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A B S T R A C T   

The Terra/Aqua MODerate resolution Imaging Spectroradiometer (MODIS) data have been used widely for 
global monitoring of the Earth’s surface due to their daily fine temporal resolution. The spatial resolution of 
MODIS time-series (i.e., 500 m), however, is too coarse for local monitoring. A feasible solution to this problem is 
to downscale the coarse MODIS images, thus creating time-series images with both fine spatial and temporal 
resolutions. Generally, the downscaling of MODIS images can be achieved by fusing them with fine spatial 
resolution images (e.g., Landsat images) using spatio-temporal fusion methods. Among the families of spatio- 
temporal fusion methods, spatial unmixing-based methods have been applied widely owing to their lighter 
dependence on the available fine spatial resolution images. However, all techniques within this class of method 
suffer from the same serious problem, that is, the block effect, which reduces the prediction accuracy of spatio- 
temporal fusion. To our knowledge, almost no solution has been developed to tackle this issue directly. To 
address this need, this paper proposes a blocks-removed spatial unmixing (SU-BR) method, which removes the 
blocky artifacts by including a new constraint constructed based on spatial continuity. SU-BR provides a flexible 
framework suitable for any existing spatial unmixing-based spatio-temporal fusion method. Experimental results 
on a heterogeneous region, a homogeneous region and a region experiencing land cover changes show that SU- 
BR removes the blocks effectively and increases the prediction accuracy obviously in all three regions. SU-BR also 
outperforms two popular spatio-temporal fusion methods. SU-BR, thus, provides a crucial solution to overcome 
one of the longest standing challenges in spatio-temporal fusion.   

1. Introduction 

Remote sensing technology has shown increasing importance for 
land cover change detection (Zhang et al. 2018) and environmental 
monitoring; for example, crop growth (Johnson et al. 2016), agricultural 
(Hansen et al. 2000) and carbon sequestration monitoring (Lees et al. 
2018). Effective monitoring of land surface dynamics places great de
mands on the quality of remote sensing data, especially in terms of the 
spatial and temporal resolutions. Due to technical and budget limita
tions, however, remote sensing satellite sensors trade spatial resolution 
and temporal resolution. As a result, almost no satellite sensor can meet 
the demand for both fine spatial and temporal resolutions. For example, 
the MODIS sensor can acquire images for the same scene at least once 
per day, but the images are at a coarse spatial resolution of 500 m (250 m 
for the red and NIR bands). In contrast, Landsat sensors (e.g., Thematic 
Mapper (TM), Enhanced Thematic Mapper (ETM+) and Operational 
Land Imager (OLI)) can acquire images at a fine spatial resolution of 30 

m, but they have a revisit period of up to 16 days. Also, the impact of 
cloud and shadow contamination can further limit the number of high- 
quality Landsat images (i.e., it generally requires more than 16 days to 
acquire an effective Landsat image) (Ju and Roy, 2008). 

In recent years, spatio-temporal fusion approaches have been 
developed to create images with both fine spatial and temporal resolu
tions by blending the available temporally sparse, but fine spatial res
olution images with temporally dense, but coarse spatial resolution 
images (Belgiu and Stein, 2019; Chen et al. 2015; Zhu et al. 2018). 
Spatio-temporal fusion has been used widely in various applications, 
including prediction of fine spatial and temporal resolution land surface 
temperature (LST) (Huang et al. 2013; Wang et al. 2020a; Weng et al. 
2014; Wu et al. 2015), normalized difference vegetation index (NDVI) 
(Meng et al. 2013; Tewes et al. 2015) and leaf area index (Houborg et al. 
2016; Zhang et al. 2014). Generally, five types of spatio-temporal fusion 
approaches can be identified: spatial weighting-based (Gao et al., 2006; 
Hilker and Wulder, 2009; Wang and Atkinson 2018; Zhu et al. 2010), 
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spatial unmixing-based (Busetto et al. 2008; Wu et al. 2012; Xu et al. 
2015; Zhukov et al. 1999; Zurita-Milla et al. 2009), Bayesian-based (Li 
et al. 2013; Shen et al. 2016; Xue et al. 2017), learning-based (Das and 
Ghosh, 2016; Huang and Song, 2012; Liu et al. 2016; Song and Huang, 
2013; Wang et al. 2020b) and hybrid methods (Li et al. 2020a; Liu et al. 
2019; Zhu et al. 2016). The spatial weighting-based model is a common 
spatio-temporal fusion method. The spatial and temporal adaptive 
reflectance fusion model (STARFM) proposed by Gao et al. (2006) is 
perhaps the earliest and the most widely-used spatial weighting-based 
method. The basic assumption of STARFM is that the temporal 
changes in the coarse and fine spatial resolution images are consistent, 
in which case the prediction can be seen simply as a combination of the 
known fine spatial resolution image and the fine spatial resolution 
temporal change image predicted from the coarse version. Based on 
STARFM, several approaches have been developed to enhance the per
formance of spatio-temporal fusion for heterogeneous areas and areas 
which include land cover changes (Hilker and Wulder, 2009; Luo et al. 
2018; Tang et al. 2020; Wang and Atkinson 2018; Zhu et al. 2010). 

Another main category of spatio-temporal fusion model is spatial 
unmixing. The basic principle of spatial unmixing-based methods is to 
predict the value (reflectance hereafter) of fine spatial resolution pixels 
(fine pixels hereafter) by applying unmixing algorithms to each coarse 
pixel (Gevaert and Garcia-Haro, 2015). The multisensor multiresolution 
technique (MMT) proposed by Zhukov et al. (1999) is one of the first 
spatial unmixing-based methods, and it underpins most existing spatial 
unmixing-based methods. The algorithm includes four operations: 1) 
classification of the available fine spatial resolution images to produce 
the thematic land cover map; 2) calculation of the proportions of each 
land cover class in each coarse pixel by upscaling the thematic map 
produced in 1); 3) spatial unmixing of each coarse pixel to obtain the 
reflectance of each land cover type within it; 4) reconstruction of the fine 
spatial resolution image by assigning the predicted reflectance accord
ing to the land cover type of the fine pixel (Zhukov et al. 1999). Based on 
the MMT algorithm, increasing efforts have been made to develop 
spatial unmixing-based methods in recent years. Busetto et al. (2008) 
considered both the spatial distance and the spectral similarity between 
the neighboring coarse pixel and the target pixel when unmixing coarse 
pixels, where the spectral similarity is quantified using the spectral in
formation of the known fine spatial resolution image. Zurita-Milla et al. 
(2008) applied the unmixing-based data fusion (UBDF) model to fuse 
Landsat TM and MERIS images for vegetation monitoring over hetero
geneous landscapes. As an alternative to the use of the known fine 
spatial resolution image, Zurita-Milla et al. (2009) introduced the LGN5 
land use database to derive the fractional composition of land cover 
classes within each coarse pixel. The Spatial Temporal Data Fusion 
Approach (STDFA) proposed by Wu et al. (2012) made fuller use of the 
known fine resolution image, which predicts the fine spatial resolution 
temporal change image from the coarse temporal change image by 
spatial unmixing. Amorós-López et al. (2013) utilized a regularization 
term in the cost function of the unmixing model to restrict the solution of 
the reflectance of each class using a pre-defined spectrum extracted from 
pure pixels in the coarse image. Gevaert and Garcia-Haro (2015) 
introduced a Bayesian approach to constrain the unmixing process using 
the available prior spectral information. Xu et al. (2015) proposed an 
approach to reduce unmixing error by incorporating the class spectra 
predicted by other reliable spatial and temporal data fusion approaches 
such as STARFM. The linear spectral unmixing-based spatiotemporal 
data fusion model proposed by Liu et al. (2020) predicts a fine spatial 
resolution proportion image for each class (rather than the hard class 
labels in the methods mentioned above) by implementing linear spectral 
unmixing on the known fine spatial resolution image. Then, the fine 
spatial resolution proportion image is degraded to produce coarse pro
portions in the spatial unmixing model. 

The spatial unmixing-based methods have several unique advan
tages. On the one hand, they have a light dependence on the number of 
available images. More specifically, most of the spatial unmixing-based 

methods require only one fine spatial resolution image at the known 
time to produce the land cover classification map, together with a coarse 
image at the prediction time for unmixing. Therefore, this type of 
method has limited data-dependence and is, thus, more flexible. This is 
different from spatial weighting-based methods, where at least one pair 
of coarse-fine spatial resolution images is required. On the other hand, 
the spatial unmixing-based methods do not require the coarse and fine 
spatial resolution images to have corresponding spectral bands (i.e., the 
same wavelength) (Gevaert and Garcia-Haro, 2015), while the spatial 
weighting-based methods place a strict requirement for the correspon
dence of spectral bands. This characteristic brings two benefits. First, 
spatial unmixing can be performed on coarse bands whose wavelengths 
are not available in the observed fine spatial resolution images, resulting 
in an increase in the spectral resolution of the fine spatial resolution 
images (Gevaert and Garcia-Haro, 2015). Second, auxiliary datasets 
such as fine (or even finer) spatial resolution land cover maps can be 
treated as a supplement or even replacement of the classification map 
produced from the fine spatial resolution multispectral images (e.g., 
Landsat images in most cases) to further increase the accuracy (Zurita- 
Milla et al. 2011). 

Despite the above advantages, there exists a widely acknowledged 
problem in spatial unmixing-based methods: the block effect (Ma et al. 
2018; Wang et al. 2020c), which means pixels of the same land cover 
class present different reflectances in spatially adjacent coarse pixels, 
resulting in visually obvious blocky artifacts within an object. The block 
effect exists commonly in spatial unmixing predictions. The reason for 
this phenomenon is that unmixing of different coarse pixels is imple
mented using different local windows. This means that different coarse 
pixels containing different spectral properties of land cover (even for the 
same class) are involved in unmixing spatially adjacent center pixels. As 
a result, the same land cover class in the spatially adjacent coarse pixels 
may be assigned different reflectances, which leads to blocky artifacts. 
Also, intra-class spectral variation, which caused mainly by heteroge
neous spatial patterns and temporal changes in land cover (especially for 
the same class), is responsible for blocky artifacts, as only one reflec
tance value is predicted for each land cover class in spatial unmixing. 
Thus, for the same class, the prediction of reflectance may have multiple 
equal realizations, and it always differs in the unmixing model for each 
coarse pixel. Generally, blocky artifacts occur most obviously at the 
boundary between neighboring coarse pixels in the prediction. 

The block effect has been a main obstacle in spatial unmixing, which 
greatly influences the visual appearance of the predictions and, more 
importantly, the accuracy of spatio-temporal fusion. Several studies 
attempted to enhance the performance of spatial unmixing-based 
methods, such as by making fuller use of the known fine spatial reso
lution image and performing unmixing on temporal change image (Wu 
et al. 2012), exerting additional constraints to the prediction of re
flectances (Xu et al. 2015) and combining with spatial weighting-based 
predictions (Zhu et al. 2016). Nevertheless, these approaches are not 
designed for tackling the blocky artifacts, which remain in the 
predictions. 

This paper proposes a blocks-removed spatial unmixing (SU-BR) 
method to remove the blocky artifacts in spatial unmixing-based 
methods, and further, increase the accuracy of spatio-temporal fusion. 
SU-BR considers both the residual errors in the unmixing model and the 
difference in reflectances between the same land cover class in the 
neighboring pixels. It is an optimization method requiring a number of 
iterations to approach the optimal solution. There are two main ad
vantages of SU-BR:  

1) SU-BR can remove the blocky artifacts and increase the prediction 
accuracy simultaneously. SU-BR removes the blocks in spatial 
unmixing by exerting a new constraint according to the spatial 
continuity of land cover. The information (i.e., reflectance predic
tion) provided by neighboring pixels further enhances the reflec
tance predicted by the original spatial unmixing, thus, ensuring the 
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spatial continuity and increasing the prediction accuracy. This 
method is performed by deeper spatial information mining of the 
observed data, and it does not require any additional data or prior 
knowledge.  

2) SU-BR provides a general model for removing the blocky artifacts in 
spatial unmixing-based methods. It is a strategy applicable to any 
spatial unmixing-based methods, such as UBDF and STDFA. 
Furthermore, it is also compatible with other existing enhanced 
versions using different constraints (e.g., the class reflectance 
extracted from pure coarse pixels (Xu et al., 2015)). That is, the 
constraint of spatial continuity in SU-BR can potentially be jointly 
considered with many other constraints. 

The remainder of this paper is organized into four sections. Section 2 
summarizes the mechanisms of three typical spatial unmixing-based 
methods, explores the block effect problem and introduces explicitly 
the proposed SU-BR method. Section 3 implements experiments on three 
datasets to compare the performance of SU-BR with other blocks- 
removed methods. SU-BR is also compared with several popular 
spatio-temporal fusion methods. Section 4 further discusses the findings 
from the experiments and potential future research, followed by a 
conclusion in Section 5. 

2. Methods 

2.1. Existing spatial unmixing-based methods 

This section illustrates briefly the common principle of three typical 
spatial unmixing-based methods, including UBDF, STDFA and the vir
tual image pair-based spatio-temporal fusion (VIPSTF) with spatial 
unmixing (VIPSTF-SU) recently proposed by Wang et al. (2020c). Two 
key assumptions can be summarized for spatial unmixing-based 
methods. The first is that the observed reflectance of a mixed pixel 
can be treated as the weighted sum of the sub-pixel level reflectances of 
different land cover classes within the pixel (i.e., the linear mixture 
model). The second is that the distribution of land cover remains stable 
between the known and prediction times. To predict the fine spatial 
resolution reflectance of land cover classes conveniently, we usually 
solve a set of linear equations using the mixed reflectance of coarse 
pixels in a local window, by assuming that the neighboring coarse pixels 
share the same reflectance for the same land cover class. The calculation 
is performed for each band sequentially. For convenience, we illustrate 
the principles of the spatial unmixing-based methods based on a unified 
model for a single band. Specifically, the general linear mixture model 
can be written as 

Q = PE+ ε (1)  

where ε is the residual error term. Q is an N × 1 vector composed of the 
observed reflectances of the coarse pixels, where N is the number of 
coarse pixels in the local window. E is a C × 1 vector composed of re
flectances for all land cover classes (class reflectance hereafter) that 
needs to be solved and C is the number of land cover classes. P is an N ×
C matrix composed of the coarse proportions of the C classes in the N 
coarse pixels. E in Eq. (1) can be solved by the least squares method 
based on the objective function 

Ê = argmin
E

R = ‖PE − Q‖
2
2 (2)  

where R is the object quantifying the residual error of the linear mixture 
model. Spatial unmixing-based methods utilize a fine spatial resolution 
thematic map temporally close to the prediction time to synthesize the 
coarse proportions in P. For Q and E, however, they have different 
meanings in the three spatial unmixing-based methods, which are 
explained in detail in Appendix A. Note that for simplicity, E is called 
class reflectance hereafter, but its specific meaning for different spatial 

unmixing-based methods should be borne in mind. 

2.2. The block effect in spatial unmixing-based methods 

In spatial unmixing, the observed reflectances in the local window 
are used to predict the class reflectance E in Eq. (2). It is performed on 
each coarse pixel independently and the predicted class reflectance will 
be assigned only to the center coarse pixel in the moving window. For 
neighboring pixels containing the same class, the predicted class 
reflectance may be different, rendering obvious regular blocky artifacts 
with a spatial size of the coarse pixel. This phenomenon is called the 
block effect as introduced above. It is produced mainly due to intra-class 
spectral variation (caused by heterogeneity of spatial pattern and 
gradual temporal changes in land cover) and differences in the coarse 
data involved in the spatial unmixing models (i.e., the observed coarse 
data vector Q and coarse proportion matrix P in Eq. (2)) for neighboring 
coarse pixels. More precisely, for neighboring coarse pixels, there are 
two adjacent cases (i.e., side- and vertex-adjacent), where the pro
portions of different observed coarse data in the unmixing models need 
to be distinguished. 

Fig. 1 shows an example to illustrate the two adjacent cases. In fact, if 
two coarse pixels are contiguous on one side, for the window size of w ×
w pixels, the different coarse pixels between the two windows account 
for a proportion of 

F1 = w× 1
/

w2 = 1
/

w (3) 

In the other case where two neighboring coarse pixels are connected 
by a vertex, the proportion of different pixels is 

F2 = 1 − (w − 1)2/w2 = (2w − 1)
/

w2 (4) 

These distinct coarse pixels are the essential reason for the block 
effect. Specifically, they correspond to different elements in Q and P in 
Eq. (2). Due to the intra-class spectral variation, these distinct pixels are 
essentially mixed with different class reflectances, even for the same 
class. Thus, the calculation based on Eq. (2) can lead to different solu
tions of class reflectances in E for the two adjacent pixels. The blocky 
artifacts reflect the intra-class spectral variation in fusion predictions at 
a coarse resolution, which is neglected within a coarse pixel. 

An example is exhibited in Fig. 2 to illustrate the block effect, where 
w = 3 is considered and the trapezoid represents an object shared by six 
neighboring coarse pixels. Fig. 2(a) is a spatial unmixing prediction with 
blocky artifacts, while Fig. 2(b) is the reference for the trapezoid object 
(i.e., the object is characterized by a constant gray value). For spatial 
unmixing of the center pixel I in Fig. 2(a), the nine pixels in the 3 × 3 

Fig. 1. An example for illustration of two adjacent cases (w = 3). (a) and (b) 
represent the side- and vertex-adjacent cases, respectively. The pixels covered 
by diagonals at minus 45◦ represent distinct coarse pixels in a 3 × 3 window 
centered at the pixel marked by the red solid star. The pixels covered by di
agonals at 45◦ represent distinct coarse pixels in a 3 × 3 window centered at the 
pixel marked by the red hollow star. The pixels covered by checks represent 
shared coarse pixels of the two local widows. (For interpretation of the refer
ences to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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window marked in red are used. For coarse pixel II, it utilizes the six 
pixels in the red box and another three pixels in the blue box that 
represent the local window for pixel II. The three different coarse pixels 
in the adjacent regions contribute to different predictions of the values 
for the trapezoid object in pixels I and II. 

As seen from Eqs. (3) and (4), the intensity of the block effect is 
related to the size of the moving window. When the window size w is 
larger, for both adjacent cases, the proportion of different coarse pixels 
between the two windows becomes smaller. That is, the larger window 
size, the less obvious is the phenomenon. A larger the window size, 
however, means more distant pixels are involved in the unmixing pro
cess, where all pixels are assumed to share the same class reflectance. 
According to Tobler’s First Law of Geography (Tobler 1970), the relation 
between two observations decreases gradually as the distance increases. 
The inclusion of more distant pixels will, thus, reduce the inherent intra- 
class spectral variation in the fusion results, and exacerbate the perfor
mances of spatial unmixing. 

The block effect reduces the spatial continuity and dramatically af
fects the visual presentation. It limits the application of spatial 
unmixing-based methods in the field of spatio-temporal fusion. There is, 
therefore, a great need for a solution to remove the blocks to enhance 
spatial unmixing-based methods. 

2.3. The proposed constraint for removing blocks 

In this section, a new constraint is proposed for removing blocks in 
spatial unmixing. The block effect essentially represents the difference 
in class reflectances between adjacent pixels. According to the spatial 
continuity of land cover, however, it can be assumed that the re
flectances for the pixels belonging to the same class should be similar 
when the pixels are spatially adjacent (see, for example, the object in 
Fig. 2(b)). Based on this assumption, we can define a constraint by 
minimizing the difference between the reflectances for the same class in 
a local window for each coarse pixel, as shown in Eq. (5) 

Di =

∑C

c=1

∑N0

j=1

[
Ii,j,c

(
Ei,c − Ej,c

) ]2

∑C

c=1

∑N0

j=1
Ii,j,c

(5)  

where Di is the mean of the differences in reflectances for all classes in 
the local window centered at location Xi, N0 is the number of the 
neighbors in the local window (N0=8 is considered in this paper). Ei, c 
and Ej, c are the reflectances of class c for the center pixel at Xi and its 
neighboring pixel at Xj, respectively. Ii, j, c is an indicator function 
describing the relationship between the target coarse pixel at Xi and its 
neighboring pixel at Xj 

Ii,j,c =

{
1, if pixels at Xi and Xj both contain class c

0, otherwise (6) 

Di can be considered as the mean deviation of class reflectance be
tween the target coarse pixel at Xi and its neighboring pixels, which is 

divided by the total number of deviations. The larger Di, the more severe 
the spatial discontinuity in the window. To reduce the blocks, we need to 
minimize Di for each window centered at Xi. Thus, an objective function 
with the new constraint is proposed in the next section. 

2.4. The proposed blocks-removed spatial unmixing (SU-BR) method 

The main objective of the proposed blocks-removed spatial unmixing 
(SU-BR) method is also to minimize the residual error in the spatial 
unmixing model, as shown in Eq. (2). However, the constraint intro
duced in Section 2.3 is exerted on the new objective function to ensure 
the spatial continuity of class reflectance, thus, removing the blocks. 
Based on these two aspects, the new objective function for the proposed 
SU-BR method is provided below 

Ê
(t)
i = argmin

E(t)
i

Ji = αR(t)
i + (1 − α)AD(t)

i

= α
⃦
⃦
⃦PE(t)

i − Q
⃦
⃦
⃦

2

2
+ (1 − α)A

∑C

c=1

∑N0

j=1

[
Ii,j,c

(
E(t)

i,c − E(t− 1)
j,c

) ]2

∑C

c=1

∑N0

j=1
Ii,j,c

(7)  

where α is a balancing parameter taking a value between 0 and 1, A is a 
magnitude regularization parameter and t is the iteration number. The 
value of indicator function Ii, j, c is calculated based on the degraded 
thematic map at the known time. 

SU-BR is performed for each coarse pixel in turn. Moreover, it is an 
optimization process based on iteration, as the class reflectance of the 
neighboring pixel is updated one-by-one in the visit, changing the 
constraint dynamically. The prediction based on the original spatial 
unmixing method is used directly for initialization (i.e., the case of t =
0). The optimization process terminates when one of the convergence 
conditions is satisfied: 1) the number of iterations reaches the pre- 
defined maximum number; 2) the difference between three consecu
tive realizations is smaller than a pre-defined threshold. With the iter
ative scheme in Eq. (7), the difference in reflectance for the same class 
can be reduced gradually to alleviate the block effect. Note that for 
heterogeneous areas, even though there may be several classes in the 
whole image, only a very small number of classes will cover a small 
region in a local window (e.g., with a size of 3 × 3 pixels in this paper), 
and the model in Eq. (7) is constructed adaptively for each coarse pixel 
centered at the local window. Therefore, the convergence for the model 
constructed in Eq. (7) can be guaranteed in this case. 

It is necessary to determine appropriately the magnitude regulari
zation parameter A, due to the difference in magnitudes of the two terms 
of R and D in the objective function. In this paper, it is proposed to be 
calculated by comparing the statistical information of R and D for all 
coarse pixels in the prediction of the original method. Specifically, the 
parameter A is determined by comparing the modes of the values of D 
and R. 

To further understand Eq. (7), the first term R reflects the ability to 
preserve the original coarse spatial resolution image at the prediction 
time, which is called the data fidelity term. The second term D reflects 
the deviation in reflectance of the same class between the target coarse 
pixel and adjacent coarse pixels, which is the spatial continuity 
constraint term. The proposed SU-BR method makes a balance between 
maintaining the original coarse image and reducing the influence of the 
block effect. By changing the balancing parameter α, the influence of the 
two terms on the solution can be adjusted. With a larger balancing 
parameter α, the solution guarantees greater data fidelity, but may fail to 
remove blocky artifacts to the largest extent. A smaller balancing 
parameter may be able to remove the blocky artifacts satisfactorily, but 
may lead to a larger bias relative to the original data, resulting in lower 
accuracy of spatio-temporal fusion. 

A flowchart describing the whole process of the SU-BR method is 

Fig. 2. An example for illustration of the block effect. The trapezoid represents 
an object shared by neighboring coarse pixels. (a) is a prediction in which each 
part displays different colors. (b) is the reference image with fixed colour. 
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given in Fig. 3. The method is applicable to any spatial unmixing-based 
methods (e.g., UBDF, STDFA, and VIPSTF-SU investigated in this paper), 
based on the explicit definition of Q and E, as illustrated in Appendix A. 
For UBDF, the predicted E is exactly the final prediction for the method. 
For STDFA and VIPSTF-SU, the prediction represents temporal changes 
of the reflectances for classes and need to be added to the known fine 
spatial resolution image and virtual fine spatial resolution image, 
respectively, to achieve the final prediction of spatio-temporal fusion. 

2.5. Benchmark methods 

This section focuses on two potential blocks-removed algorithms: 
neighbor mean (SU-NM) and spatial filtering (SU-SF). To the best of our 
knowledge, they have not been applied to remove blocks in spatial 
unmixing to-date. They can be implemented straightforwardly on fusion 
predictions of three typical spatial unmixing methods. The principles are 
introduced briefly below. 

2.5.1. SU-NM 
In the SU-NM method, the mean of the reflectances of the same class 

in a moving window will be assigned to this class in the target coarse 
pixel. This process also needs Ii, j, c in Eq. (6) to define the pixels con
taining the same class. Its mechanism is similar to mean filtering in 
digital image processing, but it needs to identify effective neighbors that 
cover the same class. 

2.5.2. SU-SF 
We apply the spatial filtering model in STARFM and enhanced 

STARFM (ESTARFM) to remove the blocky artifacts by acknowledging 
the similarity of fine spatial resolution pixels and enabling similar pixels 
(e.g., pixels belonging to the same class) to have close reflectance. This 
model was investigated in our previous research (Wang and Atkinson 
2018) to remove the blocky artifacts produced from the local fitting 
process (substantially different from the spatial unmixing process in this 
paper) and was shown to be a satisfactory solution. The prediction of SU- 
SF is a linear combination of the reflectances of spectrally similar 
neighboring pixels found in a moving window, weighted by the inverse 
spatial distance. However, it is inappropriate to use the images with 
blocky artifacts to search for spectrally similar neighboring pixels. 
Alternatively, the fine spatial resolution image at the known time is 
used, based on the assumption of stable land cover boundaries during 
the period. 

These two methods for removing blocks are applied in our experi
ments to provide a comparison with the proposed SU-BR method and to 
validate its effectiveness. 

3. Experiments 

3.1. Data and experimental setup 

To examine the performance of the proposed SU-BR method in areas 
with various spatial patterns, three datasets covering different spatial 
landscapes were used. The first region is located in southern New South 
Wales, Australia, and two Landsat 7 ETM+ images and two corre
sponding MODIS images were used. The spatial extent is 2 km by 2 km. 
The acquisition times of the two image pairs are 5 January 2002 and 13 
February 2002. The second region is located in northern New South 
Wales, Australia, and has the same spatial size as the first region. The 
two image pairs were acquired on 14 February 2005 and 3 April 2005. 
As for the third region located in southern New South Wales, Australia, 
two MODIS and Landsat ETM+ image pairs covering a spatial extent of 
1.8 km by 1.8 km were used. The acquisition times are 4 December 2001 
and 5 January 2002. False colour composites of the Landsat images and 
their corresponding MODIS images for the three regions are displayed in 
Fig. 4. The objective of the experiments is to predict the latter Landsat 
image, using the former MODIS-Landsat image pair and the latter 
MODIS image, and the known latter Landsat image is used as reference 
to evaluate the prediction. The former and latter times in this case are 
also called the known and prediction times hereafter. 

It can be noticed that the first region shows obvious heterogeneity 
while the third region presents greater homogeneity. For the second 
region, due to the difference in acquisition seasons, many changes exist 
between the images acquired at the two times. Table 1 lists the corre
lation coefficients (CC) between the Landsat images at the two times for 
the three regions. It is obvious that the homogeneous region provides the 
greatest CC of 0.8593 between the dates, while the region with a greater 
number of land cover changes has the smallest CC of 0.6059. The CC of 
the heterogeneous region lies between the other two regions. Generally, 
the small CC between the known and prediction times will bring great 
challenges to the prediction. Three sub-sections (Sections 2.2–2.4) are 
included in the remainder of Section 3. Section 3.2 provides the results 
of the different blocks-removed methods based on existing UBDF, 
STDFA and VIPSTF-SU for the three regions. The blocks-removed 
methods for testing include the SU-BR, SU-SF and SU-NM methods. 
Section 3.3 compares the performances of the proposed SU-BR method 
with the popular STARFM and FSDAF methods. Section 3.4 analyzes the 
impact of two parameters in SU-BR on the accuracy of the predictions. 

3.2. Comparison between different blocks-removed methods 

3.2.1. Results for the heterogenous region 
Figs. 5, 6 and 7 display the predictions of the three different blocks- 

Fig. 3. Flowchart of the proposed SU-BR method. All bands of the image follow 
this scheme one by one. 
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removed methods (i.e., SU-BR, SU-NM and SU-SF) based on the three 
spatial unmixing methods (i.e., UBDF, STDFA and VIPSTF-SU). For 
clearer visual comparison between the results, three sub-areas covering 
60 by 60 Landsat pixels are shown for each case. In Fig. 5, the UBDF-NM, 
UBDF-SF and UBDF-BR methods can all remove the blocks to some 
extent. Moreover, the UBDF-BR prediction is visually much closer to the 
reference than the other two blocks-removed methods, especially in the 
restoration of spectral properties; for example, the land cover in the 

Fig. 4. Landsat (first line) and MODIS (second line) images for the heterogeneous region acquired on (a) 5 January 2002 and (b) 13 February 2002, for the region 
with land cover changes acquired on (c) 14 February 2005 and (d) 3 April 2005, and for the homogeneous region acquired on (e) 4 December 2001 and (f) 5 January 
2002. All images use NIR-red-green as RGB. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 

Table 1 
CCs between the Landsat images at the known and prediction times.   

Heterogeneous 
region 

Region with land cover 
changes 

Homogeneous 
region 

CC 0.7392 0.6059 0.8593  

Fig. 5. Predictions for the heterogeneous region based on UBDF coupled with different blocks-removed methods. (a) UBDF. (b) UBDF-NM. (c) UBDF-SF. (d) UBDF- 
BR. (e) Reference. The images in the second-to-fourth lines are the corresponding predictions for the three sub-areas marked in yellow in the first line. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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second sub-area which should appear as green, but is inappropriately a 
light green or black colour in the UBDF, UBDF-NM and UBDF-SF pre
dictions. It is also worth noting that the UBDF-based predictions cannot 
reproduce spatial variance within each object as UBDF assumes that the 
pixels for the same class in a coarse pixel share the same reflectance and 
assign the predicted class reflectance directly to the fine pixels. In the 
predictions of STDFA-based blocks-removed methods in Fig. 6, it is seen 
that all three methods can remove the blocks satisfactorily and STDFA- 
BR outperforms STDFA-NM and STDFA-SF. Meanwhile, the spectral 
distortion of STDFA-NM and STDFA-SF is also more noticeable than 
STDFA-BR when referring to the reference (e.g., the restoration of the 
green patch in the bottom of the second sub-area). Compared with the 
predictions in Figs. 5 and 6, the predictions in Fig. 7 are visually more 
satisfactory in preserving both the spatial and spectral information, 
especially for VIPSTF-SU-BR (e.g., the green patch in the third sub-area 
in Fig. 7(d), which is inappropriately predicted as blue in Fig. 7(a), Fig. 7 
(b) and Fig. 7(c)). Specifically, the colour of the VIPSTF-SU-based pre
dictions in Fig. 7 are closer to the reference than the STDFA-based 
predictions in Fig. 6, and the VIPSTF-SU-based predictions present 
more spatial variance and detail than the UBDF-based predictions in 
Fig. 5. Furthermore, comparison of the predictions in Fig. 7 reveals that 
VIPSTF-SU-BR is also more accurate than VIPSTF-SU-NM and VIPSTF- 
SU-SF. 

For STDFA and VIPSTF-SU, the spatial unmixing process is essen
tially performed on the temporal change images. Thus, to further show 
the effectiveness of the proposed SU-BR method for STDFA and VIPSTF- 

SU, the temporal change images of STDFA, STDFA-BR, VIPSTF-SU and 
VIPSTF-SU-BR are shown in Fig. 8, where the results for the red band are 
provided, with one sub-area zoomed for convenience of visual com
parison. It is clear that the blocky artifacts are removed considerably and 
most of the object boundaries are preserved. 

The results of quantitative assessment for the methods are listed in 
Table 2, where five indices were used, including CC, root mean square 
error (RMSE), relative global-dimensional synthesis error (ERGAS) 
(Ranchin and Wald 2000), universal image quality index (UIQI) (Wang 
and Bovik 2002) and spectral angle mapper (SAM). These five indices 
have been applied widely for quantitative evaluation of image fusion 
methods (Amorós-López et al. 2013; Chiman et al. 2018; Wang et al. 
2020d). The results in Table 2 support the findings of visual inspection. 
More precisely, for all the three blocks-removed methods, greater ac
curacies are produced compared with the original spatial unmixing 
methods. For example, in comparison with STDFA, the CC values of 
STDFA-NM and STDFA-SF increase by 0.0144 and 0.0147, respectively. 
Using the SU-BR method, the gains in CCs are 0.0654, 0.0179 and 
0.0265 for UBDF, STDFA, and VIPSTF-SU, respectively. For the other 
four indices, the gains for SU-BR are also noticeable. Moreover, the SU- 
BR method can produce fusion results with larger CC and UIQI values, 
and smaller RMSE, ERGAS and SAM values than the SU-NM and SU-SF 
methods, indicating SU-BR is more accurate than SU-NM and SU-SF. 

3.2.2. Results for the region with land cover changes 
The predictions of the proposed SU-BR method as well as of SU-NM 

Fig. 6. Predictions for the heterogeneous region based on STDFA coupled with different blocks-removed methods. (a) STDFA. (b) STDFA-NM. (c) STDFA-SF. (d) 
STDFA-BR. (e) Reference. The images in the second-to-fourth lines are the corresponding predictions for the three sub-areas marked in yellow in the first line. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 7. Predictions for the heterogeneous region based on VIPSTF-SU coupled with different blocks-removed methods. (a) VIPSTF-SU. (b) VIPSTF-SU-NM. (c) 
VIPSTF-SU-SF. (d) VIPSTF-SU-BR. (e) Reference. The images in the second-to-fourth lines are the corresponding predictions for the three sub-areas marked in yellow 
in the first line. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. Blocks-removed temporal change images for the original spatial unmixing and SU-BR methods. (a) STDFA (left) and STDFA-BR (right) predictions for the red 
band. (b) VIPSTF-SU (left) and VIPSTF-SU-BR (right) predictions for the red band. The images in the second line are the corresponding predictions for the sub-area 
marked in black in the first line. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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and SU-SF for the region with land cover changes are displayed in 
Figs. 9, 10 and 11, where a sub-area experiencing noticeable land cover 
changes is marked in yellow and zoomed for analysis. There exist new 
artifacts around the boundaries of objects in the SU-SF predictions, 
presenting noise, especially in the sub-area in Fig. 10(d). With respect to 
predictions based on SU-NM, the blocky artifacts can still be observed to 
some extent. Using SU-BR, the blocky artifacts are more satisfactorily 

removed than with SU-NM, and compared to SU-SF, the SU-BR results 
contain less noise and are closer to the reference. It should be noted, 
however, the SU-BR results still present some blocky artifacts, although 
not very noticeable. This is because our proposed method is imple
mented based on the assumption of no land cover changes (as for all 
existing spatial unmixing-based methods), which means if the neigh
boring pixels do not share the same land cover class with the center pixel 
at the known time, they also do not participate in constraining the so
lution of the center pixel at the prediction time, even if some neighbors 
actually change to share the same class and need to be considered in the 
constraint. The neglect of these changed pixels can lead to remaining 
blocky artifacts. Thus, it is challenging to remove blocky artifacts 
completely in regions with land cover changes. From the results of 
quantitative assessment in Table 3, it is clear that all three blocks- 
removed methods produce greater accuracies than the original spatial 
unmixing methods, and further, the SU-BR method is more accurate 
than the other two blocks-removed methods in terms of all five indices, 
which supports the conclusions from the qualitative assessment. Using 
SU-BR, the increases in CCs are 0.0704, 0.0481, 0.0589 for the original 
UBDF, STDFA and VIPSTF-SU methods, respectively. The increases in 
UIQI and decreases in RMSE, ERGAS and SAM are also substantial. 

(a) (b) (c) (d) (e) (f) 

Table 2 
Accuracy for the heterogeneous region.    

Ideal Original SU-NM SU-SF SU-BR 

CC UBDF 1 0.7220 0.7675 0.7656 0.7874 
STDFA 1 0.8007 0.8151 0.8154 0.8186 
VIPSTF-SU 1 0.8181 0.8400 0.8398 0.8446 

RMSE UBDF 0 0.0418 0.0399 0.0401 0.0394 
STDFA 0 0.0403 0.0380 0.0385 0.0372 
VIPSTF-SU 0 0.0343 0.0324 0.0325 0.0321 

ERGAS UBDF 0 1.6030 1.5356 1.5384 1.5133 
STDFA 0 1.5985 1.5163 1.5416 1.4868 
VIPSTF-SU 0 1.2963 1.2291 1.2359 1.2175 

UIQI UBDF 1 0.6474 0.6614 0.6642 0.6610 
STDFA 1 0.7833 0.7988 0.7974 0.8026 
VIPSTF-SU 1 0.8005 0.8125 0.8144 0.8120 

SAM UBDF 0 0.2244 0.2157 0.2139 0.2103 
STDFA 0 0.1722 0.1590 0.1661 0.1552 
VIPSTF-SU 0 0.1615 0.1518 0.1504 0.1494  

Fig. 9. Predictions for the region with land cover changes based on UBDF coupled with different blocks-removed methods. (a) Landsat at the known time. (b) UBDF. 
(c) UBDF-NM. (d) UBDF-SF. (e) UBDF-BR. (f) Reference. The images in the second line are the corresponding predictions for the sub-area marked in yellow in the first 
line. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 10. Predictions for the region with land cover changes based on STDFA coupled with different blocks-removed methods. (a) Landsat at the known time. (b) 
STDFA. (c) STDFA-NM. (d) STDFA-SF. (e) STDFA-BR. (f) Reference. The images in the second line are the corresponding predictions for the sub-area marked in yellow 
in the first line. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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3.2.3. Results for the homogeneous region 
Fig. 12 shows the predictions based on UBDF for the homogeneous 

region. The results of one sub-area are zoomed to facilitate visual 
comparison. It should be noted that the block effect for this region is not 

as obvious as that for the previous two regions. This is because the intra- 
class spectral variation for the homogeneous region is not great, leading 
to smaller differences in class reflectance between adjacent pixels. 
Checking the results, the ability to remove blocky artifacts of our pro
posed method is also demonstrated. The result predicted by UBDF-SF 
presents ambiguous artifacts, which may be helpful for reproducing 
more spatial variation. The results of quantitative assessment for all 
three blocks-removed methods are listed in Table 4. It is seen that all 
three SU-BR methods outperform the original spatial unmixing methods. 
Furthermore, SU-BR has a comparable performance with SU-SF and both 
produce greater accuracy than SU-NM. 

3.3. Comparison with other methods 

As demonstrated in Section 3.2, the SU-BR method increases the 
accuracy of the original spatial unmixing-based methods by reducing the 
blocky artifacts effectively. Also, it presents greater prediction accuracy 
than other simple blocks-removed algorithms (i.e., SU-SF and SU-NM). 
Admittedly, the original spatial unmixing-based methods are some
times inferior to spatial weighting-based methods (e.g., STARFM) and 
hybrids methods (e.g., FSDAF) due to the effect of blocky artifacts. Since 
the SU-BR method can remove the blocks effectively, a comparison is 

Fig. 11. Predictions for the region with land cover changes based on VIPSTF-SU coupled with different blocks-removed methods. (a) Landsat at the known time. (b) 
VIPSTF-SU. (c) VIPSTF-SU-NM. (d) VIPSTF-SU-SF. (e) VIPSTF-SU-BR. (f) Reference. The images in the second line are the corresponding predictions for the sub-area 
marked in yellow in the first line. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 3 
Accuracy for the region with land cover changes.    

Ideal Original SU-NM SU-SF SU-BR 

CC UBDF 1 0.6306 0.6829 0.6947 0.7010 
STDFA 1 0.6937 0.7229 0.7321 0.7418 
VIPSTF-SU 1 0.7124 0.7508 0.7534 0.7713 

RMSE UBDF 0 0.0372 0.0352 0.0349 0.0346 
STDFA 0 0.0358 0.0335 0.0332 0.0320 
VIPSTF-SU 0 0.0331 0.0313 0.0312 0.0305 

ERGAS UBDF 0 1.2493 1.1895 1.1791 1.1709 
STDFA 0 1.1373 1.0606 1.0466 1.0092 
VIPSTF-SU 0 1.0906 1.0341 1.0323 1.0090 

UIQI UBDF 1 0.6040 0.6332 0.6441 0.6448 
STDFA 1 0.6840 0.7158 0.7253 0.7359 
VIPSTF-SU 1 0.6991 0.7269 0.7317 0.7406 

SAM UBDF 0 0.1365 0.1246 0.1247 0.1208 
STDFA 0 0.1551 0.1441 0.1493 0.1351 
VIPSTF-SU 0 0.1189 0.1068 0.1104 0.1023  

Fig. 12. Predictions for the homogeneous region based on UBDF coupled with different blocks-removed methods. (a) UBDF. (b) UBDF-NM. (c) UBDF-SF. (d) UBDF- 
BR. (e) Reference. The images in the second line are the corresponding predictions for the sub-area marked in yellow in the first line. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 

Q. Wang et al.                                                                                                                                                                                                                                   



Remote Sensing of Environment 256 (2021) 112325

11

warranted between SU-BR and other types of methods. In this paper, two 
popular methods, including STARFM of the spatial weighting-based 
method and FSDAF of the hybrid methods were used for comparison. 
Note that we did not consider ESTARFM as it requires two MODIS- 
Landsat image pairs for implementation, but the spatial unmixing 
methods investigated in this paper are all based on a single image pair. 
For fair comparison, we therefore considered the methods that can also 
be performed using a single image pair (i.e., STARFM and FSDAF). The 
SU-BR predictions based on all three choices (UBDF, STDFA and VIPSTF- 
SU) are included in the comparison. The predictions for the heteroge
neous region, the region with land cover changes and the homogeneous 
region are shown in Figs. 13, 14 and 15, respectively. 

As shown in Fig. 13, the predictions of UBDF-BR, STDFA-BR and 
VIPSTF-SU-BR are visually more similar to the reference (see, for 
example, the bright red vegetation in these methods). Furthermore, 
VIPSTF-SU-BR predicts the reflectance of the patches most accurately. 
On the contrary, the hue as a whole is darker in STARFM and FSDAF 
compared to the reference. With respect to the region with land cover 
changes shown in Fig. 14, the prediction is visually less accurate than 
that for the heterogeneous region due to the great temporal changes 
between the images at the known and prediction times. Although 
STARFM and FSDAF seem to predict well the dark blue patch, there exist 
unexpected red patches when focusing on the left part of the sub-area. 
The prediction of VIPSTF-SU-BR is more similar to the reference 
image as a whole, which can be validated by the restoration of the brown 
patches in the sub-area. Focusing on the predictions for the homoge
neous region in Fig. 15, it is obvious that the predictions of STDFA-BR, 
VIPSTF-SU-BR and FSDAF are closer to the reference image. Moreover, 

the curved line object in the middle of the sub-area predicted by VIPSTF- 
SU-BR is the closest to the reference. 

Table 5 shows the results of quantitative assessment of the different 
methods for the three regions together. Overall, the predictions for the 
homogeneous region have the greatest accuracy while the predictions 
for the region with land cover changes are the least accurate. Checking 
the results for the heterogeneous region, VIPSTF-SU-BR produces the 
greatest CC and the smallest RMSE, ERGAS and SAM. More precisely, the 
CC for VIPSTF-SU-BR is 0.8446, with an increase of 0.0403 and 0.0132 
compared to STARFM and FSDAF. Also, the CC of VIPSTF-SU-BR is 
0.0572 and 0.0260 larger than for UBDF-BR and STDFA-BR. VIPSTF-SU- 
BR produces the smallest ERGAS of 1.2175, which is 0.4521 and 0.1962 
smaller than for STARFM and FSDAF. For the region with land cover 
changes, VIPSTF-SU-BR also produces the greatest CC of 0.7713 and the 
smallest SAM of 0.1023, which is 0.0471 and 0.0221 smaller than for 
STARFM and FSDAF. For the homogeneous region, STDFA-BR has the 
greatest prediction accuracy and VIPSTF-SU-BR has very close accuracy 
to STDFA-BR. The RMSE of STDFA-BR is 0.0168, which is 0.0012 and 
0.0003 smaller than for STARFM and FSDAF. 

3.4. Analysis of parameters 

3.4.1. The magnitude regularization parameter A 
The aim of using A as a coefficient of the spatial continuity constraint 

term D is to match its magnitude with that of the data fidelity term R. As 
mentioned earlier in Section 2.4, we utilized statistical information of D 
and R in predictions of the original spatial unmixing methods to estimate 
the magnitude regularization parameter A. The histograms of D and R in 
the original STDFA predictions for the three regions are shown as ex
amples for illustration in Fig. 16. From the histograms, the values of the 
magnitude regularization parameter A were determined as 100, 10 and 
1000 for the heterogeneous region, the region with land cover changes 
and the homogeneous region, respectively. The value of A for the ho
mogeneous region is the largest, as the original predictions (e.g., STDFA 
predictions illustrated here) of reflectances of the same class in neigh
boring pixels are most similar (i.e., the term of D is very small). Thus, A 
tends to be larger to match the magnitude of D with R. Note that the 
smallest value of D also suggests that the block effect is the weakest for 
the homogeneous region. 

3.4.2. The balancing parameter α 
The balancing parameter α is used to control the contributions of the 

spatial continuity constraint term and the data fidelity term. The CCs of 
STDFA-BR and VIPSTF-SU-BR in relation to different balancing param
eters are shown in Fig. 17, where the accuracies of the corresponding 
SU-SF and SU-NM versions are also provided for comparison. It is clear 

Table 4 
Accuracy for the homogeneous region.    

Ideal Original SU-NM SU-SF SU-BR 

CC UBDF 1 0.7383 0.7565 0.7838 0.7684 
STDFA 1 0.8888 0.8947 0.8965 0.8971 
VIPSTF-SU 1 0.8850 0.8911 0.8954 0.8930 

RMSE UBDF 0 0.0287 0.0274 0.0268 0.0266 
STDFA 0 0.0176 0.0171 0.0170 0.0168 
VIPSTF-SU 0 0.0177 0.0171 0.0169 0.0169 

ERGAS UBDF 0 0.6662 0.6417 0.6240 0.6293 
STDFA 0 0.4227 0.4101 0.4071 0.4053 
VIPSTF-SU 0 0.4250 0.4116 0.4049 0.4083 

UIQI UBDF 1 0.6822 0.6969 0.7100 0.6943 
STDFA 1 0.8859 0.8907 0.8930 0.8913 
VIPSTF-SU 1 0.8767 0.8811 0.8855 0.8804 

SAM UBDF 0 0.0987 0.0967 0.0950 0.0944 
STDFA 0 0.0518 0.0507 0.0516 0.0499 
VIPSTF-SU 0 0.0541 0.0531 0.0524 0.0528  

Fig. 13. Predictions for the heterogeneous region using different methods. (a) STARFM. (b) FSDAF. (c) UBDF-BR. (d) STDFA-BR. (e) VIPSTF-SU-BR. (f) Reference. 
The images in the second line are the corresponding predictions for the sub-area marked in yellow in the first line. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 
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that for all three regions, SU-BR is more accurate than SU-SF and SU-NM 
when α takes a value between 0.2 and 0.8. For the heterogeneous region 
and region with land cover changes, the CCs are maximum when the 
balancing parameter is around 0.5, suggesting that the influences of the 
two terms are comparable after the magnitude adjustment by the 
magnitude regularization parameter A. Thus, for these two types of re
gions, the median is suggested as a preferable choice for α, as was done 
in the experiments in Sections 3.2 and 3.3. With respect to the homo
geneous region, with an increase in α, the CC decreases very slightly (by 
only around 0.002 when α increases from 0.1 to 0.9). This is attributed 
mainly to the weak block effect for the homogeneous region. Therefore, 
since the magnitude of the data has been adjusted by the parameter A, 
the selection of α generally will not exert much influence on the pre
diction accuracy and the median could be a preferable choice in most 
cases. 

4. Discussion 

4.1. Comparison between SU-NM, SU-SF and SU-BR 

In the proposed SU-BR method, two terms are considered: the re
sidual error in the unmixing model and the spatial continuity of class 
reflectance. The residual error term represents the data fidelity, which 
measures the ability to preserve the original coarse spatial resolution 
image at the prediction time. Meanwhile, the spatial continuity 

constraint is the key to removing blocks. For conventional spatial 
unmixing-based methods (i.e., UBDF, STDFA and VIPSTF-SU), the class 
reflectances are predicted by simply minimizing the residual error to 
ensure the greatest data fidelity. Due to the differences in sensors and 
acquisition conditions, however, a bias always exists in the coarse 
reflectance compared to the fine spatial resolution data (i.e., when the 
fine spatial resolution data are upscaled to the coarse spatial resolution, 
they are different from the observed coarse data) (Chen et al. 2020; Li 
et al. 2020b; Xie et al. 2018). It is obvious in Fig. 5 that the reflectance 
predicted by UBDF (Fig. 5(a)) varies greatly from that of the reference 
(Fig. 5(e)). Thus, to consider merely the residual error may not result in 
an accurate prediction. To investigate the relation between the residual 
error and the fusion accuracy, the results of different blocks-removed 
methods based on UBDF for the heterogeneous region are listed in 
Table 6. Note that the residual error here is the average of errors of all 
coarse pixels in all bands. 

It can be noticed that UBDF has the smallest residual error of 0.0196, 
but produces the smallest CC of 0.7220. On the contrary, although the 
residual error of UBDF-BR is the largest, it provides the greatest pre
diction accuracy. The residual error of UBDF-NM is smaller than that for 
UBDF-BR, but its performance in spatio-temporal fusion is inferior to 
UBDF-BR. This phenomenon is related to the mechanisms of the two 
types of blocks-removed methods. The original UBDF, STDFA and 
VIPSTF-SU methods simply consider minimizing the residual error as the 
objective, so that they are most likely to be influenced by the bias 

Fig. 14. Predictions for the region with land cover changes using different methods. (a) STARFM. (b) FSDAF. (c) UBDF-BR. (d) STDFA-BR. (e) VIPSTF-SU-BR. (f) 
Reference. The images in the second line are the corresponding predictions for the sub-area marked in yellow in the first line. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 15. Predictions for the homogeneous region using different methods. (a) STARFM. (b) FSDAF. (c) UBDF-BR. (d) STDFA-BR. (e) VIPSTF-SU-BR. (f) Reference. The 
images in the second line are the corresponding predictions for the sub-area marked in yellow in the first line. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 

Q. Wang et al.                                                                                                                                                                                                                                   



Remote Sensing of Environment 256 (2021) 112325

13

originating from the observed coarse data. As for the two blocks- 
removed methods used as benchmarks in this paper, SU-SF and SU- 
NM, they both apply a simple post-processing to the results of the 
original methods. The separate post-processing means that SU-SF and 
SU-NM are heavily dependent on the previous estimation. As a result, 
although the blocky artifacts can be removed by adapting these two 
methods, their ability to correct the reflectance misestimated by the 
original methods is limited. For the proposed SU-BR method, however, 
simultaneously the blocky artifacts are removed obviously and the 
prediction is closer to the reference (see Fig. 5(d)). The reason is that SU- 
BR performs unmixing by considering jointly the objective of mini
mizing the residual error and the constraint of the spatial continuity of 
land cover, and a balance is found between these two aspects through 
the iterative process. The constraint of spatial continuity allows the 
predicted reflectance to approach that of neighboring pixels gradually, 
producing greater possibility to reduce the influence of the data fidelity 
where bias in the original observed coarse data can adversely affect the 
final prediction. Therefore, the prediction of SU-BR varies noticeably 
compared to the original method, SU-SF and SU-NM, and is closer to the 
reference. 

In fact, SU-BR sacrifices data fidelity to a certain extent for a more 
accurate prediction. If the difference between the coarse and fine data is 
very small and the observed coarse data are sufficiently reliable (i.e., the 
data fidelity is sufficient reliable), the sacrifice of data fidelity may not 
necessarily lead to an increase in accuracy. In this case, post-processing 
such as the residual compensation strategy in Fit-FC (Wang and Atkin
son 2018) may be considered. In future research, it would be of great 
interest to consider a pre-processing step to reduce the difference be
tween the coarse and fine data for more reliable spatio-temporal fusion. 

4.2. Comparison between UBDF, STDFA and VIPSTF-SU and their BR 
versions 

Three spatial unmixing-based spatio-temporal fusion methods, 
UBDF, STDFA and VIPSTF-SU, are considered in the application of SU- 
BR. For UBDF, only the classification map produced from the fine 
spatial resolution multispectral images at the known time is used instead 
of the original multispectral image. The classification map preserves the 
thematic class information, but ignores the intra-class spectral variation. 
Thus, UBDF fails to recover the intra-class spectral variation which is 
important to characterize the texture information in the fine spatial 
resolution image. STDFA and VIPSTF-SU are performed based on image 
pairs, which utilize one more input image (i.e., the coarse image at the 
known time) than UBDF. STDFA calculates the fine spatial resolution 
class reflectance change based on the changes between the coarse spatial 
resolution images at known and prediction times. VIPSTF-SU extends 
STDFA based on the virtual image pair constructed from the original 
image pair, which is closer to the images at the prediction time (Wang 
et al. 2020c). The application of virtual image pair decreases the un
certainty in unmixing and recovers the fine spatial resolution informa
tion more accurately. Among the three methods, VIPSTF-SU has the 
greatest prediction accuracy. Inheriting this advantage, the corre
sponding SU-BR version of VIPSTF-SU (i.e., VIPSTF-SU-BR) is more ac
curate than the other two versions (UBDF-BR and STDFA-BR), as seen in 
the experiments. 

4.3. The performance of SU-BR in different regions 

In this paper, the blocks-removed method was performed for three 
regions, including the heterogenous region, the region with land cover 
changes and the homogeneous region. It can be noted that the perfor
mance of SU-BR varies for different regions. Generally, SU-BR presents 
greater advantages in removing blocks and recovering the reflectances 
in the heterogeneous region and the region with land cover changes. For 
the homogeneous region, the prediction of the original methods does not 
present obvious blocky artifacts because of the large similarity between 
neighboring pixels and the very small land cover change. Thus, the effect 
of SU-BR is not obviously observed. For the other two regions, there 
exists great variation between neighboring pixels, resulting in severe 
blocky artifacts, where there is a great need for SU-BR, as seen in the 
experiments. 

4.4. The applicability of SU-BR 

For the SU-BR method proposed in this paper, two aspects can be 
considered in regard to its applicability. On the one hand, as validated in 
the experiments, SU-BR is applicable to different spatial unmixing 
methods, including UBDF, STDFA and VIPSTF-SU. Therefore, SU-BR has 
the potential to solve effectively the common problem of blocky artifacts 
in almost all spatial unmixing-based methods. On the other hand, SU-BR 
provides a general framework for enhancing spatial unmixing-based 
methods, which can be summarized as 

J = G+C (8)  

where G represents the goal (i.e., minimizing residual error) and C 
represents the constraint. The proposed SU-BR is fully compliant with 
this general framework, where the constraint C denotes the differences 
in reflectances of the same land cover class in spatially adjacent pixels. 
In some existing works, class reflectance of pure coarse pixels (e.g., 
MODIS pixels) (Xu et al. 2015) and prediction of some other spatio- 
temporal fusion methods such as STARFM (Gao et al. 2006) are used 
as constraints. The proposed SU-BR provides a flexible constraint that is 
compatible with any existing constraints. For example, the constraint 
provided by the pure coarse pixels can be added to the term C in Eq. (8) 
for possible enhancement, if such pure pixels exist widely in the 

Table 5 
Accuracy of different methods for the three regions.    

Ideal Heterogeneous 
region 

Region 
with land 
cover 
changes 

Homogeneous 
region 

CC STARFM 1 0.8043 0.7643 0.8897 
FSDAF 1 0.8314 0.7705 0.8946 
UBDF-BR 1 0.7874 0.7010 0.7684 
STDFA- 
BR 

1 0.8186 0.7418 0.8971 

VIPSTF- 
SU-BR 

1 0.8446 0.7713 0.8930 

RMSE STARFM 0 0.0411 0.0323 0.0180 
FSDAF 0 0.0357 0.0297 0.0171 
UBDF-BR 0 0.0394 0.0346 0.0266 
STDFA- 
BR 

0 0.0372 0.0320 0.0168 

VIPSTF- 
SU-BR 

0 0.0321 0.0305 0.0169 

ERGAS STARFM 0 1.6696 1.0154 0.4228 
FSDAF 0 1.4137 0.9366 0.4112 
UBDF-BR 0 1.5133 1.1709 0.6293 
STDFA- 
BR 

0 1.4868 1.0092 0.4053 

VIPSTF- 
SU-BR 

0 1.2175 1.0090 0.4083 

UIQI STARFM 1 0.7753 0.7544 0.8876 
FSDAF 1 0.8169 0.7653 0.8881 
UBDF-BR 1 0.6610 0.6448 0.6943 
STDFA- 
BR 

1 0.8026 0.7359 0.8913 

VIPSTF- 
SU-BR 

1 0.8120 0.7406 0.8804 

SAM STARFM 0 0.1758 0.1494 0.0676 
FSDAF 0 0.1552 0.1244 0.0573 
UBDF-BR 0 0.2103 0.1208 0.0944 
STDFA- 
BR 

0 0.1552 0.1351 0.0499 

VIPSTF- 
SU-BR 

0 0.1494 0.1023 0.0528  
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observed coarse image at the prediction time. In future research, more 
potential constraints can be included in SU-BR to further enhance the 
performance of removing blocks and further, increase the accuracy of 
spatio-temporal fusion. The common choice for blending the multiple 
constraints would be linear combination. It would be a critical issue to 
determine reasonably the contributions of each constraint term. 

4.5. The computational cost of SU-BR 

As SU-BR requires a number of iterations, it is more time-consuming 
compared to the original spatial unmixing-based methods. Table 7 
shows the computational cost of the three SU-BR versions and the cor
responding original methods for the three regions. All experiments were 
carried out using MATLAB (R2019a) based on a laptop with an Intel(R) 
Core(TM) i7-8750H CPU at 2.20 GHz. The Landsat ETM+ images used in 

Fig. 16. Histograms of the data fidelity term R (left) and the spatial continuity constraint term D (right) produced based on the predictions of the original STDFA 
method. (a) and (b) heterogeneous region. (c) and (d) region with land cover changes. (e) and (f) homogeneous region. 
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the heterogeneous region and the region with land cover changes have 
the same spatial size of 800 by 800 pixels, while the homogeneous re
gion covers an area of 600 by 600 Landsat pixels. For the heterogeneous 
region and the region with land cover changes, by adopting SU-BR, the 
computing time increases from around 2 min to more than 44 min. As for 
the homogeneous region, the computational cost also increases signifi
cantly from less than 1 min to more than 12 min. 

It can be noted that the terminal condition of SU-BR involves two 
cases: 1) the pre-defined maximum number of iterations is achieved; 2) 
the difference between three consecutive realizations is smaller than the 
pre-defined threshold. Since the spatial unmixing is applied to each 
coarse pixel in each iteration, the computational cost is expensive when 
either the number of iterations or coarse pixels is large. Actually, the 
solution of some pixels remains stable after several iterations, especially 
for pixels located at the center of a large object or even in a homoge
neous area. To reduce the redundant operation on these pixels, a pixel 
level terminal condition can be defined potentially. For example, when 
the change of predicted reflectance of a pixel reaches a threshold, this 
pixel will be marked and the result in this iteration will be recorded. 
Meanwhile, this pixel will not be updated in the next iterations, while its 
neighbors can be updated conditionally upon its static value. By 
adopting this strategy, the computational cost may be saved dramati
cally, especially for the homogeneous region where the block effect is 
relatively weak. 

4.6. The limitation of SU-BR 

This paper aims at removing blocks in spatial unmixing-based spatio- 
temporal fusion methods. However, it can be seen from the visual pre
sentation of the SU-BR prediction that the blocks still exist to a limited 
extent. Considering the mechanism of SU-BR, two main reasons may 
result in the incomplete removal of the blocky artifacts. First, it should 
be stressed that the implementation of SU-BR is based on the assumption 
that no land cover change occurs between images at the known and 
prediction times whereas, in fact, land cover change is inevitable. In SU- 
BR, if neighboring pixels belonging to different land cover classes with 
the center pixel at the known time change to share the same land cover 
class at the prediction time, they will still be assumed to belong to 
different classes and allocated with different reflectances in spatial 
unmixing. As a result, the blocky artifacts will remain because these 
changed pixels are ignored. Second, the intra-class spectral variation can 
also be an obstacle for complete elimination of blocky artifacts. As 
analyzed explicitly in Section 2.2, the blocky artifacts reflect the intra- 
class spectral variation in fusion predictions at the coarse spatial reso
lution. It means the block effect will exist as long as there is intra-class 
spectral variation for the observed data. No matter how many itera
tions are taken in the SU-BR model, the difference between the esti
mated reflectance for pixels of the same class remains, presenting the 
blocky artifacts. Except for the method to remove blocks based on the 
spatial continuity of class reflectance, other post-processing strategies 
may be considered to further eliminate the blocks. The application of 
these strategies may potentially enhance the performance in removing 
the blocky artifacts. Nevertheless, it should be emphasized that the ul
timate purpose of removing blocks is to increase the accuracy of spatio- 
temporal fusion. It is still unclear whether the further removal of blocks 
will necessarily benefit the prediction or increase the prediction 
accuracy. 

5. Conclusion 

The block effect is a long-standing issue in spatial unmixing-based 
spatio-temporal fusion, which influences the prediction accuracy 
greatly. This paper proposed a SU-BR method to cope with the problem 
of blocky artifacts in spatial unmixing predictions. Based on the 
assumption of spatial continuity, SU-BR removes the blocky artifacts by 
minimizing the difference in reflectances of the same land cover class in 
spatially adjacent pixels. SU-BR was applied to three typical spatial 
unmixing-based methods (i.e., UBDF, STDFA and VIPSTF-SU), and was 
examined using datasets covering three different landscapes (one het
erogeneous region, one region experiencing land cover changes and one 
homogeneous region) in the experiments. The main findings of this 

(a)                                                              (b)                                                         (c)

Fig. 17. The impact of α on the accuracy of STDFA-BR and VIPSTF-SU-BR. (a) Heterogeneous region. (b) Region with land cover changes. (c) Homogeneous region. 
The dotted line and dashed line represent the accuracies of SU-NM and SU-SF, respectively. 

Table 6 
The prediction accuracy (in terms of CC) and the residual error of the spatial 
unmixing methods for the heterogeneous region.   

UBDF UBDF-NM UBDF-BR 

Prediction accuracy 0.7220 0.7675 0.7874 
Residual error 0.0196 0.0211 0.0229  

Table 7 
The computational cost (in units of seconds).  

Spatial size Heterogeneous 
region 

Region with land 
cover change 

Homogeneous 
region 

800 × 800 Landsat 
pixels 

800 × 800 Landsat 
pixels 

600 × 600 Landsat 
pixels 

Original SU-BR Original SU-BR Original SU-BR 

UBDF 68.0 3117.0 245.8 7638.0 58.3 1764.0 
STDFA 72.9 2678.1 120.6 3829.4 44.3 1127.0 
VIPSTF-SU 62.6 2640.4 98.2 3975.3 50.1 767.7  
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paper are summarized as follows.  

1) SU-BR can remove the blocky artifacts effectively in spatial 
unmixing-based spatio-temporal fusion. The blocky artifacts in the 
original UBDF, STDFA and VIPSTF-SU predictions are removed 
obviously by applying SU-BR.  

2) SU-BR can increase the prediction accuracy of spatio-temporal 
fusion. For the heterogeneous region, the CCs of UBDF-BR, STDFA- 
SU-BR and VIPSTF-SU-BR are 0.0654, 0.0179 and 0.0265 larger than 
the original methods.  

3) SU-BR is more accurate than the other two potential benchmark 
methods for removing blocks, (i.e., SU-NM and SU-SF). For the re
gion with land cover changes, the UIQI of STDFA-BR is 0.0201 and 
0.0106 larger than STDFA-NM, STDFA-SF, respectively.  

4) SU-BR also outperforms two state-of-the-art methods, that is, 
STARFM and FSDAF. STARFM and FSDAF produce CCs of 0.8043 
and 0.8314 in the heterogeneous region, while VIPSTF-SU-BR pro
duces a larger CC of 0.8446.  

5) VIPSTF-SU-BR is a preferable choice in all three SU-BR versions. For 
the heterogeneous region, the CC of VIPSTF-SU-BR is 0.0572 and 
0.0260 larger than that of UBDF-BR and STDFA-BR. The UIQI of 
VIPSTF-SU-BR is 0.7406 in the region with land cover change, which 
is 0.0958 and 0.0047 larger than for UBDF-BR and STDFA-BR. 

6) SU-BR is applicable to various regions dominated by different land
scapes, and is more advantageous in removing blocks for the het
erogeneous region and the region experiencing land cover changes. 
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Appendix A. Appendix 

A.1. UBDF 

For UBDF, E in Eqs. (1) and (2) denotes the sub-pixel level re
flectances of all C classes. The reflectances of all N coarse pixels in the 
local window are arranged in an N × 1 vector Q. The predicted fine 
spatial resolution reflectance of each class in E is assigned directly to the 
fine spatial resolution pixels in the center coarse pixel according to their 
class labels in the known fine resolution image. 

A.2. STDFA 

STDFA is performed on the changes in the coarse spatial resolution 
images between the known and prediction times, on the condition that 
the two coarse images can be observed. Accordingly, E represents the 
temporal change of the reflectances of land cover classes at the target 
fine spatial resolution and Q represents the temporal change of the re
flectances of the coarse pixels in the local window. The predicted change 
of reflectance for each fine spatial resolution pixel is added to the known 
fine spatial resolution image to produce the final prediction. Compared 
to UBDF, STDFA makes fuller use of the fine spatial resolution image. 

A.3. VIPSTF-SU 

The VIPSTF approach proposed by Wang et al. (2020c) creates a 

virtual image pair to reduce the difference between the images at the 
known and prediction times to increase accuracy. VIPSTF-SU is per
formed by applying VIPSTF to the existing spatial unmixing-based 
STDFA method. Different from STDFA, VIPSTF-SU utilizes the virtual 
fine spatial resolution image to acquire the thematic map before 
upscaling it to synthesize the coarse proportions. Moreover, E represents 
the temporal change of the reflectances of land cover classes between 
the virtual coarse image and the coarse image at the prediction time, and 
Q represents the corresponding temporal change of the reflectances of 
the coarse pixels in a local window. The final prediction is acquired by 
combining the predicted temporal change of the reflectance of land 
cover classes with the virtual fine spatial resolution image. 
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