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Spatial heterogeneity in ecosystem functioning is a key component of ecological variability requiring special
attention in the context of global change. A large history of human use has produced high physiognomic
heterogeneity in Mediterranean ecosystems. However, the consequences for ecosystem functioning remain
insufficiently understood. We analyzed spectral indicators of matter and energy fluxes in the land surface to
classify the functional ecosystem heterogeneity in a Mediterranean region covering different management

ﬁfg:j%rds: histories and protection types. We specifically analyzed the spatial variability in seasonal and annual
Dofiana patterns in the Normalized Difference Vegetation Index (NDVI), surface temperature (Ts) and albedo from
Ecological classification five Landsat ETM images. Then we classified numerically this variability into ecosystem functional types
Evapotranspiration (EFTs) and explored their seasonal dynamics in terms of photosynthetic radiation absorption and

fPAR evapotranspiration. We identified eight main EFTs with ecologically relevant differences including
Land use change contrasting dynamics in fPAR seasonality, great variation in incoming radiation reflection and differing
Landsat evapotranspiration rates, particularly during the water-limitation period. Functional variability in natural
NPVI . vegetation mostly consisted in dissimilar annual rates of NDVI and albedo, whereas differences in seasonality
g;;t‘c?ég:’rg:gm“ were more evident in transformed areas. Similarly, the spatial distribution of EFTs was partly associated to
protection, with two EFTs exclusive of protected areas and comparatively higher functional diversity in
humanized areas. Landform effects on water availability in protected areas and human activities under
different ecological settings were seemingly responsible for the large functional diversity of the region. We
advocate for the explicit incorporation of multifunctional ecosystem heterogeneity in ecosystem manage-

ment and monitoring designs.
© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Different drivers of current environmental change are rapidly
degrading terrestrial ecosystems at regional and global levels
(Millennium Ecosystem Assessment, 2005). In this context, the
importance of characterizing ecosystem heterogeneity attending the
composition, structure and functioning is well recognized in both
management and conservation (Noss, 1990; Christensen et al., 1996).
Recent advances in remote sensing have greatly contributed to map
the physiognomic heterogeneity of ecosystems and their alteration
both in space and time (e.g. Kerr & Ostrovsky, 2003). This has
improved our capacity to understand the magnitude of human
impacts on terrestrial ecosystems like the fragmentation and
degradation of forests and wetlands, increases in the proportion of
land dedicated to crops, expansion of deserts and the erosion of

* Corresponding author.
E-mail address: nestor@ebd.csic.es (N. Fernandez).

0034-4257/$ - see front matter © 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.rse.2009.09.001

species habitats. However, patterns in ecosystem functioning and
their changes still receive comparatively less attention among
managers and conservationists, perhaps because they are less
intuitive and more difficult to quantify. In recent years, ecosystem
scientists are emphasizing the importance of incorporating the
analysis and monitoring of carbon gains, nutrient cycling and water
dynamics in regional and local-scale conservation programs, e.g. in
protected areas (Paruelo et al., 2005; Crabtree et al., 2009). Expanding
these approaches is challenging but critical for understanding and
preserving the integrity of biological communities, ecosystem services
and climate (Vitousek, 1994; Hooper et al., 2005).

Regional variability in ecosystem functioning depends on a
complex combination of factors including the level of resources and
regulators, the biogeographical context, the local history of environ-
mental change and their interactions (Melillo et al., 1993; DeFries
et al, 1999). This complexity limits the usefulness of general
predictions to address local or regional ecosystem functional
responses to the different drivers of environmental change. For
example, analyses of land use change in different regions - mostly
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conversion of native vegetation to cropland - have shown both
increases and decreases in primary production depending on
ecological settings, the structure of the original vegetation and the
intensity of land transformation (Paruelo et al., 2004a; Bradford et al.,
2005). Uncertainties about the direction of land use effects on carbon
gains illustrate the difficulty of formulating region-specific predic-
tions about ecosystem functional responses to different regulators.
There is a need for advancing in the quantification of regional-scale
variability in ecosystem functioning, integrating matter and energy
patterns, variability in vegetation physiognomy and other aspects of
ecosystem structure, and their associations with human activities
(Paruelo et al., 2004b). Although various remote sensing studies have
found some degree of correspondence between ecosystem structure
and functioning (e.g. Gould, 2000; Paruelo et al., 2001a), there is a
general deficiency of knowledge about the nature and intensity of
these relationships in most environments including Mediterranean
ecosystems.

We propose that classification schemes able to incorporate
multiple functioning properties can greatly contribute to characterize
ecosystem heterogeneity and responses to environmental change,
both in time and space. A regional-scale functional characterization of
ecosystems requires the identification of matter and energy flux
dynamics that in general are not easy to perceive. Remote sensing
techniques allow quantifying key components of these fluxes and
overcome some of the previous limitations imposed by the scale
mismatch between field-based estimates and the spatial extent
required in regional analyses. Thus, the analysis of vegetation indices
(e.g. the normalized difference vegetation index NDVI) has provided
critical information on ecosystem dynamics and their environmental
and human controls, for example revealing the key impact of human
transformations on the seasonal dynamics of aboveground net
primary production (Guerschman et al., 2003; Bradford et al., 2006).
Broad spatial coverage and ecological significance make these spectral
indices suitable for developing process-based, broad-scale classifica-
tions of ecosystems grounded on their functioning properties. Based
on this idea, Soriano and Paruelo (1992) and Paruelo et al. (2001b)
introduced the concept of ecosystem functional type (EFT) to identify
similarly functioning ecosystems according to patterns in NDVIL
Ecologists and conservationists have widely recognized the practical
utility of exploring patterns in vegetation indices since then (e.g.
Turner et al., 2003; Cohen & Goward, 2004; Pettorelli et al., 2005) but
further advances are required for a comprehensive characterization of
ecosystems attending, additionally, to their contribution to water and
energy balances in the land surface (e.g. Chapin et al., 2008).

Here we focused on multifunctional properties of ecosystems to
develop a functional classification of a Mediterranean region
comprising different protection levels. Mediterranean ecosystems
have been extensively analyzed before using remote sensing mostly
to achieve physiognomic classifications of vegetation at various
spatial scales, for productivity and biomass monitoring, and for
evaluating changes in vegetation cover associated to degradation
processes (e.g. Shoshany, 2000; Hostert et al., 2003; Camacho-De Coca
et al., 2004; Hill et al., 2008). We specifically aimed to address the
following questions: (1) Is local-scale variability in ecosystem
functioning ecologically relevant (e.g. as compared with broader-
scale patterns in the Mediterranean and other regions)? Can this
variability be synthesized into ecologically differentiated functional
groups? (2) Do traditional structural descriptions of ecosystems
reflect their functional heterogeneity? (3) How does land protection
and human use intensity affect functional ecosystem heterogeneity?
We identified ecosystem functional types based on seasonal and
yearly functional parameters derived from NDVI, surface temperature
(Ts) and albedo. Altogether, these indices capture critical aspects of
carbon, energy and water fluxes in ecosystems, being NDVI a
surrogate of carbon gains, Ts an indicator of energy partition into
sensible and latent heat flux and albedo a key component of the

radiation balance. Additionally we analyzed, for the different
ecosystem functional types, seasonal patterns in evapotranspiration
(ETP) and the fraction of photosynthetically active radiation absorbed
by vegetation (fPAR). Lastly, we studied the correspondence between
functional and structural descriptions of ecosystem heterogeneity and
the effects of land use on ecosystem functioning.

2. Methods
2.1. Study region

We conducted this study in the Dofiana region in southwestern
Spain (38°13’ N, 48°10’ W), an area of 3560 km? that includes a wide
representation of protection levels (from strict protection to unpro-
tected) together with a rich variety of landforms and vegetation types
representative of Mediterranean lowlands (see Table 1 for a
comprehensive list of land cover types). Climate is Mediterranean
subhumid and has a well-defined seasonality, with mild and wet
winters and dry and hot summers. Mean annual precipitation is
550 mm, with rainfall displaying a sharp seasonality being mostly
concentrated between October and March (80%) and almost absent
between June and August.

Two different protection figures are included in the study area, the
Dofiana National and Natural Parks. The Dofiana National Park is one
of the most emblematic protected areas in Europe for its rich biotic
diversity (e.g. Fernandez-Delgado, 2006). It is strictly protected and
only few, low-intensity traditional activities are allowed. The Dofiana
Natural (i.e. Regional) Park was initially created to buffer human
impacts on the National Park. Here, a larger array of traditional
practices is allowed including forestry, cattle ranching and game, and
agriculture in some areas. Lastly, the region also includes non-
protected areas that experienced a great agricultural transformation
and intensified land use.

Two broad environmental units are represented in all protected
and non-protected areas: the Cotos constituted by sandy soils of
eolian origin and basal sands and slimes, and the Marismas (marshes)
on clayish soils which originated after the filling of the Guadalquivir
River old estuary. Vegetation in the Cotos has been transformed for
centuries, resulting in a dramatic reduction of native cork-oak
(Quercus suber), ash (Fraxinus angustifolia) poplar (Populus alba)
and juniper (Juniperus phoenicea) woodlands and their replacement
by scrubland formations dominated by Cistaceae (mostly Halimium
halimifolium) and heathers (Calluna vulgaris and Erica spp.). Ever-
green shrubs of Pistacia lentiscus and Myrtus communis are also found
in some reduced areas. Since the XVII century some pines (Pinus
pinea) are planted in the Cotos. More recently (1940s-1980s), larger
extensions were afforested with pines and Eucalyptus spp. for wood
and pine nut production. Simultaneously, most of the Marismas were
drained and cultivated under both irrigation (rice fields) and non-
irrigation (herbaceous crops), while water inputs in the natural marsh
within protected areas have been altered from mostly alluvial to
mostly pluvial.

2.2. Data collection

We used a representative sample of Landsat ETM+ satellite
images covering one complete hydrological year (from October to
September) between 2002 and 2003. The selected period represents a
typical year in both the amount and seasonal distribution of rainfall:
total precipitation in the study period was 549.5 mm of which 36%
occurred in autumn, 44% in winter and 20% in spring, whereas the
median for yearly precipitation over the period 1979-2003 was
548.6 mm, 34% in autumn, 45% in winter and 21% in spring. Therefore
we expected to capture the most representative yearly patterns of
ecosystem functioning in the region despite high interannual
variability may also occur. Additionally, the reason to select one
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Table 1
List of land use and land cover (LULC) types in the Dofiana region, SW Spain.
1st level 2nd level 3rd level 4th level
3 classes 8 classes 18 classes 40 classes
Wetlands (w) w-1 Marsh w-11 Marsh Tidal marsh; non-tidal marsh; bare marsh

w12 Salt marsh

w-21 Riparian vegetation

w-22 Seasonal lagoons

a-11 Homogeneous woody crops

a-12 Homogeneous herbaceous crops
a-21 Heterogeneous woody crops
a-22 Heterogeneous herbaceous crops
a-23 Crop mosaics with natural vegetation

n-1 Forest n-11 Dense forests
n
n
n

w-2 Other wetlands
Agricultural areas (a) a-1 Homogeneous agricultural areas

a-2 Heterogeneous agricultural areas

Natural and forested areas (n)

-12 Sparse forests with dense shrubland
-13 Sparse forests with sparse shrubland
-14 Sparse forests with pastures

n-2 Shrubland n-21 Dense shrubland
n-22 Disperse shrubland
n-31 Grassland

n-41 Sandy areas

n-3 Grassland
n-4 Low vegetation cover
n-42 Bare soils

Salt marsh

Gallery forests; other riparian vegetation

Seasonal lagoons

Non-irrigated crops; irrigated crops

Rice crops; other irrigated crops; non-irrigated crops
Non-irrigated crops; irrigated crops

Herbaceous crop mosaics

Crop mosaics with natural vegetation

Broadleaved; conifers; eucalyptus; mixed
Broadleaved; conifers; eucalyptus; mixed
Broadleaved; conifers; eucalyptus; mixed

Mixed broadleaved and pastures; mixed conifers and
pastures; mixed eucalyptus and pastures; other mixtures
Dense shrubland

Mixed shrubs and pastures; shrubs and bare soil
Continuous grassland; grassland with bare soil
Dunes and beaches

Bare soil; Burned areas

The LULC classification was hierarchically organized into four levels of classification detail (Modified from Moreira, 2007). We used the 3rd hierarchical level with 18 classes for

analyzing the correspondence between functional classes and LULC types.

representative year instead of a longer series of data was to avoid
potentially spurious effects of temporal ecosystem functional changes
(e.g. associated to land cover transformations) on the characterization
of the spatial heterogeneity in ecosystem functioning.

Landsat images were chosen because they provide fine-grained
data necessary for detecting high levels of spatial heterogeneity
expected in Mediterranean environments - pixel size is 30 m for all
bands except for the thermal band of 60 m - and the multi-spectral
information required for calculating several integrative ecosystem
indices. In contrast, the temporal resolution of our analysis is coarse
due to the low frequency of satellite data acquisition. We selected five
cloud-free images, each representing one study season, from summer
2002 to summer 2003. Images were dated on 18/07/02, 01/11/02, 10/
01/03, 18/05/03 and 14/08/03, time of acquisition 10:50 h UTC.
Radiometric data were corrected for atmospheric effects using dark-
object subtraction in non-thermal bands (Chavez, 1989) and a mono-
window algorithm in the thermal band (Qin et al., 2001). Images were
geometrically referenced and corrected using a second-order warp
function with 40 control points, achieving a mean-squared transfor-
mation error <1 pixel. The geometric correction was carried out after
calculating all functional indices from each image (see below) in order
to minimize wrapping effects on these calculations. All corrections
were performed using the ENVI V.4.2 package.

2.3. Estimation of functional parameters

We used three integrative indexes of the energy balance of the
land surface to define ecosystem functional types: the Normalized
Difference Vegetation Index (NDVI) indicative of primary production,
the land surface brightness temperature (Ts), related to heat partition,
and the albedo, informing on reflection of the incoming radiation. In a
first step, we did not include other ecosystem variables like fPAR or
evapotranspiration in order to achieve classifications with minimal
field data requirements and the least amount of assumptions and
transformations. NDVI was estimated as follows:

NDVI = (NIR—RED) / (NIR + RED)

where RED and NIR stand for the spectral reflectivity acquired in the
red and near-infrared wavelength intervals (Rouse et al., 1974), i.e.
bands 3 (0.63-0.69 um) and 4 (0.76-0.90 um) of Landsat images

respectively. This index measures the relative greenness of vegetation
capturing the low vegetation reflectance in the red spectral region due
to chlorophyll absorption and the dominant high reflectance in the
near-infrared in plant tissues. NDVI is linearly related to the fraction of
photosynthetically active radiation (Sellers et al., 1992) and hence to
the leaf area index (Curran, 1983), vegetation biomass (Tucker et al.,
1985) and net primary production (Prince, 1991). T, was estimated
converting reflectivity values in the thermal band 6 (10.40-12.50 pm)
to at-sensor bright temperature (in Kelvin degrees; Landsat Project
Science Office, 2008), and then applying the mono-window algorithm
proposed by Qin et al. (2001). We matched the thermal data to the
pixel size of other bands (30 m) sampling the image with no
interpolation (i.e. every quartet of the resulting pixels has the same
value of T;). Lastly, albedo was estimated from bands 1 (blue, 0.45-
0.52 um), 3,4, 5 (1.55-1.75 um) and 7 (2.08-2.35 um) following the
formula derived by Liang (2001) for Landsat ETM+ after decoupling
surface reflectance spectra from radiative transfer simulations:

Albedo = 0.356B1+0.130B3 +0.373B4+-0.085B5 +0.072B7—0.0018

Changes in the magnitude of albedo have important climatic and
biophysical consequences, being one of the most important attributes
for characterizing the surface energy balance (Dickinson, 1995).

We estimated three first-order parameters from each reflectivity
index and for every pixel of the image composite; these were the
annual mean, maximum and range (i.e. maximum-minimum values)
for the period between autumn 2002 and summer 2003 (i.e. one
complete year). Then we estimated four second-order variables
informing about ecosystem functional phenology, described as the
daily rate of change between consecutive seasons for the period
between summer 2002 and summer 2003 (i.e. all seasonal transitions
in one year). This rate was calculated as the difference between one
season and the next divided by the number of days between satellite
scenes. In total each pixel was characterized by 21 functional variables
corresponding to three first-order and four second-order derivations
of NDVI, T and albedo data.

2.4. Definition of ecosystem functional types

We classified the observed variability in ecosystem functioning
using clustering methods of data aggregation. For computational
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limitations we used a sub-sample of one of every 4 pixels in both axes
of the image. We standardized the data subtracting by the mean and
dividing by the absolute deviation and estimated dissimilarity among
observations calculating the Euclidian distance from the 21 variables.
Data was finally clustered using the Clara algorithm (Kaufman &
Rousseeuw, 1990), a non-hierarchical classification method based on
partitioning around medoids (PAM). PAM searches for a number k of
representative medoids in the data, i.e. data coordinates defining the
central position of each cluster which minimizes the sum of
dissimilarities among all cluster observations. Clara allows finding
optimal medoids in large datasets by achieving PAM sub-samples of
fixed size, and then assigns observations to the nearest optimal
medoid to generate k clusters of data. Compared to other partitioning
methods, Clara is more robust to extreme observations and noise, a
frequent problem in remote sensing data.

One critical issue was deciding the optimal number of clusters k for
aggregating the observed variability in the data. Most ecological
classifications introduce some degree of subjectivity by either
selecting k prior to data analysis (e.g. on the basis of verbal class
descriptions) or specifying an arbitrary numerical threshold for the
cluster distance estimates. In our study we intended to avoid any
subjective delimitation of ecosystem functional types by using the
Gap statistic (Tibshirani et al., 2001), a method that compares the
change in within-cluster dispersion for a specified range of k with that
expected under an appropriate null distribution. In essence, this
method produces B uniform datasets for every k, computes the
pooled within-cluster sum of squares around the cluster means (W)
and compares it with its expectation under the null reference
distribution (B). Gap(k) is the difference between the expected and
observed log(W,), and the standard deviation SDj, is estimated from
the reference distribution. We selected the uniform reference
distribution aligned with the principal components of the data,
therefore avoiding assumptions about the shape of the data
(Tibshirani et al., 2001). In our procedure, we simulated classifications
varying k between 1 and 35 clusters and using B= 100 Monte-Carlo
reference distributions. The optimal number of clusters was the
smallest k that satisfied the following two equations:

Gap(k)>Gap(k + 1)—1.96S; , ,

Gap(k)=Gap(k + 2)—1.96S,, , ,

where:
Sk =SDyw1+1/B

The optimal k was retained to identify ecosystem functional types
from the clustered sub-sample of one of every 4 pixels. EFTs were
finally mapped after classifying the complete image applying
maximume-likelihood supervised classification (Richards, 1999)
using the cluster observations as training data. Gap and cluster
analyses were programmed in the R-statistical package V.2.1
(R Development Core Team, 2005).

2.5. Characterization of ecosystem functional types

Functional differences among EFTs were first explored by exam-
ining their position in the multidimensional space formed by the 21
functional variables using multiple discriminant analysis (e.g.
Legendre & Legendre, 1998). We then examined the functional
phenology for each type attending to two ecosystem parameters
calculated from the original indices and meteorological data: the
fraction of photosynthetic active radiation intercepted by vegetation
(fPAR) and evapotranspiration (ETP). NDVI is approximately linearly
related to fPAR (Ruimy et al., 1994), a direct indicator of aboveground
primary production (Running et al., 2000). For each image date, we

calculated the mean incoming radiation from data acquired in four
weather stations located in the study area. Then, we explored the
seasonal behaviour of fPAR in each functional type from the class
means. Second, ETP was estimated from remote sensing data using
the so-called simplified method as follows (Carlson et al., 1995):

ETP = Rn—B(T,—T,)"

Where Rn is the net radiation, T, is the air temperature and B and n
are parameters that vary with vegetation. We estimated Rn from
geometrical calculations of solar radiation and surface albedo
following the procedure described in Nosetto et al. (2005). B and n
were calculated from models based on NDVI data (Carlson et al.,
1995), and T, was averaged from data collected in four weather
stations at the time of satellite data acquisition. Seasonality in fPAR
and ETP was finally examined for each ecosystem functional type
based on their average behaviour.

2.6. Correspondence between functional and structural classifications

We explored the association between EFTs and vegetation struc-
ture using correspondence analysis (CA; Legendre & Legendre, 1998).
The vegetation composition of each functional type was estimated
using a land use/land cover map of Southern Spain for the year 2003
(Moreira, 2007). This map was produced from the visual image
interpretation of color and panchromatic ortophotos of 1 m and 0.5 m
resolution, respectively, and supported with a temporal series of
Landsat images covering the production year for differentiating highly
seasonal land cover types (especially crop types). The map scale is
1:25,000 with minimum recognition units of 2500 m? and the
documented classification accuracy is >94% (Moreira, 2007). The
map information is organized in four different hierarchical levels of
classification. For clarity, we re-arranged the hierarchical classification
into four levels and analyzed the third classification level which
represents a compromise between detail and generality in class
descriptions (see Table 1). Correspondence analysis was performed
on the cross-tabulation table of class-area frequencies calculated from
the sub-sample of one of every 4 pixels. The relative agreement
between ecosystem functional types and structural classes was then
evaluated exploring the amount of inertia accounted for in each
dimension of the CA, a measure of the sum of eigenvalues that reflects
the spread of class points around the centroid. Finally, the relationship
between functional and structural classifications was assessed by
visual exploration of the two-dimensional plot of class coordinates
together with the examination of the proportion of each land cover
class within each EFT.

3. Results
3.1. Diversity of ecosystem functional types

The gap analysis indicated that the best separation of ecosystem
functional types was achieved at k=8 clusters (see Appendix A,
Fig. A1). However, the gap curve pointed to other local solutions of
less separated groups at k=19 and k=28. The existence of several
solutions is in agreement with the essence of ecosystem heterogene-
ity where patterns can be recognized at different levels of complexity
and spatial detail. Here we focused on the primary classification with
eight groups (Fig. 1).

We numbered EFTs attending to the cluster similarities among
them (Fig. 2); for example, EFT.1 and EFT.2 were closely related
whereas EFT.8 showed the highest dissimilarity with all other
functional types. EFTs.1-4 were characterized by relatively high
annual NDVI means (Fig. 3) although EFT.1 and EFT.2 were unique in
showing clear NDVI increases in autumn. These were the most
abundant functional types in the Doflana region whereas EFT.3 and
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Fig. 1. Distribution of ecosystem functional types (EFTs) in the Dofiana region, southwestern Spain. Colors represent the different EFTs (1-8; see legend) derived from the
classification of Landsat ETM images attending to NDVI, albedo and surface temperatures in the hydrological year 2002-2003. The solid line shows the limits of the Dofiana National
Park and dashed lines show the different sectors of the Dofiana Natural Park. White areas are masked areas of ocean (southwest), inland water bodies, and urban areas.
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Fig. 2. Similarity among ecosystem functional types (EFTs) of the Dofiana region
resulting from the hierarchical cluster of medoids. Medoids represent the central
position of each EFT minimizing the sum of dissimilarities among all observations.

EFT.4 were relatively abundant only in non-protected areas (Table 2).
EFT.5 was characterized by clear increases in surface temperature and
decreases in NDVI in summer contrasting with EFTs. 6-8 (results not
shown). EFT.7 and EFT.8, the best separated in the cluster, were the
rarest in terms of representativeness each occupying <3% of the total
area (Fig. 2 and Table 2).

Annual average values of NDVI, T and albedo contributed more to
the differentiation among ecosystem functional types than maximum
and range statistics (Appendix A, Table Al and Fig. A2). In the
canonical discriminant analysis, the first canonical root separated
mostly EFT.8, characterized by high albedo and low NDVI means, and
EFT.2 and EFT.7 with relatively low T and albedo (Fig. 3). EFT.5, EFT.6
and EFT.7 were separated in the second root coinciding with low NDVI
and T averages. The third root mostly discriminated EFT.4 and EFT.6,
with a high yearly variation in NDVI and low variation in albedo, from
EFT.5 with the opposite behaviour (Fig. 3).

The discriminant analysis on seasonal functional variables sepa-
rated first the EFT.6 and EFT.7 associated with characteristic increases
in NDVI in summer and parallel decreases in Ts (Appendix A, Fig. A2).
The second root clearly discriminated EFT.2, EFT.5 and EFT.7, all
showing large albedo increases in summer and comparatively low T
increases in spring. The third root mostly contributed to discriminate
EFTs with clear NDVI increases in autumn.
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Fig. 3. Annual mean (histograms), maximum (empty dots) and range (bars) statistics for three ecosystem functioning variables characterizing ecosystem functional types (EFTs) in

Doiiana. Graphs represent EFT averages for the hydrological year 2002-2003.

3.2. Correspondence between ecosystem functional types and land cover

The combined ordination of EFTs and structural classes in three
dimensions explained 87.9% of the total inertia in the correspondence
frequency data. The first dimension reflected a gradient associated to
vegetation density and seasonality, ranging from ephemeral herba-
ceous crops distributed in the right-side of the axis; perennial
grasslands, sparse shrubs and woody crops in the centre; and dense
shrubs and forests to the left (Fig. 4). The second dimension mostly
separated sandy dunes in one end and seasonal wetlands (lagoons and
marshes) in the other, whereas the third dimension (not shown)
mostly separated between dunes and densely vegetated land cover
types. We observed a clear association between some EFTs and specific
land cover types (Fig. 4); for example, 82% of the area covered by sandy
dunes coincided with EFT.8, whereas EFT.5 was present almost
exclusively in wetlands (mostly marsh, Table 3). Four functional
types - EFT.3, EFT.4, EFT.6 and EFT.7 - were specific of herbaceous
crops, illustrating the high functional heterogeneity of these systems.
On the contrary, EFT.1 was dominant in 10 different land cover types,
from woody crops to various types of natural vegetation with low tree
cover, which suggests a low functional specificity of these types. EFT.2
was dominant in natural perennial vegetation, mostly dense forests
(nearly 70% of forests corresponded to this type), sparse forests with
dense shrubs and dense riparian vegetation (Fig. 4 and Table 3).

3.3. Seasonality in fPAR and ETP

Typically, the Doflana ecosystems showed a gradual decrease
in evapotranspiration from summer (>3 mmday ') to winter
(<0.5 mmday~!) and subsequent increases in spring. However, we
noticed relevant differences among ecosystem functional types
(Fig. 5). The lowest evapotranspiration occurred in EFT.8 with values
close to 0 in winter and autumn and increasing to only 2.4 mm day '
in summer. EFT.6 and EFT.7 showed the highest evapotranspiration in
summer (4.6 mmday~!) and also the largest annual variability

Table 2
Representativeness (in km?) of ecosystem functional classes in differently protected
areas of the Dofiana region, SW Spain.

Functional type National Park Natural Park ~ Unprotected  Total

EFT.1 133.7 (25.9%) 203.0 (40.7%) 690.0 (27.1%) 1026.6 (28.8%)
EFT.2 119.6 (23.2%) 177.7 (35.6%) 400.6 (15.7%)  697.9 (19.6%)
EFT.3 13 2 (2.6%) 47 1(94%) 4771 (18.7%)  537.4 (15.1%)
EFT.4 3 (0.8%) 3 (1.5%) 350.7 (13.8%)  362.3 (10.2%)
EFT.5 ]97 7 (38.4%) 35 7 (7.2%) 11.6 (0.5%) 245.1 (6.9%)
EFT.6 6 (0.1%) 15 0 (3.0%) 519.1 (204%)  534.7 (15.0%)
EFT.7 8 (0.3%) 8 (0.8%) 62.7 (2.5%) 68.3 (1.9%)
EFT.8 44 6 (8.7%) (1 9%) 35.3 (1.4%) 89.3 (2.5%)

Percentages in brackets refer to percent area within each protection status.

(43 mmday~!). The transition from winter minima to summer
peaks was also highly variable, with major increases in spring in EFT.4,
EFT.5 and EFT.7 and in winter in EFT.6 and EFT.8.

Although annual evapotranspiration and Ts were correlated
(Spearman's r=0.72; P<0.001), their dynamics were not always
equivalent. For example, mean and maximum surface temperatures
were lower in EFT.2 than in EFT.1 (Fig. 3) but evapotranspiration was
always higher in the former (Fig. 5). The opposite was observed for
EFT.5 with relatively high temperatures and low evapotranspiration,
and EFT.7 with low temperatures but high evapotranspiration parti-
cularly in summer.

Seasonal differences among ecosystem functional types were even
more notorious for fPAR. For example, fPAR peaked in winter in EFT.1,
EFT.2, EFT.3 and EFT.8 but only EFT.1 and EFT.2 displayed a well-
defined bell-shaped curve with a clear autumn increase and a
subsequent gradual decrease from winter to summer. In contrast,
EFT.4 and EFT.5 peaked in spring, whereas EFT.6 and EFT.7 showed
two peaks, one in summer coinciding the date of maximum ETP and a
second, lower peak in winter (Fig. 5).
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Fig. 4. Diagram of correspondences between ecosystem functional types (EFTs) and land
cover classes in the Dofiana region. The diagram results from the correspondence
analysis on the cross-tabulation table of area frequencies. Land cover classes are detailed
in Table 1; w stands for wetlands; n = forests and other natural areas; a= agricultural
areas.
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Table 3
Proportion of the area occupied by eight ecosystem functional types (EFTs) in the different land cover classes of the Dofiana region.
Code Land cover EFT.1 EFT.2 EFT.3 EFT.4 EFT.5 EFT.6 EFT.7 EFT.8
w-11 Marsh 40.7 2.5 4.6 0.8 49.3 15 0.5 0.1
w-12 Salt marsh 57.6 6.4 0.0 0.0 35.0 0.0 1.1 0.0
w-21 Riparian vegetation 33.8 46.5 45 33 2.8 7.8 1.0 0.3
w-22 Seasonal lagoons 26.6 18.6 1.7 1.0 43.6 0.1 8.2 0.2
n-11 Dense forest 29.7 68.2 1.5 0.2 0.0 0.0 0.0 0.2
n-12 Sparse forest, dense shrubland 53.2 414 3.9 0.8 0.0 0.0 0.0 0.8
n-13 Sparse forest, sparse shrubland 62.5 30.5 5.8 0.4 0.0 0.1 0.0 0.8
n-14 Sparse forest with pasture 70.4 133 14.9 1.0 0.2 0.2 0.0 0.1
n-21 Dense shrubland 65.3 259 5.2 19 0.8 0.0 0.0 0.9
n-22 Disperse shrubland 52.5 8.6 18.1 2.1 0.4 0.1 0.0 18.2
n-31 Grassland 54.1 12.6 24.6 5.0 1.9 0.8 0.2 0.9
n-41 Sandy areas 3.8 1.7 10.0 0.2 1.9 0.2 0.0 82.2
n-42 Bare soil 42.6 26.0 23.2 1.0 44 0.0 1.6 1.1
a-11 Homogeneous woody crops 71.1 9.7 17.8 1.0 0.0 0.2 0.0 0.3
a-12 Homogeneous herbaceous crops 17.4 1.6 26.4 18.7 0.5 31.2 3.9 0.2
a-21 Heterogeneous woody crops 59.0 4.7 32.7 3.1 0.0 0.2 0.0 0.3
a-22 Heterogeneous herbaceous crops 349 32 35.6 20.7 0.2 4.8 0.0 0.5
a-23 Crops with natural vegetation 66.4 13.8 135 4.7 1.0 03 0.0 0.3

w stands for wetlands; n = forests and other natural areas; a = agricultural areas.

4. Discussion

The approach presented here is novel in identifying ecosystem
heterogeneity from a combination of functional parameters that
capture the main components of the carbon, energy and water
balances in the land surface. We expanded the concept of “ecosystem
functional type” originally proposed on the basis of carbon gains
(Paruelo et al., 2001b) and included indicators of energy partitioning
into sensible and latent heat fluxes and light reflection (Krustas &
Norman, 1996; Liang, 2001), making it more comprehensive for
identifying multifunctional patterns associated to both biomass
production and feedbacks on climate. Moreover, we achieved a
numerical classification of the variability in ecosystem functioning
therefore reducing subjectivity in the process of class identification
(Host et al., 1996). This provided a unique perspective on the
ecosystem heterogeneity independent of structural ecosystem classi-
fications and other subjective characterizations.

4.1. Spatial heterogeneity in ecosystem functioning

Mediterranean ecosystems of the Dofiana region displayed pro-
nounced gradients in all the functional descriptors studied. These
gradients were strong even within the less human-modified areas: for
example, considering exclusively ecosystem functional types of the
National Park, the mean annual maximum NDVI varied from 0.35
(EFT.8) to 0.86 (EFT.2). This difference is similar to the values reported
atthe biome level, e.g. between humid forests and semi-arid steppes in
South America (Paruelo et al., 2004b). Other functional parameters
showed consistent patterns, with differences of >2 °C in annual mean,
maximum and range temperatures in the land surface, and up to three-
times differences in albedo (EFT.8 mean=33.6% vs. EFT.2
mean = 11.7%). Previous studies conducted at broader spatial scales
have emphasized the role of bioclimatic controls as key determinants
of ecosystem functional diversity (Lobo et al., 1997; Suzuki et al., 2000;
Paruelo et al., 2001b; Alcaraz et al., 2006). By controlling for the effect

fPAR

ETP (mm day™)

Fig. 5. Functional phenology of the Dofiana ecosystem functional types (EFTs) during the hydrological year 2002-2003. fAPAR (solid line) is the fraction of Absorbed
Photosynthetically Active Radiation and ETP (dashed line) is the rate of evapotranspiration in the land surface.
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of bioclimatic variability we showed that local controls produce highly
heterogeneous functioning patterns in Mediterranean environments:
high local variability occurred within a relatively small region with
negligible variations in climate.

The spatial distribution of ecosystem functional types was partly
associated to the protection status. This agreed with the well-
established hypothesis that ecosystem functioning is critically
modified by human land use. For example, three functional types
almost exclusive of non-protected areas showed dramatic seasonal
shifts in fPAR dynamics (EFT.4, EFT.6 and EFT.7) together with larger
increases in evapotranspiration in summer (EFT.6 and EFT.7). Changes
in these features may have important effects on the local climate that
will require further analyses. However, differences were not so
obvious when exploring yearly synthetic ecosystem parameters,
indicating a low impact of human transformations on these
descriptors as compared to natural variability (see also Guerschman
et al., 2003). Moreover, human use intensity did not always imply
profound modifications of seasonal ecosystem functioning. For
example, EFT.1 and EFT.2 were well represented in both protected
and non-protected areas covering a large array of natural and human-
exploited vegetation types with similar ecosystem functioning.
Seasonality patterns in these classes were consistent with the
water-limitation hypothesis in Mediterranean ecosystems (Pifiol et
al.,, 1995): fPAR closely followed the yearly distribution of precipita-
tion and evapotranspiration experimented dramatic summer
increases (EFT averages >3.4mmday~'). The strong limitation
imposed by water availability would mask the anthropic effect on
ecosystem functioning.

Lastly, only two functional types were almost exclusively present
in protected areas: EFT.5 (associated to dunes and other sandy areas)
and EFT.8 (in natural marshes) displayed comparatively low yearly
fPAR values. fPAR averages in EFT.5 were similar to Mediterranean
semi-arid environments with much lower rainfall (<200 mm;
Paruelo et al., 2005). On the other hand, the particular seasonal
course of fPAR in EFT.5 was clearly associated to alternate flooding and
extreme drought periods in clayish natural marshes: soil permeability
probably determined very specific patterns in seasonal ecosystem
water limitation both in natural marshes and sandy dunes.

4.2. Correspondence between functional heterogeneity and land use and
cover

Our study revealed that heterogeneity patterns in ecosystem
functional and structural properties are not necessarily analogous.
First, we found a high variety of natural vegetation types associated to
a reduced number of functional profiles. This occurred in the Cotos
present in the two natural protected areas. Here, different vegetation
formations including grassland, various types of shrubland, riparian
forests and pine forests displayed a low functional variability covered
by only two ecosystem functional types. Moreover, the same types
comprised heavily modified areas like afforestations and orchads. In
contrast, a relatively small portion of the landscape (sandy dunes and
deep marshes) contained two specific EFTs, highlighting their
uniqueness not only from structural but also from the functional
perspective. On the other hand, structurally much simpler vegetation
formations in agricultural areas accounted for most functional
variability outside protected areas. Their functional characteristics
suggest that human activities exceed natural ecosystem controls
creating unique new patterns in the water, energy and carbon balance
of Mediterranean environments.

Different studies showed the key influence of land use on various
ecosystem functioning parameters at regional scales (e.g. Houghton
etal.,, 1999; Bounoua et al., 2002; Nosetto et al., 2005 ). However, few of
them addressed the variable consequences of human alterations on
water and energy budgets in relation to the ecological setting and the
type of land use, an issue with important implications for understand-

ing the ecological costs of human activities (DeFries et al., 2004).
Although we did not address temporal changes in ecosystem
functioning, the analysis of ecosystem functional types in relation to
land use revealed contrasting consequences of human activities
depending on the ecological settings. For example, cropping in
estuarine areas generated the most dramatic alteration of the annual
pattern of NDVI and fPAR, increasing annual averages and modifying
profoundly seasonal dynamics as compared to natural marshland.
Annual fPAR did not differ between herbaceous crops and shrubland
but herbaceous crops presented higher surface temperature and
albedo, two attributes that may contribute to alter local climate (Wang
& Davidson, 2007). In general, the functional patterns observed in
woody crops and afforestations did not differ from other natural areas
attending to our classification, which suggests that these activities had
a lower impact on water and energy exchange than other land cover
transformations. However, the primary level of class segregation
analyzed here may have overlooked more subtle functional differences
between some heavily humanized and less transformed ecosystems.

5. Conclusions

The co-occurrence of water limitation and high temperatures in
summer typical of Mediterranean environments probably repre-
sents one of the most critical factors influencing ecosystem
functioning in most natural areas of Dofiana, controlling seasonal
patterns of primary production and causing high evapotranspiration
rates and water deficits. Variations around this pattern seem to be
ultimately associated to landform and its effects on groundwater
availability and vegetation structure, generating differing function-
ing patterns in marshes dominated by alternate flooding and
drought periods; in dunes characterized by low vegetation cover
and water holding capacity; and in the Cotos where a high diversity
of evergreen vegetation formations are present. This finding
generated a partial correspondence between ecosystem structural
characteristics and functioning. However, a large variety of natural
vegetation types present in the Cotos were classified within two
ecosystem functional types. Moreover, human activities in different
ecological settings have increased the functional diversity of
Mediterranean environments, producing severe alterations in the
seasonal dynamics of primary production and on the water and
energy balances in the land surface.

It has been proposed that natural protected areas provide a unique
reference situation where ecosystem functioning reflects the baseline
conditions necessary to evaluate the impact of human activities
outside these areas (Garbulsky & Paruelo, 2004; Alcaraz-Segura et al.,
2009). Some great functional differences between protected areas and
nearby transformed land in Dofiana suggest that land use is a key
driver of biogeochemical processes at the local level. Our analyses in
Dofiana show that both the ecological context and the type of land use
strongly influence the direction and magnitude of functional changes
associated to human activities. This finding emphasizes the need to
expand ecosystem functional analyses to understand the effects of
natural variability and land use on primary processes of matter,
energy and water dynamics. However, the use of protected areas for
evaluating ecosystem changes should carefully consider potential
biases associated to the overrepresentation of “rare” ecosystem
functional types not necessarily representative of typical reference
conditions. The combined use of land cover and ecosystem function-
ing classifications can greatly help to define reference conditions and
to track more comprehensively the ecosystem-level consequences of
environmental change in many different environments.
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