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A statistical theory was proposed for the degradation (random scission of chains) of a network having f-
functional nodes in the case where all chains contain equireactive groups and a chain scission event does
not create new groups or suppress more than one group. Closed-form relations were established be-
tween the conversion ratio of the degradation process and the crosslink density. Emphasis was put on
the value of the conversion ratio for which the gel disappears. Some limited cases already considered in
the literature were recovered, but a general solution was proposed for networks having any number of
reactive groups per chain, be it uniform or not, and for conversion ratios up to the degelation point. The
results were applied successfully to recent experiments regarding the hydrolysis of a polyester.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Network degradation is among the oldest problems in macro-
molecular science. It appeared in the middle of the nineteenth
century, as soon as industrial applications of vulcanized rubber
were developed. As a matter of fact, polyisoprene is a highly reac-
tive substrate undergoing oxidative random chain scission in air,
even at room temperature. The huge efforts of the rubber com-
munity to elucidate the degradation mechanisms remained un-
successful until the 1940's where it was recognized that (i)
vulcanized rubbers are macromolecular networks, especially
thanks to Staudinger (1953 Nobel prize) and Flory (1974 Nobel
prize), and that (ii) degradation results from radical chain oxida-
tion, especially thanks to Semenov (1956 Nobel prize). At the same
time, a theory of gelation was elaborated by Flory [1] and Stock-
mayer [2] to describe the structural changes of the network during
synthesis. Shortly after, the classical experimental approach based
on mechanical measurements performed on samples undergoing
degradationwas refined by Tobolsky and Andrews [3], who applied
the statistical theory of rubber elasticity, and it became popular
rapidly.

It is assumed generally in network degradation by random
chain scission that all units are equireactive. In the absence of
competitive crosslinking, degradation leads to a gradual decrease
of crosslink density, with a concomitant decay of the elastic
modulus, until the polymer becomes fully soluble, and this gelesol
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transition may be called “degelation” [4]. The gradual degradation
process can be studied by at least two experimental techniques.
The first one, valid only before the degelation point, is based on
the concentration of elastically active chains deduced from
modulus or solvent swelling [5] measurements. The second
approach focuses on such characteristics of the sol as its mass
fraction [6e8] or its molar weight distribution, with its weight
average molar mass being expected to be maximum at the dege-
lation point [9].

In such investigations, the simplest approach consists in
considering that degradation is the reverse of polymerization or
polycondensation, i.e., that the network structure and composition
of soluble fraction are the same for a degradation at conversion
ratio x, defined as the ongoing number of reacted units divided by
the initial number of reactive units, as for a polymerization or
polycondensation at conversion ratio 1�x, provided that the groups
that are broken during degradation are the same as the ones
formed during synthesis. Horikx [7] seems to have been first to
propose this approach. Like Horikx, early investigators of network
degradation studied rubber oxidation, which cumulates several
complications, among which the high complexity of radical
oxidation mechanisms, the possibly simultaneous occurrence of a
crosslinking process, and the occurrence of non-random scissions
of sulfur bridges in certain cases of sulfur vulcanization [10]. Later
studies considered lignin degradation in the framework of wood
pulp processing, or simply to elucidate the lignin structure. Recent
lignin analyses are mainly based on nuclear magnetic resonance or
infrared spectrochemical analyses, performed sometimes on small
molecules resulting from the total degradation of lignin (see Bru-
nowand Lundquist [11], for instance). In the 1960e1980's, however,
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considerable research efforts adapted the Flory-Stockmayer theory
to deduce the macromolecular structure of lignin from the analysis
of the soluble products of its controlled degradation [4,12e14].
Lignin combines several difficulties, among which a complex
structure, where trifunctional and tetrafunctional crosslinks
coexist, the presence of dangling chains (about 25% of the mono-
meric units according to Brunow and Lundquist [11]), and a variable
structure depending on the type of tree and on the location of the
analyzed sample in the tree (compressive vs. tensile parts, for
instance).

Polyester hydrolysis appears as an especially interesting case
owing to the relative simplicity of the chemical mechanism
(compared to oxidation, for instance) and to the high technical
interest of some polyesters (styrene cured unsaturated polyesters)
used as the matrix of composites in boat hulls, swimming pools,
pipes and tanks for water transport and storage. Unfortunately,
these networks have a complex structure with half the elastically
active chains (polystyrene) being non-reactive, with high con-
centrations of dangling chains [15], with many kinds of ester
groups (maleates and phthalates), etc. Furthermore, they undergo
osmotic cracking [16], which makes the kinetic analysis even more
complex.

The theory proposed below improves and extends a model
published recently [17], which combined chemical kinetics and a
statistical approach of network degradation that is valid only at low
conversions, much before degelation. Conversion ratios up to
degelation are covered here, the number of scission sites per chain
may be large, and a dispersion of this number is allowed. The initial
state is a gel in the present study, which therefore differs from
previous and more complex works where degradation and cross-
linking occur simultaneously (Demjanenko and Du�sek [18,19], for
instance, or Samoria and Vall�es [20]), with an initial state defined
by a set of linear chains or monomers. We study degelation, not
delayed gelation.
2. Results

Let us consider an infinite perfect network (no dangling chains)
with f-functional crosslinks. The chains contain a possibly non-
uniform number of reactive groups (or scission sites, or breakable
bonds, equivalently) with a distribution s(i). This means that there
is a fraction s(i) of chains bearing i reactive groups each and thatP

is ið Þ ¼ 1, where the sum applies over all i values found in the
network. It is assumed that all groups are equireactive, and that
chain scission events do not create new groups or modify the re-
activities of neighboring groups. The present analysis focuses on
the variations of such network characteristics as crosslink density
or soluble fraction with the conversion ratio x, defined as the
fraction of reacted groups, and it analyzes the most probable
structure of the degraded network. The function of time x(t) is
assumed known from a kinetics theory of scission. In the case of
polyester hydrolysis, for instance, auto-catalysis may complicate
the kinetics, and a model has been proposed recently to take this
into account [17].

Since the probability for a reactive group to be unreacted is 1�x,
the probability for a chain containing i reactive groups to be un-
broken is ui(x) ¼ (1�x)i. Considering now the distribution of the
number of reactive groups per chain, the probability for any chain
to be uncut is given by

uðxÞ ¼
X
i

sðiÞð1� xÞi (1)

The probability g(x) that a chain starts at a node and is linked to
the gel through its other end is given by
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gðxÞ ¼ uðxÞ
h
1� ð1� gðxÞÞf�1

i
(2)
since it must be unbroken (probability u(x)) and it must end at a
node where at least one of the f�1 other chains are connected to
the gel. The probability for the latter to be true is 1 minus the
probability that none of these f�1 chains is connected to the gel,
which is (1�g(x))f�1, and (2) ensues. This is a variant of the simple
derivation given by Miller and Macosko [21] for post-gel properties
of network polymers, which is more direct than using probability
generating functions [22] alternatively. Because of this relationship,
several equations obtained below are formally similar to well-
known results on post-gel condensation, but they apply to
network degradation instead, and function u(x) has no general
equivalent in network synthesis because it includes any distribu-
tion of scission sites in a given network.

The g(x) ¼ 0 solution to (2) can be discarded, since it would
imply there is no gel whatever the degradation level, and therefore
(2) leads to

Xf�2

k¼1

ð1� gðxÞÞk ¼ 1
uðxÞ � 1 (3)

with two special cases of particular interest:

gðxÞ ¼ 2� 1
uðxÞ and gðxÞ ¼ 1

2

"
3�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

uðxÞ � 3

s #
(4)

if f¼ 3 and f¼ 4, respectively. Degelation occurs when no chain can
have infinite continuation, which corresponds to g(x)¼0 in (3), and
therefore the conversion ratio at degelation xd is obtained by
solving

X
i

sðiÞð1� xdÞi ¼
1

f � 1
(5)

for an initially perfect network (i.e. a network where all chains are
elastically active) with functionality f and distribution s(i) of chains
bearing i breakable bonds.

The right-hand side of (5) demonstrates a connection between
the present model for degelation and the classical gelationmodel of
Flory [1]: if there is a single breakable bond per chain (thenP

is ið Þ 1� xdð Þi ¼ 1� xd), the degradation level at degelation is
equal to 1 minus the fraction of reacted groups at gelation in RAf

polymerization. This connection is limited to special cases where
network degradation is equivalent to reversed polymerization,
though, i.e. either for one breakable bond per chain, or for two
(RAf þ R'B2 polymerization), essentially. The present theory con-
siders any number of equally reactive breakable bonds per chain, be
it uniform or not, and thus it covers such degradation processes as
the hydrolysis of polyesters, for instance. For conciseness, this
presentation is limited to homofunctional networks, but extension
to polyfunctional networks may be performed by using appropriate
averages weighted by the amount of each functionality present.
Initially imperfect networks may also be considered, where
dangling chains and primary loops are present, for instance. An
evaluation of the fraction of chains involved in loops may be ob-
tained from a rate theory [23], from Monte Carlo simulations
[24e26], or from specific experimental techniques [27]. Let b

denote the fraction of breakable bonds such that their scission does
not modify the number of elastically active chains in the initial
state: as far as crosslink density is concerned, the present theory
can still be applied by replacing x by the effective degradation ratio
(1�b)x. Of course, the distribution of the number of breakable
of polymer network degradation, Polymer (2014), http://dx.doi.org/
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bonds per chain used must refer to the backbone of the initial
elastically active chains, which may be difficult to evaluate in an
imperfect network. The effect of an increased number of scission
sites per (elastically active) chain may compensate the effect of
ineffective scissions occurring on dangling chains and loops. The
Monte Carlo simulations of Galina and Lechowicz [28] illustrate the
impact of the network structure on the degelation point.

A node is an effective crosslink if at least 3 chains starting from
this node are connected to the gel. If 3� k� f chains from this node

are connected to the gel and f�k are not, with
�
f
k

�
possibilities, the

number of effective crosslinks divided by the initial number of
nodes n0, i.e. the relative crosslink density, is given by

nðxÞ
n0

¼
Xf
k¼3

�
f
k

�
gðxÞkð1� gðxÞÞf�k (6)

for 0 � x �xd (and n(x)/n0 ¼ 0 for x > xd), with zero slope and zero
curvature of the n(x)/n0 curve at the degelation point, consequently,
since the first and second derivatives are proportional to g(x). Using
(4), one obtains:

nðxÞ
n0

¼
�
2� 1

uðxÞ
�3

and

nðxÞ
n0

¼ 3
16

 
3�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

uðxÞ � 3

s !3 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

uðxÞ � 3

s
� 1
3

!
(7)

if f ¼ 3 and f ¼ 4, respectively.
The number n of elastically active chains can be computed

similarly to (6) by considering that they connect two effective
crosslinks and by counting k ends of elastically active chains at
effective crosslinks where k chains are connected to the gel (with
v0 ¼ v(0) ¼ fn0/2):

vðxÞ
v0

¼ 1
f

Xf
k¼3

�
f
k

�
kgðxÞkð1� gðxÞÞf�k (8)

with v(x)/v0 ¼ 0 for x > xd, which may be used to deduce the elastic
shear modulus from the affine network theory or, combined with
(6) to obtain the cycle rank, from the phantom [29] or intermediate
[30] network theory. Therefore:

vðxÞ
v0

¼
�
2� 1

uðxÞ
�3

and

vðxÞ
v0

¼ 1
8

 
3�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

uðxÞ � 3

s !3 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

uðxÞ � 3

s
(9)

if f ¼ 3 and f ¼ 4, respectively. Since v(x)/v0 is found larger for
tetrafunctional networks than for trifunctional ones, the former
should be preferred, if possible, for better preservation of elastic
properties at given degradation level. For instance, v(x)/v0 ¼ 0.87
and v(x)/v0 ¼ 0.70 if f ¼ 4 when 10% and 20% chains have been cut,
respectively, whereas the values are of 0.70 and 0.42 for f ¼ 3. For a
trifunctional network, the initial slope of the v(x)/v0 curve (i.e., for
x ¼ 0) is equal to minus three times the average number of reactive
groups per chain

P
iis ið Þ, according to (9). This simple result is in

agreement with the trivial observation that cutting one chain of
such a network decreases by 3 the number of elastically active
chains (and two of them double their lengths). By contrast, if the
functionality, uniform or not, is larger than 3 at all nodes of a
perfect network, a similar elementary geometric analysis shows
Please cite this article in press as: Gilormini P, et al., A statistical theory
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that cutting one chain decreases by 1 the number of elastically
active chains (and does not modify crosslink density). This is in
agreement with the initial slope of v(x)/v0 deduced from (8) when
f > 3 (andwith a zero derivative of n(x) in (6) for x¼ 0 if f > 3). These
initial slopes were already obtained by Richaud et al. [17]. Ac-
cording to (8), both the slope and the curvature of the v(x) curve are
zero at the gelation point.

The average crosslink functionality of the degraded network can
be deduced similarly to (6) as

f ðxÞ ¼
Pf

k¼3

�
f
k

�
kgðxÞkð1� gðxÞÞf�k

Pf
k¼3

�
f
k

�
gðxÞkð1� gðxÞÞf�k

¼
Pf

k¼3

�
f
k

�
kgðxÞk�3ð1� gðxÞÞf�k

Pf
k¼3

�
f
k

�
gðxÞk�3ð1� gðxÞÞf�k

(10)

which gives f ðxdÞ ¼ 3 (since g(xd) ¼ 0): the degraded network is
trifunctional when degelation occurs, whatever its initial func-
tionality. It may be recalled that Miller and Macosko [21] have
shown that RA4 polymerization leads to a trifunctional network at
the gel point.

A node belongs to the sol when none of the f chains attached to
it initially is left connected to the gel, and therefore

fsðxÞ ¼ ð1� gðxÞÞf (11)

gives the soluble fraction of the total number of nodes (and fs(x)¼ 1
for x > xd). Using (4), this leads to

fsðxÞ ¼
�

1
uðxÞ � 1

�3
and fsðxÞ ¼ 1

16

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

uðxÞ � 3

s
� 1

!4

(12)

if f ¼ 3 and f ¼ 4, respectively. The various species in the soluble
fraction can also be obtained like in gelation theory, but will not be
given here for conciseness.

3. Discussion

3.1. Uniform number of reactive groups per chain

The case of a uniform number L of reactive groups over all chains
of the initial network is interesting in several respects, although it
may seem unrealistic for practical applications. First, it will allow a
connection with previous studies, which are limited to a small and
uniform number of breakable bonds per chain. Second, it will give a
first evaluation of the effect of a large number of bonds per chain.
Finally, this simple case will provide a reference before adding
complexity with a distributed number of bonds, in order to
appreciate its impact.

Here, the only value of i for which s(i) s 0 is i ¼ L, and s(L) ¼ 1
leads to

uðxÞ ¼ ð1� xÞL (13)

Fig. 1 illustrates the effect of the L value on the variations of
the crosslink density and soluble fraction for a trifunctional
network, as given by (7) and (12). A given degradation ratio tends
to alter the network increasingly when L increases (the relative
crosslink density n(x)/n0 decreases and the soluble fraction fs
increases). As a result, the conversion ratio at the degelation
of polymer network degradation, Polymer (2014), http://dx.doi.org/
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Fig. 1. Variations of crosslink density (solid lines) and soluble fraction (dashed lines)
during degradation of trifunctional networks with various uniform numbers L of
breakable bonds per chain.
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point decreases when L increases, and (5) leads to a very simple
expression:

xd ¼ 1� 1

ðf � 1Þ1=L
(14)

with, consequently, xd ~ (ln(f�1))/L when L takes large values. The
value xd ¼ 1� 1=

ffiffiffi
2

p
¼ 0:293 for L ¼ 2 when f ¼ 3 has already been

obtained by Argyropoulos and Bolker [31] in their effort [31e33] to
test gel degradation theories. This is in agreement with their ex-
periments, where a model network resulting from the condensa-
tion of 1-3-5 benzene triacetic acid with 1-16 hexadecane diol was
hydrolyzed and the soluble fraction was measured, leading to
xd ¼ 0.288. When f ¼ 3, the L ¼ 1 case was considered in the Monte
Carlo simulations of Galina and Lechowicz [34], where a degelation
point at xd z 0.45 was obtained. The difference with the analytical
prediction (xd ¼ 1/2) given by Equation (14) may be due to cycli-
zation. It should be noted in Fig. 1 that the shape of a curve of
soluble fraction versus conversion ratio allows a more precise
assessment of the degelation point than the corresponding varia-
tion of crosslink density, because of its nonzero slope at this point.

Tetrafunctional networks are considered in Fig. 2, where it can
be observed that network alteration for a given degradation ratio
is less than for trifunctional networks. As a consequence, the
degelation point is shifted to larger values. Here, each scission
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Fig. 2. Variations of crosslink density (solid lines) and soluble fraction (dashed lines)
during degradation of tetrafunctional networks with various uniform numbers L of
reactive groups per chain.
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event reduces the number of elastically active chains by one,
against three for trifunctional networks. Furthermore, each scis-
sion event transforms two tetrafunctional effective crosslinks into
trifunctional ones, keeping the total number of effective cross-
links unchanged, while two effective crosslinks are lost per
scission event in the case of trifunctional networks.
3.2. Non-uniform number of reactive groups per chain

Let now the number of reactive groups per chain be non-
uniform, with an average value L ¼Piis ið Þ. A general conse-
quence is a delayed degelation point with respect to the case where
all chains bear L reactive groups. In other words, the conversion
ratio at degelation is increased by dispersion of the number of
reactive groups per chain. This can be proved by introducing
f(X) ¼ (1�x)X, where 0 < x < 1 is fixed, which is a strictly convex
continuous function of X since its second derivative
f''(X) ¼ (ln(1�x))2(1�x)X is positive. Consequently, Jensen's
inequality [35] can be applied as

X
i

sðiÞfðiÞ>f

 X
i

isðiÞ
!

(15)

by taking either X ¼ i or X ¼Piis ið Þ, sincePis ið Þ ¼ 1, and therefore

X
i

sðiÞð1� xÞi > ð1� xÞL (16)

for 0 < x < 1, which means that the
P

is ið Þ 1� xð Þi curve is above the
(1�x)L curve in this interval, where these two functions decrease
from 1 to 0. Therefore, the 1/(f�1) value is reached by

P
is ið Þ 1� xð Þi

for a larger x value than by (1�x)L, and (5) implies that degelation
occurs for a larger conversion ratio when dispersion is present.

In order to illustrate more detailed results on simple cases, let a
Flory distribution [9] be considered first:

sðiÞ ¼ ðL� 1Þi�1

Li
(17)

with, therefore,

X∞
i¼1

sðiÞ ¼ 1 and
X∞
i¼1

isðiÞ ¼ L (18)

as expected. The degelation point is thus given by a very simple
expression:

xd ¼ f � 2
Lþ f � 2

(19)

since (17) leads to

uðxÞ ¼ 1� x
1þ ðL� 1Þx (20)

Equation (7) gives

nðxÞ
n0

¼
�
1� ðLþ 1Þx

1� x

�3
and

nðxÞ
n0

¼ 3
16

 
3�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð4L� 1Þx

1� x

r !3 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð4L� 1Þx

1� x

r
� 1
3

!

(21)

if f ¼ 3 and f ¼ 4, respectively, and (12) leads to
of polymer network degradation, Polymer (2014), http://dx.doi.org/
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f ðxÞ ¼
�

L x
�3

and f ðxÞ ¼ 1
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð4L� 1Þx
r

� 1

!4
s 1� x s 16 1� x

(22)

if f ¼ 3 and f ¼ 4, respectively. Consider now a Poisson distribution:

sðiÞ ¼ ðL� 1Þi�1

ði� 1Þ! expð1� LÞ (23)

where, again, L denotes the average number of reactive groups per
chain. The resulting probability for a chain to be unbroken has a
simple expression

uðxÞ ¼ ð1� xÞexp½ð1� LÞx� (24)

as well as the crosslink density and soluble fraction of nodes

nðxÞ
n0

¼
�
2� exp½ðL� 1Þx�

1� x

�3
and

fsðxÞ ¼
�
exp½ðL� 1Þx�

1� x
� 1

�3
(25)

if, for instance, f ¼ 3. The degelation point must be obtained
numerically by solving

ð1� xdÞexp½ð1� LÞxd� ¼
1

f � 1
(26)

and one has xd ~ (ln(f�1))/L when L takes large values, like in the
uniform case of the preceding paragraph. In the L ¼ 1 case, the two
types of distribution considered coincide with a uniform number of
reactive groups per chain, and therefore Fig. 3 illustrates the results
for L � 2. For a given average number of reactive groups per chain,
degradation does appear to be slowed down by a dispersion of this
number. This effect is more evident for soluble fraction than for
crosslink density, and the Flory distribution keeps separate from a
uniform distribution, whereas the Poisson distribution gets
increasingly closer at moderate and large L values. This is due to the
decreasing breadth of the Poisson distributionwhen L increases. As
a consequence, a uniform distribution can be used with reasonable
precision for random scission instead of the more complex Poisson
distribution, for trifunctional networks with, say, at least 20 scis-
sion sites per chain on average, and for tetrafunctional networks
with at least 30 scission sites per chain on average.
0
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Fig. 3. Variations of crosslink density and soluble fraction during the degradation of
trifunctional networks with average numbers L of reactive groups per chain. Solid
lines: Flory distribution, dashed lines: Poisson distribution, dotted lines: no dispersion.
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3.3. Application to the hydrolysis of a polyester network

Richaud et al. [17] proposed recently an approximate model to
describe the variations of the shear modulus of a polyester network
degraded by hydrolysis. In the same paper, these authors also
presented original experimental results that we use here to test our
statistical theory of polymer network degradation. The polyester
studied was a polycondensate resulting from the reaction of 60% by
weight adipic acid, 12% ethylene glycol and 28% diethylene glycol,
which was crosslinked 14 days at 50 �C by a stoichiometric amount
of benzene triisocyanate. Size-exclusion chromatography (SEC)
lead to an average number L of esters per chains ca. 18 and to a
polydispersity index of ca. 1.7. Note that no molar mass variation
was observed when the SEC analyses were repeated after keeping
the prepolymer at 60 �C in dry air for the same durations as in the
humid aging experiments described below, which suggests that
degradation by oxidation can be excluded as an additional scission
mechanism during humid aging. As a result, the number of esters is
meaningful for defining scission sites.

Since each primary chain bears an even number of esters, the
present model will be applied with a suitably modified Flory dis-
tribution defined as

sðiÞ ¼
�
2
L

� i
2
�
L
2
� 1
� i

2�1

ði evenÞ (27)

which does satisfy (18). Since this leads to

uðxÞ ¼
X∞

i¼2;4…

sðiÞð1� xÞi ¼ 2ð1� xÞ2
L� ðL� 2Þð1� xÞ2

(28)

one obtains

nðxÞ
n0

¼ 1
8

"
Lþ 2� L

ð1� xÞ2
#3

(29)

for a trifunctional network, and the degelation point is given by

xd ¼ 1� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2=L

p (30)

Fig. 4 compares (29), using an average value L ¼ 18, to a uniform
number of reactive groups per chain, and the same trend of a
delayed degradation is observed as in the previous paragraph, the
degelation point being shifted from 0.0378 to 0.0513. Moreover,
Fig. 4 also shows that the approximate model of Richaud et al. [17],
which is strictly valid for low conversion ratios only, does coincide
with the present model at low and moderate conversions if all
chains are assumed to bear the same number of scission sites, but it
underestimates the variation of crosslink density for larger con-
version ratios, and the degelation point is underestimated at
0.0258.

In the experiments, the specimenswere exposed to humid aging
under three temperature and relative humidity conditions, namely
60 �C and 29% RH, 60 �C and 75% RH, 70 �C and 25% RH. Each
experiment was triplicated. Temperature was regulated at ±1 �C
and hygrometry was regulated by saturated salt solutions: MgCl2,
6H2O for 25e29% RH and NaCl for 75% RH. Aging was monitored by
tensile testing performed at 20 �C and at 8.33 � 10�3 s�1 strain rate
on dogbone samples of 20 mm length and 4 mm width cut from
2 mm-thick foils. The shear modulus was deduced from the initial
slope of the engineering stress vs. l�1/l2 curve, where l denotes
the draw ratio. Since the network is trifunctional, the shear
modulus was assumed proportional to crosslink density, as in the
of polymer network degradation, Polymer (2014), http://dx.doi.org/
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Fig. 5. Analytical predictions of the variations of the shear modulus (solid lines) during
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classical affine model of rubber elasticity. As hydrolysis proceeds,
the conversion ratio x(t) must be evaluated as a function of time,
and the following relation has been obtained by Richaud et al. [17]:

xðtÞ ¼ 1� exp½ � ð1þ AÞkwt�
1þ A exp½ � ð1þ AÞkwt� (31)

Two constants define the kinetics of hydrolysis in this equation,
namely the rate constant k for uncatalyzed hydrolysis, and the
autocatalysis ratio A. The latter is due to esters being transformed
into acid during hydrolysis. The water concentration w is assumed
fixed in a given experiment and it is deduced from isotherms
monitored by dynamic vapor sorption with partial pressures
ranging from 0 to 90%. The same procedure as in Richaud et al. [17]
is used here to obtain the k constant, namely a parabolic fit of the
experimental results at low conversions, which gives
2� 10�9 L mol�1 s�1 at 60 �C, and 4.8� 10�9 L mol�1 s�1 at 70 �C. In
contrast with the k constant, the deduction of the A constant in-
volves the network degradationmodel, and it is adjusted so that the
combination of (29) and (31) provides an exposure time for a shear
modulus divided by 2 that is in agreement with the experiments.
Values of 175, 385, and 153 were obtained for Awith this procedure
in the three conditions listed in Fig. 5, where a good agreement can
be observed between the model and the experiments. These A
values are larger (by 10e18%) than those obtained with the model
of Richaud et al. [17], which is consistent with degradation being
accelerated when A increases. The present theory is simpler in its
formulation, it is not limited to low conversion ratios, and it is more
likely to predict the degelation point, consequently.

4. Conclusion

(i) The relation between crosslink density and conversion ratio
during a random chain scission process occurring on f-
functional networks has been studied, including a distribu-
tion of the number of reactive groups on the chains.

(ii) A very strong influence of the average number of reactive
groups per chain on the conversion ratio at degelation has
been demonstrated, and an important effect of the disper-
sion of this number has also been found for broad distribu-
tions, which delays degelation.

(iii) Accordance has been obtained with a previous experiment
on a trifunctional network having two reactive groups per
chain, and with recent experimental results regarding the
hydrolysis of a polyester having 18 reactive groups per chain
on average, by using a suitable kinetics with autocatalysis.
Please cite this article in press as: Gilormini P, et al., A statistical theory
10.1016/j.polymer.2014.05.008
(iv) The proposed statistical theory can be applied to the degra-
dation of networks provided that random chain scission only
(no crosslinking) is involved and that all the elastically active
chains contain reactive groups. It can be suitable for certain
cases of hydrolysis and for radiolysis, for instance.
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