
Altimeter System (GLAS) onboard the Ice, Cloud and land Elevation 
Satellite (ICESat) acquired global waveform data between 2003 and 
2009. The data produced by the GLAS instrument varied over the life of 
the mission associated with changes in laser power and as a result, the 
far field illumination changed over time. However, the instrument 
provided a pathfinder set of satellite-based lidar measurements with a 

Table 1 
Summary of lidar instruments and platforms relevant for this review.  

LiDAR 
Platform 

Sensor Recording mode Acquisition strategy Wavelength Footprint size Spatial extent Notes 

Spaceborne GLAS (ICESat 
satellite) 

Full waveform Sampling (1 
footprint every 170 
m along laser ground 
track) 

532 nm/1064 
nm 

~70 m Global (± 86◦

N/S latitude) 
Slope effect limitations on 
terrain height retrieval 

ATLAS (ICESat-2 
satellite) 

Photon-sensitive 
discrete returns 

Profiling (1 footprint 
every 70 cm along 
laser ground track) 

532 nm ~14 m Global (± 88◦

N/S latitude)  

GEDI (ISS) Full waveform Sampling (1 
footprint every 60 m 
along ground track) 

1064 nm ~25 m Near-Global 
(± 51.6◦ N/S 
latitude) 

Limited in extent by ISS orbit 

Airborne Overview of multiple 
conventional linear 
mode systems 

Discrete returns Scanning or profiling 800–2500 nm 
(Near-Infrared 
range) 

10–30 cm at 
500–3000 m 
range 

Regional to 
country scale  

Land, Vegetation and 
Ice Sensor (LVIS) 

Full waveform Scanning 1064 nm 20–30 m Regional to 
country scale 

Limited to 1 instrument 
operated by NASA 

SPL100 (Leica/ 
Hexagon) 

Photonsensitive 
discrete returns 

Scanning 532 nm 20–30 cm at 
3000–4000 m 
range 

Regional to 
country scale 

Potential canopy penetration 
and ground retrieval 
limitations under dense 
vegetation (Brown et al., 2020) 

UAS Overview of multiple 
conventional systems 

Discrete returns Scanning 700 nm 2.5–30 cm at 50 
m – 100 m 
range 

Local Plot and landscape 
deployments due to 
operational and power 
constraints 

Acronyms used: Advanced Topographic Laser Altimeter System (ATLAS); Global Ecosystem Dynamics Investigation (GEDI); Geoscience Laser Altimeter System 
(GLAS); Ice, Cloud and Land Elevation Satellite (ICESat); International Space Station (ISS); unmanned aerial systems (UAS). 
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nominal 90-m footprint that have been applied to vegetation and forest 
studies globally (Abshire et al., 2005). Most recently, two additional 
spaceborne lidar systems have been launched and are acquiring lidar 
data. Specifically, the full-waveform Global Ecosystem Dynamics 
Investigation (GEDI) on the International Space Station (ISS) and a 
single photon lidar (SPL) system on ICESat-2/ATLAS now provide 
valuable space-based data for forest assessments (Hancock et al., 2019; 
Markus et al., 2017). 

1.3. Current limitations of lidar-based forest attribute estimation 

While providing highly-detailed and precise, spatially-explicit in
formation on the structure of forest vegetation, characterization of forest 
stands using lidar technology over areas requires consideration of a 
number of sampling, statistical, and methodological constraints. In some 
countries, coordinated national lidar acquisitions have been imple
mented as shown by Kotivuori et al. (2016) and Magnussen et al. (2018), 
and some large forested regions within nations likewise have systematic 
lidar acquisition campaigns as shown by Fradette et al. (2019). Often 
however, lidar surveys are intended to provide detailed data, in specific 
targeted areas and acquisitions vary with respect to sensor types, 
phenology (leaf on and leaf off), and year of acquisition. Spaceborne 
laser systems, while global or near global in scope, are sample based, 
requiring a degree of gridding to produce attributes over spatially- 
contiguous regions of forest. In contrast, UAS-based systems provide 
exceptional detail over very small target acquisition areas (Goodbody 
et al., 2017). As a result, the information extracted from lidar datasets 
also differs with sub crown level information possible using UAS and low 
aircraft acquisitions through to plot or stand level summaries from 
higher altitude airborne and spaceborne platforms. Accuracy for the 
prediction of tree and stand level attributes typically differs as a function 
of lidar footprint size, data density, and coverage. 

Wulder et al. (2012a) reviewed the large-area characterization of 
forest resources with focus on the use of lidar technology as a sampling 
tool for large area estimation. In that review, issues such as sample 
design, statistical models, and estimation approaches were discussed. 
Looking forward, Wulder et al. (2012a) described that not all charac
terisations of large areas can be satisfied with sample-based statistical 
characterizations of a given population and that spatially-explicit 
mapping of vertical structure is often required. While examples were 
limited at the time of this earlier review, the authors indicated that lidar 
offered a valuable source of calibration and validation data to augment 
mapping efforts, and that the use of samples of lidar (known as “lidar 
plots”; Wulder et al., 2012b) would improve the ability to map bio
physical variables in an accurate, spatially-explicit, and economically- 
viable fashion. Synoptic optical imagery or Radio Detection and 
Ranging (RADAR) with appropriate spatial resolutions offer a means to 
model and map forest vertical structure from lidar plots (Wulder et al., 
2012b). Three dimensional characteristics can be modelled directly or 
forest structure attributes can be predicted, providing independent 
calibration and validation data for model extrapolations (Hudak et al., 
2002; Zald et al., 2016). Incorporating lidar plots could improve the 
accuracy of conventional optical image or RADAR-based estimates over 
larger areas (e.g., > 10 million ha). Wulder et al. (2012a) concluded that 
through the integration of spatially-exhaustive optical and spatially- 
limited samples of lidar data, forest attribute estimation in support of 
national and international reporting may be generated. Given the rapid 
progress in lidar remote sensing of forests, the earlier identified promise 
is now a reality, with sufficient literature examples enabling a focused 
review of spatial modelling of lidar captured forest structure over larger 
areas. 

1.4. Aim of the review 

The overall goal of this communication is to review the recent 
progress in extending airborne lidar-based metrics or lidar-derived 

forest attribute estimates to broader forested landscapes where spatially- 
exhaustive passive (e.g. optical) or active (RADAR) satellite data are 
available. To do so, we open with a conceptual description of the 
modelling process. We then describe the most established lidar-based 
metrics or lidar-derived forest attributes and the predictor variables 
used, in turn, to enable extension over the broader region of interest. 
Next, we describe the statistical approaches used to develop relation
ships between lidar-based response variables and wall-to-wall (i.e. 
spatially exhaustive) predictors, followed by an examination of accuracy 
assessment approaches for modelling techniques. We conclude by dis
cussing future directions, including the availability of new lidar-based 
response variables, advances in modelling approaches, and expanded 
capabilities for the assessment of forest change. 

2. Review of modelling studies to extend lidar-derived estimates 
over space 

2.1. Conceptual development 

The utilisation of multiple sources of remote sensing observations 
with field data is common in forest inventories as this combination offers 
cost effective estimation opportunities and capacity for regular update 
of observations over broad landscapes. The process of creating a wall-to- 
wall coverage from spatially-dispersed sample areas is generally referred 
to as interpolation, whilst extending from a limited number of samples 
to a larger spatial extent is extrapolation (Miller et al., 2004). In the 
remote sensing literature, additional terms such as “prediction” or 
“scaling up” have also been used. We reviewed papers that were pub
lished using any of these terms in association with the terms “lidar”, 
“laser scanning”, or “point cloud”, to inform this review. We only 
considered studies where lidar-based metrics (including point-derived 
metrics, such as mean height, height percentiles, variance, or propor
tion of returns; and full-waveform metrics such as Height of Median 
Energy (HOME) or lidar-derived forest attributes (such as estimates of 
volume, cover, and biomass) were extrapolated to new locations or, less 
commonly, different temporal periods, using models followed by some 
degree of validation. Those published studies that informed our review 
are shown in Table 2. 

From a statistical viewpoint, the use of remotely-sensed data to 
extend information to a different area or time period is a model-based 
approach (Saarela et al., 2016) based on the concept of a super popu
lation, with the super population defined as the innumerable population 
from which samples are drawn (Cassel et al., 1977), and in this paper 
would refer to the broader area across which estimates are to be 
extrapolated. Within this population of cells, a sample is acquired using 
lidar data, which could be collected in transect(s) or as a spatially- 
complete area over a smaller subset of the broader area of interest as 
shown by Bolton et al. (2018). Within that sample, a further refined 
subset will have ground-based field observations (i.e., from established 
field visited ground plots), which may include measurements of height, 
cover, biomass, volume and so on. Ultimately, the model-based survey at 
this finest scale aims for a population mean that corresponds to the 
expected mean of the super population (Ståhl et al., 2016). 

Saarela et al. (2016) outline key modelling approaches used with 
remotely sensed data: standard model-based inference, hybrid infer
ence, and model-based inference with hierarchical modelling. Re
lationships developed directly between the more broad spatially 
exhaustive observations and the ground-based field data are known as 
standard model-based inference, which has no assumption on the 
probabilities of inclusion of samples. In other words we only assume the 
samples come from the same super population and we can select from 
any acquisition program we wish, for example from a transect or profile 
and so on. In two phase model-based estimation, lidar data are available 
for a portion of the area, and models are developed to extrapolate the 
lidar based metrics or lidar derived forest attributes to the broader area. 
When lidar based metrics are extrapolated using two phase model-based 
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Table 2 
Studies forming the basis of the review.  

Author Location Lidar 
data used 

Lidar-based 
metric or 
lidar- 
derived 
forest 
attribute 

Method for 
lidar- 
derived 
attribute 
prediction 

Accuracy 
field vs 
lidar 

Predictors Method for 
extension 

Grid-cell 
size and 
spatial 
extent of 
study area 

Independent 
error 
assessment 

Accuracy of 
extended 
attributes 

Andersen 
et al. 
(2012) 

Interior Alaska, 
USA 

ALS Total 
Biomass 

Regression R2 = 0.74 Landsat TM/ 
ETM+ and 
PALSAR 

k-NN 
Imputation 

18 m 
2012 km2 

None Relative 
standard 
error 5.1% 

Badreldin 
and 
Sanchez- 
Azofeifa 
(2015) 

Alberta, Canada ALS AGB Multiple 
Linear 
Regression 

R2 = 0.74 Landsat 
ETM+

Multiple 
Linear 
Regression 

30 m 
70 km2 

None R2 = 0.78; 
RMSE = 44 
Mg/ha 

Bolton et al. 
(2020) 

Canada ALS Height, 
Basal Area 
and Net 
Volume 

Unknown Unknown Landsat TM/ 
ETM+

K-NN 
Imputation 
with random 
forest metric 

30 m 
3500km2h 

None R2 =

0.54–0.66; 
RMSE =
16–34% 

Cartus et al. 
(2012) 

Chile ALS Canopy 
height, 
Volume 

Random 
Forest 

R2 =

0.81–0.93 
ALOS PALSAR 
and Landsat 
ETM+

Random 
Forest 

Variable 
seg. Size 
6300 km2 

Independent R2 =

0.72–0.87; 
RMSE% =
15–25% 

Chi et al. 
(2015) 

China ICESat 
GLAS 

AGB Multiple 
Regression 

R2 =

0.63–0.90 
MODIS 
Reflectance, 
VCF and 
SRTM 
elevation 

Multiple 
Regression 

500 m 
9.6 M km2 

None R2 =

0.43–67; 
RMSE =
8–28 Mg/ 
ha− 1 

Hudak et al. 
(2002) 

Oregon USA ALS Maximum 
Canopy 
Height 

NA NA Landsat 
ETM+

Geostatistics 25 m 
200 km2 

None r = 0.86 
with 250 m 
point 
samples 

Hyde et al. 
(2006) 

Sierra Nevada 
USA 

LVIS Canopy 
Height, Max 
Height, Var 
Height, 
AGB 

Multiple 
Regression 

R2 =

0.59–0.76 
Landsat ETM/ 
X-Band SAR/ 
INSAR/ 
QuickBird 

Multiple 
Regression 

100 m 
600 km2 

None At 50% 
sample 
canopy 
height R2 =

0.41, AGB 
R2 = 0.35 

Kellndorfer 
et al. 
(2010) 

Eastern USA LVIS Lidar 
Waveform 
Height 

NA NA SRTM INSAR. 
Landsat ETM 
Land Cover 

Random 
Forest 

Seg. mean 
= 130 m 
110,000 
km2 

Independent r = 0.71 
RMSE = 4.4 
m 

Lefsky 
(2010) 

Global ICESat/ 
GLAS 

90th % 
LiDAR 
height 

NA NA MODIS Cubist 
regression 
model 

Seg. mean 
= 500 m 
Globe 

None R2 = 0.67, 
RMSE = 5.9 
m 

Li et al. 
(2016) 

Northwestern 
China 

ALS AGB Regression R2 = 0.78 ALOS PALSAR Regression/ 
Non 
parametric 
models 

30 m 
130 km2 

Independent R2 = 0.65 
RMSE =
28.3 Mg/ha 

Luther et al. 
(2019) 

Newfoundland, 
Canada 

ALS Height, 
Basal Area, 
Volume, 
and AGB 

Random 
Forest and 
Regression 

R2 =

0.9–0.95 
Sentinel 2/ 
ALOS PALSAR 

Random 
Forest/ 
Subset 
Regression 

20 m 
5600 km2 

Independent R2 =

0.56–0.84. 
RMSE 
16–36% 

Mahoney 
et al. 
(2018) 

Northwest 
Territories, 
Canada 

ALS and 
ICESat 
GLAS 

Height and 
Crown 
Closure 

Regression R2 =

0.63–0.89 
Landsat TM, 
Climate, 
Terrain, Land 
Cover 

k-NN 
Imputation 

30 m 
200,000 
km2 

Independent Heights 
within 7%, 
Canopy 
Cover 
within 11% 

Margolis 
et al., 
2015 

North America Airborne 
PALS 

AGB Multiple 
Linear 
Regression 

R2 =

0.58–0.8 
ICESat GLAS/ 
Land Cover 

Multiple 
Linear 
Regression 

25 m 
36 M km2 

Independent Relative 
difference 
7.0–44.7% 

Maselli et al. 
(2011) 

Central Italy ALS Volume Regression r = 0.62 Landsat 
ETM+

K-NN 
Imputation 

10 m, 
ANS 

Independent r = 0.85, 
RMSE =
59.2 m3/ha 

Matasci 
et al. 
(2018a) 

Boreal Forested 
ecosystems of 
Canada 

ALS Height, 
Height Var., 
Basal Area, 
Volume, 
and AGB. 

Regression R2 =

0.64–0.84 
Landsat TM/ 
ETM+

K-NN 
Imputation 
with random 
forest metric 

30 m 
>5.5 M 
km2 

Independent R2 =

0.38–0.76 
RMSE% =
18–38% 

McInerney 
et al. 
(2010) 

Scotland ALS Canopy 
Height 

Regression Mean 
deviation 
1.36 m 

Indian 
Resource 
Satellite - 1C 

K-NN 
Imputation 

20 m 
115 km2 

Independent RMSE =
28–31% 

Montesano 
et al. 
(2013) 

Maine, USA LVIS AGB Regression R2 = 0.82 ALOS PALSAR 
L-band SAR, 
Landsat 
ETM+

Random 
Forest 

Seg mean 
= 2.5 ha 
4030 km2 

None R2 = 0.62, 
RMSE = 41 
Mg/ha 

(continued on next page) 
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estimation, this is known as hybrid inference which is a mix of design- 
based and model-based estimation frameworks (Ståhl et al., 2016). 
Cases where lidar and field data are first used to model key forest at
tributes (i.e., creating surrogate plots or lidar-plots (Wulder et al., 
2012b)), and then using those predicted values for a given attribute as 
the response variable in a model, with which are then extrapolated to 
the spatially exhaustive layers as predictors, are referred to as an 
example of model-based inference with hierarchical modelling. All of 
the papers reviewed in this study fall within these last two estimation 
approaches, being examples of either hybrid inference or model-based 
inference with hierarchical modelling. An understanding of the under
lying approach is critical, because if model error at one stage of the 
process is ignored, then the overall uncertainty of the model is unknown, 
and it can be expected that the variance of the final estimates that are 
reported are likely to be substantially underestimated as a result of the 
propagation of error, which may be as much as 70% (Saarela et al., 
2016). 

2.2. Lidar-based response variables 

For clarity, we use the term lidar-based metrics to describe attributes 
of the full waveform, or the point cloud, which are to be extended over 
the broader spatial extent. In the case of full-waveform data, direct 
metrics from spaceborne sensors such as maximum full-waveform return 
height or proportions of return energy have been shown to correlate well 

with stand height (Lefsky, 2010). From small-footprint lidar point-cloud 
data, forest height and cover attributes have been found to be directly 
correlated with lidar-based metrics without any additional modelling. 
For example, Pascual et al. (2010) extrapolated summaries of airborne 
lidar-based metrics including the mean, median, and standard deviation 
of the ALS return heights derived from 30-m grid cells—corresponding 
to the dimensions of Landsat pixels— over a demonstration area in 
central Spain. Similarly, Stojanova et al. (2010) derived ALS estimates of 
forest height (mean lidar return height) and canopy cover (% returns >
1 m) for 25-m grid cells and extrapolated these metrics over a forested 
region in Slovenia. Matasci et al. (2018a) also extrapolated a number of 
lidar-based metrics including the mean, standard deviation, and 95th 
percentile as well as proportions of returns among others for > 5.5 M 
km2 of Canadian boreal forest. In these studies using small-footprint 
ALS, the error associated with differences between the lidar-based 
metric (such as height or proportion of returns) and the forest attri
bute of interest (e.g. stand height) is assumed to be negligible. Among 
the studies reviewed (Table 2), the most commonly extrapolated lidar- 
based metrics were height related, followed by the proportion of 
returns above a defined height, which is used as a surrogate for canopy 
cover. 

Lidar-based metrics are commonly used to model key forest attri
butes such as aboveground biomass (AGB) and volume and provide 
more refined and locally-calibrated forest attributes over an area of in
terest. In this review, we refer to these as lidar-derived forest attributes. 

Table 2 (continued ) 

Author Location Lidar 
data used 

Lidar-based 
metric or 
lidar- 
derived 
forest 
attribute 

Method for 
lidar- 
derived 
attribute 
prediction 

Accuracy 
field vs 
lidar 

Predictors Method for 
extension 

Grid-cell 
size and 
spatial 
extent of 
study area 

Independent 
error 
assessment 

Accuracy of 
extended 
attributes 

Pascual et al. 
(2010) 

Central Spain ALS Lidar Mean, 
Median and 
variance 

NA NA Landsat 
ETM+

Multiple 
Regression 

30 m 
1.28 km2 

None R2 =

0.62–0.66 

Puliti et al. 
(2018) 

Norway ALS, UAS Growing 
Stock 
Volume 

Regression R2 = 0.83 Sentinel-2 Regression; 
hierarchical 
model-based 
inference 

10 m 
73.30 km2 

None R2 = 0.30 
RMSE% =
37.47%, 

Saarela et al. 
(2016, 
2018) 

Finland ALS Growing 
Stock 
Volume 

Unknown Unknown Landsat Regression; 
hierarchical 
model-based 
inference 

16 m 
300 km2 

None R2 = 0.25, 
RMSE = 79 
m3/ha 

Simard et al. 
(2011) 

Global ICESat/ 
GLAS 

LiDAR 
Maximum 
Height 

NA NA MODIS Forest 
Type and 
Cover, 
Climate and 
Elevation 

Regression 
Tree - 
Random 
Forest 

1000 m 
60◦S-60◦N 

Independent R2 = 0.69, 
RMSE = 4.4 
m 

Stojanova 
et al. 
(2010) 

Slovenia ALS Height, 
Canopy 
Cover 

NA NA Landsat 
ETM+

9 machine 
learning 
algorithms 

25 m 
722 km2 

None Height R2 =

0.90; RMSE 
= 2.1 m. 
CC R2 =

0.88, RMSE 
14% 

Sun et al. 
(2011) 

Maine, USA LVIS AGB Linear 
Regression 

R2 = 0.71 ALOS PALSAR 
L-band SAR 

Linear 
Regression 

75 m 
100 km2 

None R2 =

0.63–0.71, 
RMSE =
28.2 Mg/ha 

Urbazaev 
et al., 
2018 

Mexico ALS AGB Regression R2 = 0.68 ALOS PALSAR 
L-band SAR, 
Landsat 
optical data 
and SRTM 
Terrain 

Cubist 
Machine 
Learning 

100 m 
650,000 
km2 

Independent R2 = 0.37, 
RMSE =
34.5 m3/ha 

Acronyms used: Aboveground Biomass (AGB); Airborne Laser Scanner (ALS); Advanced Land Observing Satellite (ALOS); Airborne LVIS instrument (Air LVIS), 
Enhanced Thematic Mapper (ETM+); Geoscience Laser Altimeter System (GLAS); Ice, Cloud and Land Elevation Satellite (ICESat); Interferometric Synthetic Aperture 
Radar (InSAR); Land, Vegetation, and Ice Sensor (LVIS); Moderate Resolution Imaging Spectroradiometer (MODIS); Segment size (Seg Size), Shuttle RADAR Terrain 
Mission (SRTM), Phased Array Type L-band Synthetic Aperture Radar (PALSAR); Portable Airborne Laser System (PALS); Root Mean Square Error (RMSE); Synthetic 
Aperture Radar (SAR); Thematic Mapper (TM); Vegetation Continuous Field (VCF). For the extent of the area of the prediction ANS: Area not specified. Independent 
error assessment is the use of independent field data, not used in either the lidar-based metric or lidar-derived forest attribute estimation or for the imputation. 
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This approach forms a model-based inference with hierarchical model
ling approach and has been commonly applied, especially with small- 
footprint airborne lidar observations. Using an Area-Based Approach 
(ABA; Næsset, 2002), a series of grid-based metrics are produced (such 
as percentiles of point heights, or proportions of returns in different 
height strata) for a nominal grid resolution, corresponding to the in
ventory plot size. Many studies have used grid cells with an area of 400 
m2 (20 × 20 m) to match the extent of field-measured samples (i.e. 
circular plots, radius = 11.28 m; White et al., 2013). Grid cell size is also 
determined with reference to the local forest structural conditions, 
aiming to capture a set of trees that relates well to the structural char
acteristics present and minimizes error due to incomplete capture of 
large trees or edge effects (Frazer et al., 2011). From these statistical 
summaries of the point cloud data within the regularised grid, forest 
attributes are predicted. In a profiling context, returns from a portable 
laser profiler (PALS), which produces single lidar profiles along a flight 
line (Margolis et al., 2015; Nelson et al., 2009; Boudreau et al., 2008) 
can be used to develop models between individual profiles and field 
estimated AGB. Once predicted for the extent of the individual profiles, 
new models can be developed between these predictions and spatially 
comprehensive satellite data and ancillary information (e.g., terrain, 
climate), therefore allowing characterization of AGB over the broader 
landscape. 

The most common lidar-derived forest attributes in the reviewed 
studies were height, volume, and AGB, either calculated using an ABA 
with airborne lidar metrics such as (Matasci et al., 2018a; Matasci et al., 
2018b) and Luther et al. (2019) or modelled as a function of a waveform 
height, for example, Chi et al. (2015), who used ICESat GLAS profiles. 
Canopy cover and basal area were also commonly modelled followed by 
limited studies that extrapolated height complexity. (Fig. 1). 

2.3. Predictor variables and area of analysis 

In general, over three-quarters of the studies listed in Table 2 have 
extrapolated lidar-based metrics or lidar-derived forest attributes at 
scales of hundreds of thousands to millions of hectares, often defined as 
important ecological regions of interest (e.g., Canadian boreal, Brazilian 
amazon) or to apply to the total area of individual countries (such as 
China, Mexico or Chile). The broad extents over which forest structural 
estimates can be derived highlights the utility of the reviewed ap
proaches and demonstrates a capacity for mapping over regional to 
global extents. The products generated are spatially explicit, applicable 

to all treed areas within a defined study region, and typically extend 
beyond the coverage feasible using airborne lidar data alone. The choice 
of geospatial predictors with which to extend lidar-based metrics or 
lidar-derived forest attributes across a landscape is a key methodological 
design decision. Studies have demonstrated the use of a wide range of 
predictor variables and often use spatial availability, cost, access, date of 
acquisition or development, and spatial resolution, as deciding factors 
for predictor incorporation. Below, we describe the three primary 
sources of predictor variables used in the studies: optical satellite data, 
RADAR data, and environmental data, specifically terrain and climate. 

2.3.1. Optical satellite data 
Of the studies reviewed (Table 2), one of the most common datasets 

used to extrapolate lidar-based metrics or lidar-derived forest attributes 
over large areas was optical imagery acquired from satellites; specif
ically the Landsat series of satellites. Landsat instruments have been 
acquiring multispectral data continuously from 1972 and since 1982 at 
30-m spatial resolution (Goward et al., 2006). With the opening of the 
Landsat archive in 2008 (Wulder et al., 2012c), along with advances in 
high performance computing (Wulder and Coops, 2014), cloud masking 
(Zhu and Woodcock, 2014) and surface reflectance generation (Masek 
et al., 2006), land cover and condition characterization have become 
streamlined and more straightforward than previously possible (Mag
nussen et al., 2018). As a result, Landsat spectral bands, indices (e.g. 
Normalised Difference Vegetation Index (NDVI), Enhanced Vegetation 
Index (EVI)), as well as the tasseled cap transformation components 
(wetness, brightness, greenness), offer significant predictive capacity for 
extension over larger areas, particularly when finer scale forest structure 
predictions are needed. 

Hudak et al. (2002) helped to pioneer the use of optical satellite 
imagery to extrapolate ALS observations over wide areas. Their study, 
which focused on managed forests of southwest Oregon, extrapolated 
small-footprint lidar estimates of canopy height using a single Landsat 
image acquired in 1999. The authors found that the Landsat shortwave 
infrared (SWIR) (ETM+, band 7) was the most useful predictor from a 
combination of raw bands and indices. Likewise, Badreldin and Sanchez- 
Azofeifa (2015) utilised a single Landsat scene to spatially extrapolate 
canopy height and AGB estimates in regenerating stands in Alberta, 
Canada. Results were then temporally extrapolated to selected annual 
Landsat images to examine changes in height and biomass between 1999 
and 2011. 

As availability of Landsat imagery continued to improve, studies 
began to incorporate multi-temporal Landsat images as predictors. The 
addition of temporal depth and change variables to the list of potential 
predictors has demonstrated improved modelling outcomes. Pascual 
et al. (2010), for example, utilised three Landsat summer images 
transformed using ratios and tasseled cap transformation over a two- 
year period to develop regression relationships with a lidar-derived 
canopy height model. They found SWIR-derived indices (wetness, Nor
malised Difference Moisture Index and Normalised Burn Ratio) to be the 
best predictors of height over pine forests in central Spain. Pitkänen and 
Käyhkö (2017) utilised NDVI derived from six Landsat images acquired 
in different summers as predictors to estimate the encroachment of trees 
into a semi-natural grassland mosaic in Finland. They found that high 
spatial resolution orthophotos outperformed Landsat imagery with the 
Landsat data having a relatively minor contribution for prediction, 
recognising that any temporal trend in grassland growth would benefit 
from denser temporal resolution satellite data. Beyond using a small 
number of dates, more recent studies have taken advantage of full time 
series Landsat reflectance to extrapolate across multiple years, capital
ising on the fact that time series reflectance data is better at explaining 
variability in forest attributes than single year data (Pflugmacher et al., 
2012). Bolton et al. (2018) and Matasci et al. (2018a), for example, used 
30- and 33-year time series of annual Landsat best-available-pixel (BAP) 
composite images (White et al., 2014) and their associated disturbance 
history generated using the Composite-to-Change (C2C) approach 

Fig. 1. Percentage of times various forest attributes are derived from lidar 
(from both air and spaceborne platforms) and subsequently extended over the 
landscape as captured by the reviewed studies of Table 2. 
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(Hermosilla et al., 2017; Hermosilla et al., 2016). Bolton et al. (2018) 
found that Landsat time series variables (such as 30-year spectral trend 
data) were important predictors in areas that had been recently 
disturbed such as forested sites experiencing fire or harvest. In these 
areas, extension of lidar-derived attributes such as volume were over
estimated in the absence of time series predictors. Bolton et al. (2018) 
also found that increasing the length of the time series to the full 30 
years of the Landsat 30-m record improved accuracy compared to single 
year imagery. Further research by Bolton et al. (2020) demonstrated 
that a single optimal time series length is not necessarily determined by 
data availability (i.e., 30 years versus 10 years) and should be assessed 
on a case by case basis. The authors mention, however, that longer time 
series of Landsat data (>15 years) consistently produced more accurate 
estimates of forest attributes across Canada in a number of nationally- 
representative ecosystems. These improvements were attributed to the 
fact that single date Landsat imagery predictors in closed canopy stands 
are likely less sensitive to structural differences due to spectral satura
tion than predictor variables that incorporate long term spectral 
information. 

Compared to Landsat, imagery from the Sentinel2 Multi Spectral 
Instrument (MSI) provides higher spatial resolution from 10 to 20 m and 
additional spectral bands (including bands focused on the red edge), 
which could help improve the model accuracies. Luther et al. (2019) 
utilised four mosaicked Sentinel2 scenes and derived predictor variables 
from the 10-m and 20-m spatial resolution bands to extrapolate lidar- 
based predictions of height, basal area, volume and AGB and found 
that extrapolation using the lidar-derived attributes decreased predic
tion errors by 8–28% compared with models developed directly from 
ground plots using a standard model-based inference approach. Li et al. 
(2015) utilised spectral and textural metrics from a single SPOT-6 image 
at 6-m multispectral, and 1.5-m panchromatic, spatial resolution to 
extrapolate lidar-derived canopy cover and AGB with relative RMSEs <
16.5% for a temperate forest in northwest China. 

At a broader spatial scale, Moderate Resolution Imaging Spectror
adiometer (MODIS) imagery has also been used effectively for extrap
olating both lidar metrics and lidar-derived forest attributes for broader 
scale mapping and monitoring purposes. The broader spatial resolution 
of the MODIS spectral bands facilitates the use of these data for more 
regional and global scales. Lefsky (2010) notably extrapolated GLAS- 
derived vegetation heights using MODIS data that was spatially 
segmented using an object-based classifier with land cover. Lorey’s 
height estimates were then extrapolated globally over all forested seg
ments with a grid cell size of 500 m. Simard et al. (2011) used the 
Random Forests (RF) regression tree algorithm to extrapolate GLAS- 
based height estimates using seven globally-available predictors 
including climate, elevation, MODIS-based percent tree cover, and 
protection status to produce a 30 arc sec global height product. Chi et al. 
(2015) utilised MODIS 16 day, 500-m spatial resolution reflectance data 
products for 2006 as well as spectral indices and MODIS vegetation 
continuous field (VCF) and land cover data (that were later analysed 
using a principal component analysis) to extrapolate GLAS-derived AGB 
estimates across China in a number of regional ecozones. The authors 
concluded that the MODIS image data were useful for scaling up forest 
AGB from plots to subcontinental scales. At the national level, they 
found RMSE of less than 20% for over 50% of the forested provinces in 
China depending on their location and the amount of forest. 

2.3.2. Radar 
Synthetic Aperture Radar (SAR) and Interferometric SAR (InSAR) 

have also been used to extrapolate lidar-derived attributes. Both of these 
active remote sensing technologies have been useful for mapping 
biomass and forest structure depending on wavelength, particularly in 
areas that historically have lacked observations due to persistent cloud 
cover. In terms of SAR data, L band SAR is the most commonly used in 
these studies and is available as a global coverage from the Phased Array 
type L band Synthetic Aperture Radar (PALSAR) system onboard the 

Japanese Advanced Land Observing satellite (ALOS). L band SAR, with 
its longer wavelength, has been shown to be more sensitive to changes in 
biomass (Coops, 2002), especially at higher amounts of biomass, than 
the shorter wavelength C band SAR data more commonly available from 
RADARSAT, ERS1 and Sentinel1. X band RADAR has also been used, 
acquired from the Tandem X mission, which provides elevation infor
mation as well as insights into the amount (and height) of forest vege
tation when compared to conventionally derived digital elevation 
models (Hyde et al., 2006). With moderate resolution pixel sizes, most of 
these SAR datasets offer complementary data to optical sensor as pre
dictors for extrapolation. 

As part of a simulation experiment for the proposed DESDynI 
(Deformation, Ecosystem Structure, and Dynamics of Ice) mission, Sun 
et al. (2011) modelled AGB over a 10 km2 area as a function of lidar- 
based metrics describing the 50th and 75th height of returned energy 
from LVIS data. These data were then regressed to extrapolate the pre
dicted AGB to PALSAR backscatter data acquired in 2007 with a spatial 
resolution between 3.5 and 9 m. All four SAR polarizations as well as 
total power of the SAR images, and coherence, were used to extrapolate 
the attributes derived from LVIS data. Results suggested that the multi 
channel SAR data explained more than 70% of the variation of the AGB 
information contained in the LVIS estimates. Similarly Li et al. (2016) 
utilised ALS data and PALSAR backscatter from a single image acquired 
in 2008 and texture variables over the Dayekou area, in Northwest 
China. Two combined products, namely backscatter ratio (Ratio) and 
difference (Diff), were generated based on the dual polarization PALSAR 
backscatter. From these products, AGB was predicted with an R2 = 0.62 
and an RMSE of 32 Mg/ha. 

Kellndorfer et al. (2010) utilised the difference between Shuttle 
Radar Topography Mission (SRTM) derived ground elevation and con
ventional topographic mapping terrain models to derive the scattering 
phase center height, which has been shown to be correlated with the 
amount of vegetation present. Using this residual layer as well as slope 
and aspect information from terrain models, they segmented the resid
ual images spatially over the entire area and then populated the seg
ments with LVIS-derived heights. Montesano et al. (2013) utilised UAV- 
based L Band SAR and optical imagery to extrapolate LVIS estimates of 
AGB (as estimated by LVIS height) over a forest area in the eastern US. 
The combination of SAR and optical data proved to be the best model to 
predict AGB over the latter area. Cartus et al. (2012) utilised multi 
temporal ALOS PALSAR intensities and coherence as well as Landsat 
imagery to extrapolate stand level canopy height and growing stock 
volume across selected forest plantations in Chile. In total, 24 RADAR 
and 3 Landsat images were utilised. The HV polarization was found to be 
the most important predictor in the prediction depending on acquisition 
date. Validation indicated that over 80% of the variance was explained 
for LVIS extrapolated height across the plantations. 

Lastly, Hyde et al. (2006) utilised LVIS canopy heights over the Sierra 
Nevada’s in the United States and utilised a combination of Landsat with 
additional high spatial resolution optical texture metrics (QuickBird) 
and SAR combinations as predictors. Results indicated that comple
mentary datasets (e.g. passive and active) produced more accurate 
predictions than single sensors alone, highlighting the potential impor
tance of using combined predictor variables rather than relying on one 
dataset for the extension of the LVIS heights. 

2.3.3. Terrain and climate 
Terrain information has also been used widely for the extension of 

lidar-based metrics or lidar-derived attributes, recognising that varia
tions in terrain can be a driver for changes in local meteorology, water 
access, and in turn, vegetation growth and structure. Globally, the 
increased use of the Advanced Spaceborne Thermal Emission and 
Reflection Radiometer (ASTER) digital elevation model (GDEM V2) is 
evident, allowing the generation of terrain related predictors such as 
elevation, slope, aspect, terrain wetness and solar radiation trans
formations. Bolton et al. (2018) and Matasci et al. (2018a) both found 
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that elevation was one of the most significant variables in the prediction 
models, supporting the use of terrain related predictors. This is likely to 
be the case when the larger area covers elevation gradients resulting in 
changes in forest type or productivity (Bolton et al., 2018). In addition to 
terrain variables, Simard et al. (2011) in their global extrapolation of 
ICESat GLAS observations, utilised a number of climatic layers including 
precipitation, temperature, and seasonality, recognising the role cli
matic factors play on vegetation structure and growth at broad spatial 
scales. 

2.4. Statistical approaches 

Approaches to build relationships between lidar-based response 
variables and the satellite or ancillary predictor variables range in 
complexity, computing power requirements, data needs, and philoso
phies. Approaches can generally be divided into two categories: para
metric and non-parametric. The former generally includes statistical 
regression methods, such as stepwise regression, geographically- 
weighted regression (GWR), and generalised linear models. In many 
cases however, the assumptions associated with the parametric ap
proaches are not met with the data inputs commonly used in the 
modelling of lidar attributes, and predictors may include both categor
ical and continuous predictors. As a result, non-parametric approaches, 
including machine learning methods such as decision trees and RF, and 
imputation in the form of nearest neighbour (NN) have emerged as 
common approaches to obtain spatially-exhaustive estimates, as shown 
in Table 2. Both parametric and non-parametric approaches have ad
vantages and disadvantages associated with them, as detailed in White 
et al. (2017) and as described below. 

2.4.1. Regression 
Pascual et al. (2010) utilised regression-based methods to build re

lationships between point cloud derived canopy height and a range of 
predictor variables with proportion of explained variance (R2) from 0.15 
to 0.70 depending on the predictor variables used. The authors flagged 
concerns associated with applying regression-based approaches 
including issues with residuals. The high number of potential predictors 
in their case was dealt with by utilising principal component analysis to 
reduce the dimensionality of Landsat spectral bands and ratios. Sun et al. 
(2011) also utilised regression-based approaches to model LVIS-derived 
AGB with SAR backscatter at 75-m spatial resolution. R2 was over 0.70 
using regression, and with other combinations of LVIS height metrics 
explaining up to 77% of the variance in AGB. . Despite their common 
use, regression models carry assumptions regarding data distributions, 
variance structures, and the independence of observations that are 
challenging to meet with many predictor data sets. Hudak et al. (2002) 
highlighted consistent estimation bias when applying regression ap
proaches with respect to height by overestimating short stands and 
underestimating taller stands, indicating the tendency to underestimate 
the slope of a regression line if there is unmeasured variability associ
ated with independent variables. 

2.4.2. Imputation 
One non-parametric approach to building models to relate lidar- 

based and lidar-derived attributes to predictor variables is through NN 
imputation. NN imputation methods are common when modelling forest 
plot inventory data as shown by Makela and Pekkarinen (2004), 
Tomppo et al. (2008) and Beaudoin et al. (2014), and are generally 
applied to fill data gaps found in the predictors (Zald et al., 2016). While 
regression-based methods predict new attributes that are missing, 
imputation “fills” in missing data by substituting values from common 
observations. A key attraction of imputation is that it is multivariate, 
non-parametric, and distribution free (Eskelson et al., 2009), seeking the 
single most representative plot whose values are to be imputed at a given 
location. One of the key advantages of the using NN is the ability to 
predict multiple attributes simultaneously. The search criteria to 

establish the best neighbour can be undertaken in a number of ways and 
can utilise an array of similarity measures (Hudak et al., 2008). Once the 
nearest neighbour is located, the training sample identifier is returned 
and its response variables assigned to the new sample to be predicted. 
One of the main characteristics of imputation is the preservation of the 
covariance structure among the response variables when the selected 
neighbour is one (Matasci et al., 2018b) as there is no averaging of the 
data in the prediction, rather original observations are reallocated over 
the extrapolation surface. However, there are trade offs in terms of ac
curacy and values of the selected number of neighbours (Eskelson et al., 
2009). 

Selection of predictors for use in imputation is particularly impor
tant, since these predictors are required to potentially characterize a 
suite of attributes, as well as being used for selection of the best 
neighbour (White et al., 2017). One approach to variable selection is 
that of Zald et al. (2016), whereby ALS metrics were used as response 
variables for the imputation, with derived attributes such as biomass and 
volume being transferred passively as auxiliary data. In this scenario, 
predictor variables were thus selected to characterize variability in the 
selected lidar metrics used as response variables. Packalén et al. (2012) 
summarise various methods available for selecting appropriate pre
dictors for imputation. Another key consideration for imputation is the 
representativeness of the response data. In the context considered 
herein, it is the representativeness of the lidar plot samples used for the 
spatially-exhaustive predictions. These lidar plots must represent the full 
range of variability in forest structure (or the attribute of interest) on the 
landscape, because imputation cannot extrapolate beyond the range of 
values found in the response variables and will be prone to either under 
or overestimation if the response data is not sufficiently representative. 

Bolton et al. (2018) applied a NN imputation method to extrapolate a 
range of lidar-derived attributes across 3500 km2 of interior forest in 
British Columbia, Canada, using Landsat time series metrics. They found 
that Landsat imputed attributes correlated strongly with lidar-based 
estimates with R2 values of 62 to 75%. Matasci et al. (2018a) also uti
lised a NN method to map a range of lidar-based metrics and lidar- 
derived forest attributes across the 5.5 M km2 boreal forest of Canada. 
Lidar-based metrics and derived attributes were extracted from 
>25,000-km of transects collected across the boreal, and NN was used to 
extrapolate 10 forest structural attributes. Validation of the models 
indicated explained variance between 49 and 61% for the key variables 
such as canopy cover, stand height, basal area, stem volume, and AGB. 
Additionally, elevation, and geographic coordinates were key sources of 
information in the imputation. 

2.4.3. Machine learning 
The appeal of machine learning approaches in ecology has grown 

significantly in the past decade due to an increase in open access data, 
software tools, and computing power. In these approaches, datasets are 
mined efficiently by algorithms, which seek to build rules and decisions 
to model the required attribute. Decision trees and RF methods are 
common in ecology due to key features including an ability to deal with 
collinear datasets, to exclude insignificant variables, and to allow for 
asymmetrical distribution of samples (De’ath, 2002). Pitkänen and 
Käyhkö (2017) utilised RF methods to develop models between ALS 
attributes and Landsat predictors over grassland in Finland on the 
assumption that RF had a low tendency to overfit, was simple to 
implement with few parameters, was efficient to run with large datasets, 
and results were easily evaluated using error rates and measures of 
variable importance. They predicted three classes of grassland/wood
land condition with a categorical model output and classification ac
curacies of over 90%. Kellndorfer et al. (2010) implemented a RF 
approach to impute LVIS height using SRTM residuals over a forest area 
in the Eastern US. Results indicated that validation using forest plot 
information outside the LVIS profiles was successful, with the propor
tion of explained variance >0.70 and an RMSE of 13% of maximum 
height. Luther et al. (2019) compared RF and regression methods for 

N.C. Coops et al.                                                                                                                                                                                                                                



Remote Sensing of Environment 260 (2021) 112477

9

extrapolating lidar-derived predictions of height, basal area, volume and 
AGB using a combination of optical, RADAR and terrain predictor var
iables and found that RF models performed significantly better than 
regression models for extrapolating all attributes (p < 0.05). Addition
ally, the RF predictions using model-based inference with hierarchical 
modelling resulted in decreased prediction errors of 8–28% when 
compared with standard model-based inference linking the spatially- 
exhaustive observations directly with ground-based field data. As RF 
model frameworks have become more common, so too has the variety of 
methods to compute the distance of similarity metric within the NN 
approaches. As shown in Table 2, more recent studies utilise a NN 
imputation framework with a RF-estimated distance metric. In these 
cases, the RF-based kNN imputation is based on a non-euclidean dis
tance measure derived by running a target observation through RF 
models trained from reference observations. The proximity of a target to 
a reference observation is then assessed by calculating the proportion of 
RF trees where they share the same final node (Crookston and Finley, 
2008). In the case of multiple response variables, RF models are built for 
each response variables but proximity measures are combined in order 
to find the k most similar observations considering all response variables 
simultaneously. RF-based NN imputation is therefore a multivariate 
approach, which also has the advantages of being non-parametric and 
able to handle both continuous and categorical response variables 
(Crookston and Finley, 2008; Eskelson et al., 2009; Queinnec et al., 
2020). 

2.4.4. Geospatial statistics 
Exploiting the inherent spatial nature of lidar-derived attributes and 

predictors can provide additional insights and strengths into developed 
relationships. Geostatistical approaches, such as kriging methods, pro
vide techniques to interpolate observations over the landscape using a 
mathematical model that incorporates spatial variance into the overall 
spatial variance in a dataset (Webster, 1985). Ordinary kriging, the most 
common form (Krige, 1966), is a spatial modelling technique that pro
vides optimal and unbiased estimates of unknown values from sample 
data (Curran and Atkinson, 1998). Cokriging extends ordinary krigging 
to account for more predictors and is more common when one variable 
(i.e. AGB) is under sampled compared to spatially-exhaustive predictors. 
In co-kriging, the predictor variable is calculated using the autocorre
lation of the primary variable; however, co-kriging also exploits the 
cross-correlation of the primary and secondary variables (Tsui et al., 
2013). Lastly, regression kriging is a hybrid approach that combines a 
regression model with kriging of the regression residuals (Goovaerts, 
1997). Hudak et al. (2002) evaluated five spatial and a-spatial methods 
to integrate ALS and Landsat ETM datasets and provided unique insights 
into the most appropriate methods that should be applied with this type 
of data for estimating and mapping forest canopy height. Results suggest 
that the kriging and co-kriging approaches produced less biased results 
than regression, and that co-kriging methods were preferable as they 
preserved vegetation patterns akin to regression, yet improved upon 
estimation accuracies from regression models alone. Li et al. (2015) 
examined two types of kriging to estimate lidar-derived canopy cover 
and AGB. They found that regression kriging showed the least error for 
both ALS attributes with RMSE values of 11.2% and 17.3%, respectively. 
The observed spatial patterns after the interpolation exhibited more 
consistent variation compared to simple regression. In general the 
regression kriging was superior because it preserved spatial patterns and 
improved global and local estimation accuracy. 

2.5. Accuracy assessment approaches 

Once the extension of the attributes over the landscape has been 
undertaken, a critical step is to assess the correspondence between what 
was predicted and what was observed (Miller et al., 2004). Authors 
highlight difficulty in obtaining suitable accuracy assessment data with 
which to independently assess the accuracy of the predictions. This is 

partly because of the complexity of the processes impacting the error 
budget in final outputs. Generally, assessment of the accuracy of the 
models should be undertaken using data not used in formulating the 
original lidar-based prediction models or the spatially-exhaustive 
models. However, forest plot data with which to validate models are 
often in short supply and as a result are then utilised in the model 
development rather than segregated for independent model validation 
in order to explain the most variance and hence build the best models 
with the available data. An assumption that any lidar-based or lidar- 
derived forest attribute is estimated without error is the main short
coming in many of these approaches. Thus, although lidar-based and 
lidar-derived predictions are assumed to be error free, this is known not 
to be the case. There are biases associated with the acquisition param
eters (e.g., aircraft altitude and speed, sensor, scan angle and frequency, 
flight line overlap) of small-footprint lidar data and lidar sampling 
procedures associated with the large-footprint waveform data. More
over, canopy architecture (deciduous vs coniferous, high and low can
opy cover, stand heterogeneity) is also known to influence the biases 
observed in lidar observations of height, as well as time of year (leaf-on 
vs leaf-off conditions). Neigh et al. (2013) also discuss potential errors 
associated with allometry, which is often used to derive estimates of 
volume and biomass (Réjou-Méchain et al., 2019), and geolocation error 
between ground plots and lidar observations (Frazer et al., 2011). In the 
case of lidar-derived forest attributes, regression is most commonly used 
to link lidar metrics to forest attributes producing accuracy estimates as 
shown by White et al. (2013); however, there is little consensus of what 
is a sufficiently-accurate model to warrant applying over broader areas. 
Metrics that explain the limits of agreement (LoA; Bland and Altman, 
1986) have also been proposed as more appropriate indicators of suc
cess, in addition to standard regression-based accuracies. Extrapolating 
these lidar-based or lidar-derived estimates to the broader area also 
introduces biases and errors in the resulting predictions making accu
racy assessment difficult. It has been clearly demonstrated that when 
forest attributes are derived from lidar metrics using an ABA approach, 
the variance of the final estimate is underestimated when the predictions 
are used as observed data (Saarela et al., 2016; Holm et al., 2017; 
Urbazaev et al., 2018). 

As highlighted in Table 2, only half of the studies used independent 
information on forest attributes to verify the prediction results. While 
use of independent validation data is the ideal scenario, these accuracy 
estimates may also be biased, depending on the location, and the 
number and age of the data being used to independently validate the 
spatially-exhaustive predictions. In addition to independent error 
assessment, a number of studies have quantified the propagation of error 
through the process. Saarela et al. (2016) proposed a new estimator 
accounting for the uncertainty of the intermediate model when ordinary 
least square regression models are developed for both the forest attri
bute estimation and its extrapolation. When modelling is undertaken 
using machine learning approaches, accuracy is commonly assessed 
with cross validation, by dividing the dataset into a series of subsets and 
then repeating the model development phase on a limited set of subsets, 
testing the accuracy of the model on the remaining subsets. This process 
is repeated a number of times, randomly drawing samples within each 
subset. This produces multiple assessments of the model error that can 
then be averaged to produce overall model performance statistics. 
Imputation-based approaches produce complex error structures; how
ever, the widespread use of these approaches has resulted in the 
formulation of uncertainty using recently-developed variance estimators 
for imputation predictions (McRoberts et al., 2018). These variance es
timators require significant computation resources to compute and may 
be limiting when extrapolating over large areas (Zald et al., 2016). 
Although a number of the aforementioned studies (e.g., Kangas, 1999; 
Frazer et al., 2011; Melo et al., 2018; Wang et al., 2019) provide some 
form of accuracy assessment, either through leave-one-out cross-vali
dation or out of bag errors, independent validation or averaging pre
dicted attributes over larger areas and making comparisons with other 
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sources of available reporting statistics (e.g., jurisdictional reporting 
statistics), less effort has been expended to analyze the sources of error 
and account for how they propagate to the overall uncertainty of the 
extrapolated product. Uncertainty estimation of broad area predictions 
is not straightforward, namely due to the random variation that arises 
from multiple sources of error: the field observations, the sampling, and 
the model (Phillips et al., 2000; Melo et al., 2018). Quantifying these 
errors through error propagation can provide insights into those sources 
of error that need to be addressed in order to minimize the uncertainty of 
the final predictions. 

An alternate accuracy assessment approach was presented by Holm 
et al. (2017). Instead of developing models to extend predictions from an 
initial lidar-based forest attribute model, the authors predict the lidar- 
based metrics that are used in the first modelling step as functions of 
the broader coverage variables. For example, models were developed to 
predict the 95th percentile of return heights and the proportion of 
returns above 2 m, and both attributes were used in the models to pre
dict biomass directly with lidar. Holm et al. (2017) showed that this 
approach resulted in all of the initial lidar point cloud and spatially- 
exhaustive variables being considered in the same equation and there
fore all of the variances and covariances of both models can be taken 
into account. The authors demonstrate that inclusion of the lidar-based 
prediction model error is significant and important, and when this error 
is explicitly accounted for in the modelling, the final model’s standard 
error increased four times compared to ignoring the first stage model 
error. With respect to model error calculations, Saarela et al. (2016) and 
Holm et al. (2017) both received the same estimates and model vari
ances if they use the same list of predictor variables in the two models 
that relate the 3rd-2nd phase (e.g., ground-ALS) and 2nd-1st phase (e.g., 
ALS-satellite) (Holm et al., 2017). Both of these approaches are available 
in an existing R package available for download (Saarela et al., 2020a). 
Urbazaev et al. (2018) demonstrated a method for estimating the un
certainties at the pixel level using Monte Carlo simulations, estimating 
the total error in the final estimate of AGB by repeating the modelling 
steps 100 times, starting with a set of 100 field-estimated AGB values 
that included a randomly distributed error. 

For the review of studies in Table 2, when accuracies are reported it 
is most often as the coefficient of determination (R2), which is the pro
portion of variance explained by the model produced using regression 
methods. Mean error (ME), mean absolute error (MAE), and Root Mean 
Square Error (RMSE) in either absolute units or as proportions of the 
mean response (observed) value (RMSE%) are also often provided when 
independent validation is used to quantity the degree of correspondence 
between the observed vs predicted values. 

Fig. 2 provides a summary of the reported accuracies of the reviewed 
studies in Table 2. Height and AGB are the most common attributes 
extended across large areas, and these attributes also have the widest 

range in accuracies. The variance explained in predictions of forest 
height ranged from R2 = 0.38 to 0.90, whereas for volume, R2 ranged 
from 0.1 to 0.7 and AGB R2 ranged from 0.35 to 0.78. In contrast, basal 
area and cover, while less common, are more consistent in their accu
racies with R2 ranging from 0.64 to 0.66 and 0.77 to 0.88, respectively. 
For RMSE, height errors ranged from 2 to 6 m, volume errors ranged 
from 60 to 87 m3/ha and biomass error was between 28 and 44 Mg/ha. 
RMSE% ranged from 12 to 34% for height, 22 to 34% for volume and 23 
to 29% for basal area. 

In recognising that accuracy assessment can be challenging, a num
ber of authors examined the predicted broad scale patterns and assessed 
the magnitude of predictions by comparing results with other publicly- 
available datasets, rather than providing an independent validation. For 
example, Chi et al. (2015) compared the models of AGB aspatially across 
a number of Chinese forest-dominated provinces. This allowed AGB 
estimates to be rolled up to province-wide estimates and then compared 
to national reporting statistics. 

3. Current trends in modelling studies 

3.1. New lidar-based response and predictor variables 

In recent years we have seen rapidly increasing in both spatial 
coverage, and point density aircraft-based small-footprint datasets. 
Recent technological advances for example have led to the development 
of single photon sensitive detectors. While typical discrete or full- 
waveform airborne instruments require hundreds to thousands of pho
tons to trigger a return, single-photon sensors can detect individual 
backscattered photons and lower energy pulses, and can be operated at 
higher altitudes (Degnan, 2016; Swatantran et al., 2016). Single-photon 
lidar (SPL), for example, uses a very short pulse of green (532 nm) laser 
light that is split into a 10 × 10 grid of beamlets with a diffractive optical 
element (Degnan, 2016). Each beamlet has a low divergence of 0.08 
mrad that results in non-overlapping footprints on the ground and is 
received by an individual detector aligned along its path (Mandlburger 
et al., 2019). The system configuration allows an increase in both areal 
coverage and point density and a reduction in flying time and associated 
costs compared to conventional airborne small-footprint systems (Swa
tantran et al., 2016). The instrument is inherently sensitive to back
ground solar noise when operated in daylight conditions, which requires 
subsequent noise filtering steps that could affect the accuracy of data. 
Moreover, the conventional intensity measure of the returns, which can 
be used for tree species characterization, cannot be derived similarly 
from single photon detection events. SPL still provides a proxy for in
tensity based on the cumulative count of detected photons although its 
range is limited (Hartzell et al., 2018). Nevertheless, heightened point 
densities of single photon lidar could enable the extraction of new types 

Fig. 2. Distribution of a) R2, b) RMSE, and c) RMSE% of the extended forest attribute predictions (H: height, HC: height complexity, V: volume, AGB: aboveground 
biomass, BA: basal area, C: canopy cover) for the studies reported in Table 2. 
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of point cloud metrics and the estimation of new forest attributes 
(Wästlund et al., 2018). 

In 2019, two new satellite missions began to release data to the 
scientific community, significantly improving the availability of satellite 
lidar observations at global or near global scales. In 2018, NASA 
launched ICESat-2, a laser altimeter satellite designed to quantify ice 
sheet contributions to sea level change (Markus et al., 2017). While the 
key mission of ICESat-2 is ice-related, the laser altimeter also operates 
over land allowing a number of geophysical products to be extracted 
including information on aboveground vegetation (Neuenschwander 
and Pitts, 2019). The sampling nature of ICESat-2 should allow deter
mination of global vegetation height at an equatorial spacing of less than 
2 km over a two-year period (Markus et al., 2017). The Advanced 
Topographic Laser Altimeter System (ATLAS) instrument onboard 
ICESat-2 had a nominal design footprint size of 17 m in diameter 
(Neuenschwander and Pitts, 2019); however, a smaller footprint size has 
been realized in ATLAS operation (11 m in diameter; Neuenschwander 
et al., 2020). As the ATLAS laser operates in the green wavelengths of the 
electromagnetic spectrum (532 nm), the data can be noisy due to solar 
contamination and effective noise filtering algorithms are necessary 
(Neumann et al., 2019). The ATL08 data product provides a number of 
canopy height percentiles (from 25th to 95th) for 100-m long segments, 
with each backscattered photon labelled as either noise, ground, canopy 
or top of canopy (Neuenschwander and Pitts, 2019). A gridded data 
product of canopy height, cover and ground elevation is also planned to 
be delivered annually at a coarse spatial resolution (500 m to 1 km) 
towards the end of the mission, which is intended for use in global 
studies and broad characterisations of forest structure. 

The second spaceborne instrument that is providing near global 
coverage of lidar footprints is GEDI (Dubayah et al., 2020). GEDI is a 
full-waveform lidar instrument on the International Space Station with 
three active 1064 nm lasers that combined produce 8 tracks of data with 
a ~ 25-m footprint. The system uses a 4.2-km swath width within which 
each of the 8 tracks are separated by 600 m (Dubayah et al., 2020). 
Unlike ATLAS, GEDI is specifically designed to measure forest structure, 
with the goal of producing mean AGB estimates and a range of other 
canopy attributes such as canopy height and foliage profiles between 
51.6◦ N and S latitudes over forested regions (Patterson et al., 2019). The 
GEDI lidar footprints are 25-m wide, spaced 60 m apart along a ground 
track and after two years will have covered the majority of 1-km cells 
with two or more ground tracks with efforts underway to produce both 
broad-scale gridded products as well as fine spatial scale products 
through modelling with, for example, Landsat imagery. 

Opportunities exist for these spaceborne lidar systems to provide 
datasets suitable as predictor variables. Given that the relationships 
between airborne lidar measurements and these spaceborne observa
tions are likely to be stronger than with optical or other satellite active 
remote sensing spatially-exhaustive predictors, there is significant po
tential in using these regional or global summaries to provide improved 
predictions of lidar-derived attributes across large areas, especially in 
broader scale monitoring applications. Moreover the use of these 
spatially-exhaustive, three-dimensional predictor variables in concert 
with optical time series could be very useful, allowing model calibration, 
product validation, and unique modelling opportunities using the in
dependent structural estimates. 

3.2. Advances in modelling approaches 

A number of algorithmic advances may help in the extension of lidar- 
based metrics and forest attributes across large areas. Often, the goal of 
extension is to predict several attributes concurrently, and to ensure that 
those attributes remain logically consistent (Zald et al., 2016). 
Conventionally, a set of predictors are input into the extension method 
and an attribute is modelled using the predictors. If the aim is to predict 
a single target attribute (such as AGB), then it is known as a single target 
prediction task. Many of the studies reviewed used this approach and 

predicted a single attribute, commonly height or AGB (Table 2). In cases 
where several target attributes are predicted simultaneously with one 
model, it is known as a multi-target prediction task. Imputation is one 
approach that facilitates multi-target prediction, as it allows a suite of 
forest attributes to be transferred to a new location. Bolton et al. (2018) 
and Matasci et al. (2018b) both used a RF NN imputation method as 
demonstrated by Crookston and Finley (2008) where RF proximity 
matrices are built for each response variable and the nearest neighbour 
is the observation that best fits all the response variables at the same 
time. Another approach that can be used to estimate several dependent 
variables in a single step is Seemingly Unrelated Regression (SUR) 
(Greene, 1993; Penner et al., 2013). New algorithmic developments 
include multi-target regression trees allowing for the generation of 
several target attributes simultaneously, where terminal nodes or leaves 
of each regression tree are stored as vectors rather than individual 
values. Multi-target regression could ensure that extrapolated canopy 
cover is consistent with volume over the same forest type (Kocev et al., 
2009). 

As satellite-based lidar observations become more widespread, 
gridded global and near-global datasets of derived forest attributes will 
become more common place. We note that the grid resolution of ulti
mate products will be more spatially coarse than the lidar data footprint. 
This increase in availability and coverage of spaceborne lidar measures 
will likely bring two complementary approaches to extending lidar ob
servations at these broad scales. Firstly, from the satellite-based 
perspective, lidar-based metrics and lidar-derived forest attributes will 
be strongly linked to height measurements especially in the case of 
ICESat-2. Estimates of height will then drive global estimate of forest 
attributes of interest such as biomass and carbon. Secondly, in the case 
of extension of small-footprint lidar point clouds acquired from aircraft, 
the ability to derive a range of forest attributes within target cells, will 
also allow other attributes to be derived beyond height and biomass and 
include attributes such as volume, basal area and diameter. 

3.3. Assessing change in forest attributes over time 

Perhaps one of the most important uses of extended layers of forest 
attributes is for assessing change in forest structure over time. Most 
studies reviewed extended attributes at a single point in time, providing 
spatially-exhaustive estimates for key attributes for a single time period. 
In reality, however, many agencies would like to be able to track esti
mates of attributes like AGB over time to inform on REDD+ activities 
and other national level reporting obligations (Wulder et al., 2020). 
Matasci et al. (2018b) was one of the few studies that extended ALS 
attributes across time by utilising temporal metrics from the Landsat 
record to drive the models. In addition to single image dates from 
Landsat spectral data, Matasci et al. (2018b) utilised spatially- 
exhaustive predictors such as time since most recent disturbance, 
which varied on an annual basis. These predictors allowed AGB and 
other attributes to be modelled annually over a 30-year period. These 
models allow imputation across the natural growth sequence of a forest 
stand and they allow canopy structure and height to be explicitly 
modelled as stands age. Badreldin and Sanchez-Azofeifa (2015) had 
similar aims assessing change in AGB over time at a previously disturbed 
site in western Canada. They predicted biomass at 5-year intervals using 
a regression-based approach and Landsat predictors acquired at 
different times. Changes in AGB were then assessed by differencing the 
5-year predictions to document how biomass recovered following 
disturbance. 

Recently, Wulder et al. (2020) utilised annual predictions of lidar- 
derived aboveground biomass to quantify biomass dynamics, parti
tioned by disturbance over the forested ecosystem of Canada. By uti
lising extension models in a temporal analysis, they were able to account 
for changes in biomass as a function of disturbance dynamics, demon
strating that biomass consequences associated with disturbance are 
highly dependant on the type of disturbance occurring over the forested 
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landscapes. Biomass changes (both positive and negative) were quan
tified by disturbance type, with post disturbance recovery of biomass 
also documented. Extrapolating biomass to the same spatial grain as 
Landsat enables a direct link to other Landsat-derived spatial datasets 
representing the same scale (including land cover and change datasets). 

Næsset et al. (2013) developed methods to report biomass change 
over an 11-year period, with attribution by a range of activities repre
senting deforestation and degradation, using airborne lidar and strati
fied ground-plot data in both a wall-to-wall and sample-based approach. 
Extension of forest attributes can also be used to characterize sudden 
changes such as burns caused by wildfires. Garcia et al. (2017) quanti
fied losses in AGB from the California Rim fire in 2013 by extrapolating 
post-fire lidar-derived AGB estimates using both pre-fire and post-fire 
Landsat imagery. Using support vector regression models for the 
modelling, they report a R2 of 0.72 and 0.60 and relative RMSE of 
41.94% and 50.15% for pre-fire and post-fire estimates of AGB assessed 
on an independent validation set. 

3.4. Continued importance of ground plot measurements to support lidar 
extension efforts 

As highlighted throughout this review, field measurements of forest 
attributes are critical in any modelling endeavor. Although it may seem 
incongruous that with a profusion of airborne and spaceborne lidar 
datasets providing accurate characterizations of forest structure, there is 
a continued need for quality ground plot data to develop predictive 
models and to verify lidar-based predictions. While our understanding 
concerning the number (Strunk et al., 2014), distribution (Hawbaker 
et al., 2009), and transferability (Fekety et al., 2015; Tompalski et al., 
2019) of ground plots to support lidar-based estimates continues to 
evolve, some form of ground measurement is nevertheless required, 
either to support local model calibration or to provide independent 
validation. Moreover, it is imperative that these ground plots represent a 
fixed area and are acquired with a high level of geospatial precision and 
accuracy (White et al., 2013). Positional accuracy is critical, as airborne 
lidar systems have very low positional errors (well less than 1.0 m) and 
satellite-based lidar systems also produce very accurate spatial datasets 
(between 5.0 m for ICESat-2 to 10 m for GEDI (Neuenschwander and 
Magruder, 2019; Dubayah et al., 2020, respectively). As part of their 
objectives, spaceborne missions such as GEDI have explicitly included 
the development of ground plot databases with which to calibrate, test, 
and improve models of key forest attributes of interest. The GEDI Forest 
Structure and Biomass Database (FSBD) (Duncanson et al., 2020), 
encompassing measurements from over 1 million trees in tropical and 
temperate vegetation types globally, is critical in providing confidence 
in near-global predictions of carbon and biomass change studies. 

3.5. Importance of open data 

Data policies continue to influence scientific applications and the 
pace of innovation and uptake of remote sensing technologies in forest 
applications (Wulder and Coops, 2014). Both ICESat-2 and GEDI mis
sions have open data policies, with investments in ground segments that 
facilitate data sharing and access (Dubayah et al., 2020; Neuensch
wander et al., 2020). Increasingly, national and jurisdictional lidar 
datasets are also openly accessible in some form or another (e.g., Koti
vuori et al., 2016; Magnussen et al., 2018; Fradette et al., 2019), further 
expanding the opportunities to depend upon these data for large area 
applications and spatial extension of key forest attributes to unmanaged 
forests and/or areas where existing inventories are either non-existent or 
out of date (Bolton et al., 2018). 

4. Outlook 

Examination of the previous research detailed throughout this re
view provides the opportunity to highlight a number of emerging trends 

and directions identified and foreseen to facilitate the further linking of 
lidar metrics and lidar-derived forest attributes with varieties of 
spatially exhaustive geospatial data. We discuss a number of these 
anticipated future directions below, which cover inclusion of spatially- 
explicit layers that represent ecological processes, such as forest 
change, strategic efforts to standardize methodological approaches, 
increased access to high quality, open datasets to facilitate extension, 
and consensus towards best practices for validating and estimating un
certainty in the derived information products. 

4.1. Inclusion of ecological processes, time series, and disturbance at a 
relevant monitoring and reporting scale to enhance accuracy 

Across the studies reviewed, the need and requirements for spatially- 
exhaustive, lidar-based metrics or lidar-derived forest attributes differs 
depending on the ultimate application of the datasets. Some studies, for 
example, have estimated forest height and AGB globally for broad scale 
descriptive and monitoring purposes, whereas others have derived 
products at finer spatial scales to provide information for forest in
ventories and management. As noted, the bulk of the studies reviewed 
provide estimates at national or biome scales. As with other remote 
sensing informed studies, the derived information content is a function 
of the image characteristics and this is true of the wall-to-wall extension 
products as well. The spatial grain of derived products will replicate or 
be coarser than the source lidar data. Similarly, the spatial resolution of 
the satellite data used will typically drive the finest possible spatial grain 
for derived products from spatial modelling procedures (Coops et al., 
2004). In turn, the information content of any derived products and the 
possible use is formed by these considerations. Given a goal to inform 
studies of ecological or economic importance, the ability to link 
anthropogenic activities to landscape change type (e.g. wildfire, harvest, 
non-stand replacing disturbances etcetera) and persistence of changes is 
increasingly required. For instance, forest change due to wildfire versus 
agricultural expansion have differing long term effects important for 
carbon monitoring. While initially coarse spatial resolution products 
played a key role in demonstrating the capacity for lidar-based model
ling of forest heights and biomass, the meaning of an average height or 
biomass estimate representing a 500 m or greater grid cell is of limited 
utility and insensitive to meaningful or actionable monitoring, espe
cially over heterogeneous ecosystems. Current capacity for finer spatial 
resolution depictions with increasing temporal regularity, such as 
Landsat-based studies, now offer opportunities for applications over 
large areas and at a spatial grain informative to management, reporting, 
science, and policy development. 

4.2. Standardization of modelling approaches to support extension 

As applications differ, so has the selected methodological approach, 
resulting in a proliferation of different statistical techniques. Some 
standardization around the most appropriate statistical methods to use 
for modelling as a function of both spatial scale of the prediction, and 
extent, would significantly benefit future efforts. For example 
imputation-based approaches have clear advantages when large 
numbers of samples are able to be extended over the landscape, and 
regression offers insights when predictions may extend beyond the 
observation range. As a result, guidance and best practices towards 
appropriate methods for extending attribute estimates given multiple 
objectives would be a worthwhile endeavor that could be achieved 
through synthesis papers, or benchmarking experiments similar to a 
study undertaken recently by Cosenza et al. (2020). 

4.3. Development of more, high quality, open datasets to facilitate 
modelling 

A wide variety of data sources have been used to extend lidar-based 
metrics or lidar-derived forest attributes. Key to generating spatially 
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exhaustive predictions is the development of open access data policies 
and efficient platforms or mechanisms for sharing data. Older studies, 
especially at global scales, utilised MODIS imagery, in part, due to its 
availability and open access data policies. With the more recent opening 
of the Landsat archive and similar policies guiding access to data from 
the Sentinel series of satellites, there is significant added utility of using 
these moderate scale spatial resolution datasets to link with lidar met
rics. Research into the most appropriate ways to link archival remotely 
sensed data, such as trends and spectral trajectories over time, or in
clusion of forest cover change information will likely increase when 
extending lidar-derived metrics over time and space. We note that a 
number of studies utilised more specialized data sets that may not be 
readily or freely available. Cost and availability can be problematic in 
situations where standardized approaches are to be implemented in new 
locations. 

4.4. Ongoing development of parametric and nonparametric modelling 
frameworks to include additional phases of sampling 

While there has been significant development in statistical ap
proaches to assist in the modelling parameterization over the past 
decade, these frameworks need to be continually developed to include 
additional phases of sampling. Specifically, one additional layer of error 
that is common throughout all of these studies, yet often ignored, is the 
initial allometric equations used to derive some of the forestry attri
butes. For example, calculations of volume are virtually always based on 
measurements of DBH and height and yet the error inherent in these 
allometric equations is often ignored. In recent work on this topic, 
Saarela et al. (2020b) found that up to 75% of the relative root mean 
square error in biomass prediction could be attributed to allometric 
model uncertainty. Importantly, they provide a hierarchical sampling 
framework which allows this error to be quantified and implications on 
overall model predictions to be assessed across broader spatial scales. 
Secondly, while these new frameworks have been designed around 
parametric solutions, the interest by the remote sensing community in 
nonparametric approaches for example, RF, could be the focus of 
additional model development given their widespread use by the 
community. 

4.5. Establishment of best practices for validating and estimating 
uncertainty in the derived information products 

In simple cases where lidar metrics are extended across the land
scape, errors can be more easily determined. In situations where lidar- 
derived forest attributes are extended, the calculation of an error 
budget is much more complex and requires significant statistical 
knowledge (e.g., Saarela et al., 2016; Magnussen et al., 2018; Saarela 
et al., 2020b; Holm et al., 2017). Simply validating a prediction using 
independent field observations, whilst conceptually simple, is often 
difficult due to lack of available data, mismatches in temporal and 
spatial scales, and lack of an inability to cover the entire range of the 
predicted estimates, or the entire geographic area. Recent trends to
wards free and open reproducible software to allow users to more 
readily calculate error budgets should see error budgets produced more 
readily. The production of accessible best practice methods that allow 
the errors inherent in these predictions to be quantified as predictions 
move from plot to lidar estimations and ultimately spatial extension 
across for landscape is important. Recent initiatives such as the Com
mittee of Earth Observation satellite (CEOS) Land Product Validation 
(LPV) subgroup have developed a Biomass Protocol promoting good 
practices for validation of the lidar mission satellite products and to 
ensure observed change from these missions are real and not a function 
of the errors accumulated through the modelling process. Similar 
emphasis should be focused on methods and statistical approaches of 
assessing error and estimating uncertainty. Recent missions, specifically 
ICESat-2 and GEDI on the ISS, will continue to provide sample-based 

datasets as their basic data product, which suggests that users will 
continue to be looking for approaches to extrapolate these estimate over 
broader spatial units. These missions will allow key technological issues 
to be resolved and should provide a framework and blueprint for 
continuing satellite-based lidar systems, focused on assessing forest 
structure and terrain. 

5. Conclusion 

Lidar data has become a key data source for predicting a range of 
forest attributes. However, with a few notable exceptions, coverage of 
airborne lidar is often constrained in both time and space, whereas 
spaceborne lidar has typically been sample based. Both situations 
necessitate statistical approaches to extrapolate these lidar observations 
or derived forest attribute estimates over larger areas, or through time. 
This review has demonstrated that this extension has been undertaken 
over a broad range of spatial scales, in order to produce attributes at the 
local or regional scale for forest management, as well as national- or 
global-level estimates to support scientific investigations and forest 
assessment and monitoring efforts. Common among the research 
examined herein is the derivation of key forest attributes such as height 
and volume that are valuable for finer scale forest management activ
ities, as well as AGB, which is a critical indicator to assess the impacts of 
global climate change. Modelling approaches can be applied to meet 
both of these information needs, providing systematic, and consistent 
predictions that can overcome some of the conventional challenges 
associated with monitoring large areas, providing both spatial and 
attribute detail at a meaningful spatial grain that is informative of 
anthropogenic drivers of change. While applications and examples of 
approaches are increasingly common, the lack of standardized, spatially 
exhaustive open access datasets, as well as community consensus on 
methods and best practices limits the broader uptake and operationali
zation of these approaches. In particular, advancements could be made 
by the development of accessible statistical methods to assess error 
propagation from field plot predictions to final modelled attributes, as 
we see a greater need these types of methods given the increasing 
availability of spaceborne lidar systems. 
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Gobakken, T., Soares, P., Tomé, M., 2020. Comparison of linear regression, k-nearest 
neighbour and random forest methods in airborne laser-scanning-based prediction of 
growing stock. Forestry. https://doi.org/10.1093/forestry/cpaa034. 

Crookston, N.L., Finley, A.O., 2008. yaImpute: an R package for k NN imputation. J. Stat. 
Softw. 23, 1–16. 

Curran, P.J., Atkinson, P.M., 1998. Geostatistics and remote sensing. Prog. Phys. Geogr. 
22 (1), 61–78. 

De’ath, G., 2002. Multivariate regression trees: a new technique for modelling 
species–environment relationships. Ecol. 83, 1105–1117. 

Degnan, J.J., 2016. Scanning, multibeam, single photon Lidars for rapid, large scale, high 
resolution, topographic and bathymetric mapping. Remote Sens. 8 (11), 923–958. 

Drake, J.B., Dubayah, R.O., Knox, R.G., Clark, D.B., Blair, J.B., 2002. Sensitivity of large- 
footprint lidar to canopy structure and biomass in a neotropical rainforest. Remote 
Sens. Environ. 81, 378–392. 

Dubayah, R., Blair, J.B., Goetz, S., Fatoyinbo, L., Hansen, M., Healey, S., Hofton, M., 
Hurtt, G., Kellner, J., Luthcke, S., Armston, J., 2020. The global ecosystem dynamics 
investigation: high-resolution laser ranging of the Earth’s forests and topography. 
Sci. Remote Sens. 100002. 

Duncanson, L., Armston, J., Disney, M., Avitabile, V., Barbier, N., Calders, K., Carter, S., 
Chave, J., Herold, M., Crowther, T.W., Falkowski, M., Kellner, J.R., Labrière, N., 
Lucas, R., MacBean, N., McRoberts, R.E., Meyer, V., Næsset, E., Nickeson, J.E., 
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