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a b s t r a c t

We study a three-dimensional (3D) liquid crystal elastomer (LCE) in the context of Finsler geometry (FG)
modeling, where FG is a mathematical framework for describing anisotropic phenomena. The LCE is a 3D
rubbery object and has remarkable properties, such as the so-called soft elasticity and elongation, the
mechanisms of which are unknown at present. To understand these anisotropic phenomena, we intro-
duce a variable s, which represents the directional degrees of freedom of a liquid crystal (LC) molecule.
This variable s is used to define the Finsler metric for the interaction between the LC molecules and bulk
polymers. Performing Monte Carlo (MC) simulations for a cylindrical body between two parallel plates,
we numerically find the soft elasticity in MC data such that the tensile stress and strain are consistent
with reported experimental results. Moreover, the elongation is also observed in the results of MC
simulations of a spherical body with free boundaries, and the data obtained from the MC simulations are
also consistent with existing experimental results.
© 2017 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The liquid crystal elastomer (LCE), composed of a cross-linked
polymer gel and a liquid crystal (LC), has remarkable properties,
such as the so-called soft elasticity and anisotropic shape trans-
formation (or elongation) [1e5] (see Fig. 1(a) and (b)). These phe-
nomena are believed to have intimate connections with the
nematic transition of LCs, and this nematic transition itself is well
understood based on the theory of Onsager and/or that of Maier-
Saupe [6,7], while the polymer can be described by Flory-Huggins
theory [8] and the Doi-Edwards model [9]. The anisotropy in a 2D
LCE, which is a membrane, has also been extensively studied,
where anisotropic surface constants are assumed in the Hamilto-
nian for the classical elasticity [10e12].

Soft elasticity is a phenomenon typical of the 3D LCE such that
the LCE deforms almost linearly for small stress t and considerably
deforms for t> tc. This large deformation without an increase of t
creates a plateau in the stress-strain diagram (Fig. 1(a)). This soft
elasticity in the 3D smectic elastomer has been studied using mean
field theory analysis [13].
. Koibuchi).
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However, the mechanism for the soft elasticity and elongation is
still not fully understood because of the lack of information on the
interaction of the LC and the bulk polymer. Although the LC itself
and the polymer itself are thoroughly understood as mentioned
above, the interplay between them is too complex, and therefore, it
remains unclear.

In this paper, we study the soft elasticity and elongation of an
LCE using a Finsler geometry (FG) model, and we present the dia-
grams, such as the ones in Fig. 1(a) and (b), that are obtained by
Monte Carlo (MC) simulations. Although this consistency remains
only qualitative, we expect that the FGmodeling sheds lights on the
unknownmechanism in these anisotropic shape transformations of
LCEs.

The FG model is a coarse-grained model and is defined by
extending the Helfrich and Polyakov (HP) model for membranes
[14e19]. This FG model includes a new dynamical variable s. The
variable s represents the directional degrees of freedom of LC
molecules located at the three-dimensional position r, and the non-
polar interaction between ss is assumed. The polar interaction is
also implemented in the model to observe the difference between
the polar and non-polar interactions. Using the variables s and r,
we define the Finsler metric, or in other words, the interaction of
this s and the bulk space r is directly introduced via the Finsler
metric in the Gaussian bond potential S1 [20e22].
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Fig. 1. (a) Stress-strain diagram observed in an LCE showing the soft-elasticity characterized by a plateau [1e3], and (b) strain L=L0 vs. the temperature T of an LCE film, where L (L0)
is the length of the LCE at T (sufficiently high T) [2,4].
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The fact that the FG model is an extension of the HP model can
be justified as follows: we assume the interaction energy lS0 be-
tween ss; S0 is the Lebwohl-Lasher potential [23] (the Heisenberg
sigma model energy) for the case of non-polar (polar) interaction.
For l/0, the variable s becomes disordered, and consequently, no
anisotropy is expected in the system. Therefore, the phase structure
of the FG model corresponding to such disordered or isotropic s

should be identical to that of the canonical HP model. Indeed, we
have verified in the elongation simulation that there is no differ-
ence between the stress t of the FG model with l ¼ 0 and that of
the canonical HP model up to a multiplicative constant. Such
equivalence was also examined in Ref. [22], where the crumpling
transition of the 2D FG model in the limit of l/0 is first order as in
the HP model [24e26].

Here, we comment on the difference between the model in this
paper and another variant of the FG model for multicomponent
membranes [27]. Several anisotropic shape transformations (ASTs)
are observed in these membranes, and these ASTs are called
domain pattern transitions [28e30]. For this special property
observed inmembranes, themultiplicity of components is essential
as in the low-temperature glasses [31]. In the membranes, the
origin of ASTs is considered to be the line tension at the domain
boundaries [28e30], and this line tension is understood in the
context of FG modeling [27]. In this FG model, a new degree of
freedom s is also introduced, where s is connected to a scalar
function on the surface. This is in sharp contrast to themodel in this
paper, where s is a vector.

The remainder of this paper is organized as follows. In
Subsection 2.1, the discrete FGmodel for a 3D LCE is introduced, and
the corresponding continuous Gaussian energy and its discretiza-
tion technique on the tetrahedrons are described in Subsection 2.2.
In Section 3, the partition function on the cylindrical body for
calculating the soft elasticity and that on the spherical body for
calculating the elongation are introduced, and the formula for
calculating the tensile stress is described. Moreover, Section 3 also
presents Monte Carlo (MC) data for the soft elasticity and the
elongation. Finally, in Section 4, we summarize the results and
speculatively comment on future studies along the line of FG
modeling. In Appendix A, we briefly introduce the elements of
Finsler function and how to obtain the Finsler metric. It is unclear at
present whether or not the FG model technique is useful for MD
simulations [32].
2. Model

2.1. Discrete model for 3D LCE

In this subsection, we introduce a discrete FG model for a 3D
LCE, which is defined using the technique presented in Ref. [22]. A
cylindrical body and a spherical body in R3 are constructed by the
Voronoi tessellation (Fig. 2(a), (b)) with tetrahedrons (Fig. 2(c)),
which are composed of vertices, bonds, and triangles. A constraint
imposed on the lattice construction is that the mean bond length
inside the surface is identical to the mean bond length on the
surface.

The discrete Hamiltonian Sðr; sÞ is defined on the tetrahedrons
such that

Sðr; sÞ ¼ lS0ðsÞ þ gS1ðr;sÞ þ kS2ðrÞ þ U3D þ U2D;

S0ðsÞ ¼

8>>>><
>>>>:

P
ij

�
1� si$sj

� ðpolarÞ

1
2

X
ij

�
1� 3

�
si$sj

�2� ðnonpolarÞ
;

S1 ¼ 1
4N

X
ij

Gij[
2
ij; Gij ¼

X
tet

gijðtetÞ; [2ij ¼
�
ri � rj

�2
;

S2ðrÞ ¼
X
i

½1� cosðfi � p=3Þ�;

U3D ¼
X
tet

U3DðtetÞ; U3DðtetÞ ¼
(

0 ðVolðtetÞ>0Þ
∞ ðotherwiseÞ

;

U2D ¼
X
D;D0

UDD0 ; UDD0 ¼
(
∞

�
D;D0 intersect

�
0 ðotherwiseÞ

;

(1)

where rð2R3Þ is the vertex position and sið2S2 : unit sphereÞ) is a
variable at vertex i. This s corresponds to the three-dimensional
structure of an LC molecule. Between the variables s, the polar or
non-polar interaction is assumed in S0, as mentioned in the Intro-
duction. For the non-polar interaction, the variable s effectively has
values on the half sphere (si2S2=Z2), and the direction of s in LC is
controlled by the Lebwohl-Lasher potential l=2

P
ij
ð1� 3ðsi$sjÞ2Þ

[23]. It is well known that this potential represents the first order



Fig. 2. (a) A cylinder of size ðN;N2Þ ¼ ð2951;644Þ, where the diameter and the height are identical, N is the total number of vertices, and N2 is the total number of vertices on the
side face. (b) A sphere of size ðN;N2Þ ¼ ð2423;1002Þ, where N is the total number of vertices and N2 is the total number of vertices on the surface. (c) A tetrahedron on which the
discrete Hamiltonian is defined. The variable s is defined at the vertices.
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transition in LC between the ordered (nematic) and disordered
(isotropic) phases. This interaction, defined by Lebwohl and Lasher,
is simply called non-polar interaction in the remaining part of this
paper. The reason why the polar interaction is assumed in S0 in
addition to the non-polar one is to see the difference between the
polar and non-polar interactions under the presence of new
interaction between s and r introduced through the Finsler metric.
This interaction of s with r plays an essential role for anisotropic
shape transformation in our FGmodel. Note that the interactions in
S0 are not always identical to those assumed for studying the
nematic transition, where Landau free energy is always assumed
using a mean field for s [6].

The 3D canonical model is defined without the variable s. The
Hamiltonian S of the canonical model has almost the same
expression of the FG model in Eq. (1) and is given by
SðrÞ ¼ gS1ðrÞ þ kS2ðrÞ þ U3D þ U2D, where S1 ¼ P

ij
[2ij .

The relation between the discrete expressions of S1 in Eq. (1)
and the continuous one is shown in the next subsection. In the
discrete Gaussian bond potential gS1 in Eq. (1) the coefficient
gGij=4N is the effective tension, and

N ¼ ð1=NBÞ
X
ij

nij (2)

is the mean value of nij, which is the total number of tetrahe-
drons sharing the bond ij, and NBð¼

P
ij
1Þ is the total number of

bonds. The coefficient g of S1 is always called surface tension in the
case of membranes; however, an LCE is a 3D object, and for this
reason, we simply refer to gGij=4N as (microscopic) effective ten-
sion. Note that this effective tension has the suffix ij, and therefore,
it practically plays a role of microscopic string tension of the bond ij.
The symbol

P
tet

in Gij denotes the sum over all tetrahedrons sharing

bond ij. Note that N is a constant that depends on N; however, this
dependence of N on N disappears at sufficiently large N, and
therefore, the phase structure of the model is independent of
whether S1 is divided by N. The reason why the coefficient 1=N is
included is to remove the multiple contributions of the term [2ij in

the sum of S1, where [ij is the length of bond ij (see Fig. 2(c)). In the

2D canonical model for membranes, [2ij appears only once in the

sum of S1 ¼ P
ij
[2ij , and hence, no extra number is included in S1

[16,19].
The tension g of S1 in Eq. (1) is fixed to g ¼ 1. This S1 can also be
expressed by the sum over the tetrahedrons

P
tet

such that

S1ðr;sÞ ¼
1
4

X
tet

�
g12[

2
12 þ g13[

2
13 þ g14[

2
14 þ g23[

2
23 þ g24[

2
24

þ g34[
2
34

�
;

(3)

which is directly obtained from the continuous S1, as we will
show in the next subsection. Note that S1 in Eq. (3) is expressed by
the sum of tetrahedrons, while S1 in Eq. (1) is expressed by the sum
of bonds, and these are the same and different from each other only
in the representation. The coefficients gijð¼ gjiÞ in Eq. (3) are
defined by

g12 ¼ v12
v13v14

þ v21
v23v24

; g13 ¼ v13
v12v14

þ v31
v32v34

;

g14 ¼ v14
v12v13

þ v41
v43v42

; g23 ¼ v23
v21v24

þ v32
v31v34

;

g24 ¼ v24
v23v21

þ v42
v41v43

; g34 ¼ v34
v31v32

þ v43
v41v42

:

(4)

These fgijg are a part of S1 and different from gð¼ 1Þ, which is
the tension coefficient. The variable vij in Eq. (4) is the tangential
component of si along bond ij (Fig. 2(c))

vij ¼
��tij$si��; tij ¼ [

!
ij
�
[ij; [

!
ij ¼ rj � ri; (5)

where vijsvji in general. Note that

Gij ¼ Gji (6)

because of the property gij ¼ gji.
We comment on the problem that gij in Eq. (4) diverges when vik

(or vjk) in the denominator becomes vik/0 (or vjk/0), which may
happen if si (or sj) is vertical to tik (or tjk). To remove this diver-
gence, we introduce a small cut-off ε ¼ 1� 10�4 or ε ¼ 1� 10�5 for
vij. These values for ε do not make any difference in the results,
which are almost identical to those obtained in the limit of ε/0.
Nevertheless, large values of gij are actually expected, and this large
value of gij corresponds to a strong repulsive interaction between
the tetrahedron edge and s. We should emphasize that this strong
interaction deforms the shape of tetrahedrons and causes aniso-
tropic shape transformations.

Notably, the interaction between an LC molecule and the bulk
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polymer is implemented only in the Finsler metric gab of S1, which
will be described in the following subsection. Indeed, the elements
vij of gab are defined by both r and s as in Eq. (5). This interaction
between r and s is complex and cannot simply be expressed as the
interaction term in S0 for ss; however, this interaction can be un-
derstood intuitively as follows. If the direction of si changes and its
tangential component vij along bond ij becomes large (small), then
the unit of Finsler length (¼ vij) along this bond in the direction
from i to j automatically becomes large (small). Consequently, the
interaction between vertices i and j described by S1 is effectively
influenced by this variation of vij. This influence of vij on
S1ðf

P
gij[

2
ijÞ is actually understood as follows. From the scale

invariance of the partition function Z, whichwill be described in the
next section, the mean value of gij[

2
ij remains constant, while gij

given by Eq. (4) is locally changeable depending on vij. Hence, the
Euclidean bond length [ij, which is actually connected to the tet-
rahedron shape, becomes locally changeable depending on vij. Thus,
the interaction between the LC molecule and the bulk polymer is
coarse grained by this dependence of S1 on vij. This implies that the
FG model in this paper is universal in the sense that the interaction
is independent of the detailed information on the constituent
molecules as in the original HP model for 2D membranes.

The symbol fi in S2 in Eq. (1) is the internal angle of the triangles
(see f in Fig. 2(c)), and hence,

P
i
satisfies

P
i
1 ¼ 3NT , where NT is

the total number of triangles. The coefficient k is the rigidity cor-
responding to the polymer bending stiffness. The potential U3D
protects the tetrahedron volume Vol(tet) from being negative. The
self-avoiding potential U2D for the surface is introduced only for the
elongation simulations, and it is not used for the soft elasticity
simulations.

Here, we comment on the anisotropy expected in the effective
tension modulus ggij included in gGij in Eq. (1). The potential force,
with respect to the bond potential gS1, is given by

f
!

iðS1Þ ¼ �gvS1=vri; (7)

which acts on the particle at vertex i. Thus, the force along the
bond direction ij, from vertex i to vertex j, is given by f

!
i,tij, which

depends not only on [ij but also on Gij, as we observe in the discrete
expression of S1 in Eq. (1). For example, the potential force f

!
1,t12

along the direction of bond 12 includes the contribution gg12[12,
which comes from the tetrahedron in Fig. 2 (c). Therefore, from the
expression g12 in Eq. (4), we understand that the magnitude of this
force gg12[12 along bond 12 becomes dependent on v12 (and v21)
and vij; ði; js1;2Þ. This implies the possibility that gg12[12 becomes
large (small) compared to gg1j[1j; ðjs2Þ if vij; ði; js1;2Þ is small
(large) compared to v12 and v21; therefore, it is also possible that the
effective tension modulus gGij strongly depends on the bond po-
sition and the bond direction.

Note that a phase transition of s between the ordered and
disordered phases plays an essential role for the anisotropy in gGij.
The aforementioned dependence of gGij on the bond position and
the bond direction is only a local property of gGij because the
expression is given by the local coordinates. Therefore, it is unclear
whether this property of gGij influences the long-distance behavior
of the model, such as the shape transformation. However, it will be
clarified that this local property in gGij plays an essential role for
the shape transformation. The reason is that a global axis by the
phase transition of s appears between the ordered and disordered
phases. Along this axis that appeared spontaneously, the variable s

aligns, and therefore, the value of gGij along this axis becomes
different from those for other directions, and for this reason, the
anisotropic shape transformation emerges.
2.2. Continuous Gaussian energy and the discretization

The continuous Gaussian bond potential S1 is a 3D extension of
the Hamiltonian of the 2D model for membranes [33]. The 2D
model for membranes is considered to be a natural extension of
Doi-Edwards' model for linear polymers [9], as mentioned in
Ref. [16]. We note that the 3D extension of S1 from the 2D model is
straightforward because the expression of S1 for the 3D model is
exactly identical to the expression of S1 for the 2D model in
Ref. [27], except for the parameters xa; ða ¼ 1;/;DÞ, whereD ¼ 2 or
D ¼ 3. The expression of S1 is given by

S1 ¼
Z ffiffiffi

g
p

d3xgab
vr
vxa

$
vr
vxb

; (8)

where the LCE position r is considered to be a mapping from a
three-dimensional parameter spaceM to R3 in the HP prescription,
gab is the inverse of the Finsler metric gab, and g is its determinant.
The discrete version of this gab is given by

gab ¼

0
B@1

�
v212 0 0
0 1

�
v213 0

0 0 1
�
v214

1
CA; (9)

where fvijg are the same as those used in Eq. (4). The reasonwhywe
call this metric “discrete” is because vij is defined on the tetrahe-
drons as shown in Eq. (5). This gab in Eq. (9) is obtained from the
Euclidean metric dab by replacing the diagonal elements with 1=v2ij ,
which reflects an asymmetry in the direction of s [22]. Thus, the
asymmetry is introduced in the model via the asymmetrical
quantity vij. The phrase “vij is asymmetric” means that “vijsvji in
general”.

The integration and the partial derivatives of r in S1 of Eq. (8) are
replaced byZ ffiffiffi

g
p

d2x/
X
D

v�1
12 v

�1
13 v

�1
14 ;

v1r/r2 � r1; v2r/r3 � r1; v3r/r4 � r1 (10)

on the tetrahedron in Fig. 2(c), where the local coordinate origin
is assumed at vertex 1. Because we have four possible coordinate
origins in a tetrahedron, summing over all possible forms of var, we
obtain S1 in Eq. (3). This summation of the possible coordinate
origins for S1 makes gij and hence Gij symmetric under the ex-
change of ij, as shown in Eq. (6). This symmetry implies that the
effective tensionmodulus ggij is also symmetric. Wemust note that
gij depends on the direction (⇔gijsgik if jsk), although it is sym-
metric (gij ¼ gji); symmetric and isotropic are not always the same.
This symmetry in gij and Gij arises from the fact that the variable s

is defined on the vertices. This is in sharp contrast to the case in
which the elements of gab are defined on the triangles, where
gijsgji in general [27]. Therefore, such a Finsler geometry model, in
which gab is defined on the triangles (or tetrahedrons), forms
another interesting class of models, as mentioned in the
Introduction.

3. Monte Carlo simulations

The Metropolis MC technique is used for the update of r to
r0¼ rþdr, where dr is a random vector inside a small sphere [34,35].
The radius of this sphere is fixed such that the acceptance rate for r
approximately equals 50%. The variable s is updated to s0ð2S2Þ,
which is randomly defined with three different random numbers,
and therefore, it becomes independent of the current s. In this
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update, the rate of acceptance is very low, at least for large l;
however, we have no problem on the convergence because the
convergence rate of s is supposed to be very rapid compared to that
of r. The rapid convergence of s arises from the fact that the phase
space volume of s is finite (S2 unit sphere) while that of r is infinite
(R3). N updates of r and N updates of s are called one Monte Carlo
sweep (MCS). For the soft elasticity simulations, the data mea-
surements are executed at every 1000 MCS during 5� 107 to
2� 108 MCS after the 5� 106 thermalizationMCS. Additionally, for
the elongation simulations, a relatively small number of MCS is
sufficient, although the spherical body is not supported by any
boundaries. The thermalization MCS is 2� 106, and the MCS for
measurements is 4� 107 to 1� 108 after the thermalization MCS.
The reason for such a small number of MCS is because the defor-
mation of a 3D body is very small compared to the case of 2D
membranes, where the small deformation means that the practical
phase space volume for r in R3 becomes very small compared to the
one for r of 2D membranes.
3.1. Soft elasticity

Soft elasticity is experimentally observed for LCE films under
small external forces [1e3] (see Fig. 1(a)). To observe the soft
elasticity in our model, we use a cylinder of size
ðN;NB;NT ;NtetÞ ¼ ð4255;29303;48860;23811Þ, where NB;NT ;Ntet

denote the total number of bonds, triangles, and tetrahedrons,
respectively. It is easy to verify that N � NB þ NT � Ntet ¼ 1 for any
simply connected volume discretized by tetrahedrons.

On the upper and lower faces, which are round disks in the
initial configuration (Fig. 2(a)), the vertices are allowed to move on
the faces except a vertex of each boundary surface. The reason why
these two vertices (one on the upper surface and the other on the
lower surface) are fixed is to protect the vertices of the boundary
surfaces frommoving freely in the horizontal direction. This is only
for the FG models, and no constraint is imposed on the canonical
model (which is simulated and only snapshots are shown). In the
FG models, we choose these two vertices of which the distance
from the z-axis at the center of the initial boundary disks is the
minimum. We should note that the vertices including these two
ones on the boundary surfaces are allowed to move into the z-di-
rection for small distance. This will be described below in more
detail.

The self-avoidance for the tetrahedrons, implemented by U3D in
Eq. (1), also prohibits the triangles from folding on these upper and
lower faces. However, the surface self-avoiding interaction is
neglected on the side face of the cylinder, as mentioned in Section
2; consequently, the triangles can intersect on the side face. How-
ever, this self-intersection is expected to be negligible because the
height of the cylinder is fixed during the simulations and the
fluctuation of the side face is considerably suppressed.

Let N2d be the total number of vertices on the upper and lower
faces, and let N3d be defined by

N3d ¼ N � N2d: (11)

We have N2d ¼ 502 and N3d ¼ 3723 for the cylinder of size N ¼
4225 used for the soft elasticity simulations in this paper. Therefore,
the partition function of the model on the cylinder is given by

Zcyl ¼
X
s

Z YN2d

i¼1

dri
YN3d

i¼1

driexp½ � Sðr; s; LÞ�; (12)

Sðr;s; LÞ ¼ lS0ðsÞ þ gS1ðr; sÞ þ kS2ðrÞ þ U3D þ UB;
UB ¼
X

i2boundary

UBðriÞ; UBðriÞ ¼
	
∞ ðjzi � Lj> dB or jzij> dBÞ
0 ðotherwiseÞ ;

where Sðr;s; LÞ denotes that the height of the cylinder is fixed to L
(which should not be confused with the Finsler function in
Appendix A). The symbols

R QN2d
i¼1dri and

R QN3d
i¼1dri in Zcyl denote

the 2N2d and 3N3d-dimensional multiple integrations. Note that
N2d in

R QN2d
i¼1dri should be replaced by N2d � 2 because of the fixed

points mentioned above. However, we neglect the number �2 in
this expression.

As mentioned in Section 2.1, the variables si on the upper and
lower boundaries are strongly influenced by the boundary bonds if
the surfaces are flat, because vij ¼

��tij,si�� becomes zero for si that is
vertical to the flat boundary surfaces. Therefore the variables si can
not be vertical to the flat boundary surfaces. To remove such un-
natural effect, we introduce the potential UB assuming that the
vertices on the boundary surfaces can move into the height direc-
tion within dB from the boundary surfaces at the height positions
z ¼ 0 (lower) and z ¼ L (upper). The small height dB is fixed to the
half of the mean bond length of the initial cylinder configuration,
where the height and diameter of the cylinder are given by L and
D0, respectively. From this definition, we have

dB
L



¼ mean bond length

height of cylinder

�
/0 ðN/∞Þ; (13)

because the size of tetrahedron is independent of N while the
height L increases with increasing N. This implies that the influence
of UB is negligible for sufficiently large N.

From the scale invariance of Zcyl under the transformation
r/ar, where a is the scale parameter, we have [33]

vlog ZcylðaÞ
.
va

��
a¼1 (14)

Since L remains unchanged under the scale transformation
r/ar, we have the expression

ZcylðaÞ ¼ a2N2dþ3N3d
X
s

Z YN2d

i¼1

dri
YN3d

i¼1

driexp
h
� S

�
ar;s;a�1L

�i
;

(15)

where a�1L (rather than L) should be remarked. Because of this L
dependence, the left-hand side vlog ZcylðaÞ=va of Eq. (14) should
include the term of the partial derivative with respect to a�1L in
exp½�Sðar; s;a�1LÞ� of Eq. (15). To clarify this point, we temporarily
write ZcylðaÞ as Zcylða;a�1LÞ. Thus, we have

vZcyl
�
a;a�1L

�.
va ¼ vZcylða; *Þ=vaþ vZcyl

�
�;a�1L

�.
va; (16)

where vZcylðaÞ=va and vZcylð�;a�1LÞ=va denote the partial de-
rivatives with respect to a except a in �. This is only the Leibniz rule.
Let us write Zcylð�;a�1LÞ simply as Zcylða�1LÞ; then, using the
relation

vZcyl
�
a�1L

�.
va

¼
h
vZcyl

�
a�1L

�.
v
�
a�1L

�ih
v
�
a�1L

�.
va

i
¼ �La�2vZcylðLÞ=vL;

(17)

we have

2g
D
S1
E
� 2N2d � 3N3d ¼ �

�
L
.
Zcyl

�
vZcylðLÞ=vL: (18)



Fig. 3. Snapshots of the soft elasticity simulations of the canonical model for (a)
L=L0 ¼ 1:49, k ¼ 0 and (b) L=L0 ¼ 1:61, k ¼ 0:4, and the non-polar FG model for (c)
L=L0 ¼ 1:68 and (d) L=L0 ¼ 1 with l ¼ 1, k ¼ 0:3. N ¼ 4255.
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On the left-hand side of Eq. (18), the terms 2ghS1i and
2N2d þ 3N3d come from the partial derivatives of S1ðarÞ ¼ a2S1ðrÞ
and a2N2dþ3N3d , respectively, in ZcylðaÞ of Eq. (15). To calculate the
right-hand side of Eq. (18), we assume that the cylinder is a
continuous elastic object. Therefore, the free energy FðLÞ of this
elastic cylinder is given by

FðLÞ ¼
ZL
L0

f 2

EA
dz; (19)

where f is the external tensile force applied to the cylinder along the
height (or z) direction and E and A are the Young's modulus and the
sectional area perpendicular to the z direction, respectively. Thus,
using the relation

FðLÞ ¼ �log Zcyl
h
⇔Zcyl ¼ exp� FðLÞ

i
; (20)

we have from the right hand side of Eq. (18) that

�
�
L
.
Zcyl

�
vZcylðLÞ=vL ¼ LvFðLÞ=vL ¼

�
f 2
.
EA

�
L ¼ ðf =AÞ2AL=E:

(21)

In the final term, f =A is understood to be the true stress.
Therefore, by replacing A with A0, we obtain the nominal stress
tð¼ f =A0Þ such that

tðLÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2ghS1i � 2N2d � 3N3dÞE = LA0

p
; (22)

where g ¼ 1, E ¼ 1 and A0 defined by

A0 ¼ hV0i=L0 (23)

is the sectional area of the cylinder of height L0 and volume hV0i.
This cylinder causes t/0 because the height L0 satisfies
2ghS1i � 2N2d � 3N3d ¼ 0. Note that the true stress is obtained by
replacing LA0 with Vð¼ 〈V〉Þ in Eq. (22).

We must emphasize that the formula for tðLÞ in Eq. (22) is ob-
tained from Eq. (18) under the assumption that ZcylðLÞ in the right
hand side is given by themacroscopic free energy FðLÞ in Eq. (19). In
contrast, all quantities in the left hand side of Eq. (18) are given by
the microscopic mechanics, which is defined by the discrete
Hamiltonians and the partition function. All microscopic data such
as l, g and k, assumed for the calculation of the left hand side
including hS1i, are connected to the macroscopic quantity by this
formula in Eq. (18). Note that the macroscopic shear modulus is not
included in FðLÞ, because the present calculation is limited only for
tensile deformation of LCE. In fact, to obtain the macroscopic shear
stress of LCE in our formulation, we have to define the free energy
corresponding to shear deformations, and this is out of the scope of
this paper.

The initial configuration of s for the simulations of the non-
polar model is assumed to be radially symmetric [2,3] such that

�
sx; sy;sz

� ¼ ðcos q; sin q;0Þ; ðnonpolarÞ; (24)

where q is the polar angle of the vertex position r on the plain
perpendicular to the z axis. A random start is also performed for the
non-polar model to see the dependence on the initial configura-
tions. In contrast, only the random configuration of s is assumed for
the polar model because the radially symmetric configuration is
unstable at the center x ¼ y ¼ 0 of the cylinder in this case.

As mentioned above, the initial height L0 of the cylinder is fixed
such that we have
ghS1i ¼ N2d þ ð3=2ÞN3d; (25)

which corresponds to the case of t ¼ 0 from Eq. (22). This initial
cylinder height L0 for t ¼ 0 depends on the parameters l and k, as
well as on whether the model is polar or non-polar. In the simu-
lations for t ¼ 0, the mean value of the diameter becomes different
from L0 in general even though the cylindrical lattice is constructed
such that the height equals the diameter.

First, we show the snapshots of the canonical model in Fig. 3 (a),
(b). The canonical model corresponds to the FG model with l ¼ 0.
In the canonical model simulations, the upper/lower boundary
vertices are allowed to move freely in the horizontal plain, and
therefore, if the lattice construction is not uniform, it is suspected
that the lattice unexpectedly deforms. These snapshots indicate
that the height direction of the cylinder does not deviate from the
z-direction. This implies that the lattice is suitably constructed for
our purpose.

The snapshots in Fig. 3 (c), (d) are those of the non-polar model
for l ¼ 1, k ¼ 0:3 with the strain (c) L=L0 ¼ 1 and (d) L=L0 ¼ 1:68,
where the ordered initial configuration is assumed. The variable s

defined at the vertices is represented by the small cylinders (or
rods). We find that s almost completely aligns along the horizontal
and height directions in (c) and (d), respectively. This implies that s
changes its direction according to the applied external tensile force.
The surface is relatively rough, however, we should emphasize that
the configurations are connected with not only macroscopic me-
chanics but also microscopic mechanics. Indeed, we assume two
different partition functions in Eqs. (12) and (20).

The symbols (D) in Fig. 4 are obtained under l ¼ k ¼ 0. For l ¼ 0,
the variable s and hence gij in Eq. (4) becomes random. In this case,
we have no difference (up to a multiplicative factor) between t (D)
vs. L=L0 for l ¼ 0 and that of the canonical model without the
variable s, where S1 is the ordinary one S1 ¼ P

ij
[2ij. This smooth



Fig. 4. The nominal stress t (�;D) vs. strain L=L0 (a) non-polar, (b) polar and (c),(d) non-polar cases. The corresponding true stresses (B;,) are also shown. Every figure includes the
symbols (B;D), which are the data for l ¼ 0 and k ¼ 0, corresponding to the model without the variable s. The symbols (5), guided by an arrow, are the results of hysteresis
simulations, in which the variable s is kept frozen to the configuration of the expanded cylinder. In (a), the symbols (�;,) denote the ordered start configuration for the variable s,
while the symbol (�), the nominal stress, denotes the random start configuration. The curve t vs. L=L0 has plateaus like in the experimental data reported in Refs. [1e3].
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behavior without the cusp in the curve of t vs. L=L0 remains almost
unchanged for non-zero k if l ¼ 0. In contrast, the results for
l ¼ k ¼ 0 are quite different from those (�) for large l, such as
l ¼ 0:6, l ¼ 1 and l ¼ 3:33 with non-zero k, where t has a plateau
with a cusp.

We find that there is no dependence of the results on the initial
configurations for the variable s in the non-polar model. Indeed,
the nominal stresses (�) in Fig. 4(a) obtained by random start MCs
are almost identical to those (�) obtained by the ordered start MCs.
The linear behavior of t can be seen for small t (at least in the re-
gion t<2) in both polar and non-polar models.

Young modulus E can be evaluated by Eq. (22). Recalling that
tðL; E ¼ 1Þ corresponds to the numerical data t, we can evaluate E
by E ¼ ðtexp=tÞ2 (see Appendix B). For texp in this expression
E ¼ ðtexp=tÞ2, we use the experimental data reported in Refs. [1e3],
which approximately range from texp ¼ 103½Pa� to texp ¼ 104½Pa�.
Thus, we have approximately E ¼ 0:001½GPa� � E ¼ 0:1½GPa�, which
are comparable to experimental data of elastomers [36].

Note that the length of the plateau depends on k (Fig. 4(c)).
When both l and k are large, such that l ¼ 3:33 and k ¼ 1 for
example, t discontinuously changes (this is not plotted). More
precisely, t is discontinuously reduced if L=L0 increases, and sub-
sequently, t begins to increase with increasing L=L0. At this tran-
sition point, a discontinuous change can also be observed in the
volume. This result implies that the transition changes from the
second to the first order if k (l) is increased for sufficiently large l

(k).We also note that the shape of t vs. L=L0 with the plateau is close
to the experimental data of the stress-strain curve in Refs. [2,3] (see
Fig. 1(a)). It is also confirmed that the plateau shape is almost in-
dependent of whether the interaction is polar or non-polar. The
true stress (,) is almost the same as the nominal stress (�) for all
combinations of l and k.

Now, we comment on the boundary condition for the upper/
lower surface of the FG models. As we have seen in the snapshot of
Fig. 3(d), the axis of the cylindrical body slightly deviates from the
vertical direction. The deviation of the axis from the vertical di-
rection is relatively small in the configurations for k ¼ 0:3, however,
slightly larger deviation can be seen in some of the snapshots for
small k such as k ¼ 0:1 and even for k ¼ 0:2, although a vertex on
the upper/lower surface is fixed to prevent the surface vertices
from moving into the horizontal direction. For this reason, we
examine another condition for the upper/lower surface such that
the center of mass of the vertices is fixed (inside a small circle of
which the radius is given by the mean bond length) on the hori-
zontal plain to keep the axis vertical to the plain. As a consequence,
the axis always becomes vertical to the horizontal plain indepen-
dent of the value of k. However, the obtained results are different
from those plotted in Fig. 4. Indeed, t has a discontinuity just like
the one observed for large l and k under the first boundary con-
dition as mentioned above. This implies that the latter boundary
condition is more effective than the former one to prevent the
surface vertices from moving horizontally. Moreover, this indicates
that the shear stress should also be considered in the latter
boundary condition for relatively small region of k, however, we do
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not go into detail of this problem in this paper.
The strong influence of s on the edge direction of tetrahedron is

not always limited to the boundary surfaces, it is also expected
everywhere inside the body. Therefore, if the variables si align
along a direction, which is determined spontaneously or by some
external forces, the tetrahedrons deform to protect si being vertical
to the bond ij. This is an explanation of the mechanism of shape
deformation in LCE in the context of FG modeling.

Here, we note that our result indicates the possibility that the
plastic deformation of metallic materials is partly understood along
the context of Finsler geometry modeling. The stress-strain curve of
these metals has a plateau, which represents the plastic deforma-
tion, just like the one in t vs. L=L0 in Fig. 4. This implies that the
plastic deformation shares a common originwith the soft elasticity.
Indeed, the work-hardening phenomenon can be observed in our
model. The stress t decreases as L=L0 decreases (Fig. 4 (5)), which
are obtained by the hysteresis simulations (but no hysteresis
because of the rapid convergence). In these simulations, the vari-
able s is kept frozen to the configuration of the expanded cylinder,
just like a glass [37]. The hysteresis simulations consist of several
consecutive simulations inwhich the final configuration of r is used
as the initial one of the next simulation, where L is decreased step
by step in this case. If s is not kept frozen and treated as a dynamical
variable in the hysteresis simulations with decreasing L, the stress t
returns along the same position of the original t.

Additionally, note that a plateau can also be observed in the
stress-strain curves of porous or cellular materials. In cellular ma-
terials, the structural change of the cellular sections is reflected in
the plateau of the stress-strain curve. This structural change in the
cellular sections is connected with a rotational symmetry, and
Fig. 5. (a) sjj ¼
P
i

�����siz
�����=N vs. L=L0, (b) the angle q vs. L=L0, where q ¼ 90� ð180=pÞcos�1s
therefore, the plateau can also reflect a transition from rotationally
symmetric to non-symmetric states. Note that the reverse transi-
tion is not always observed in cellular solids [38].

The orientation of s along the height direction can be reflected
in

sjj ¼ ð1=NÞ
X
i

�����ðsiÞz
����� (26)

vs. L=L0 in Fig. 5(a). We observe that

sjj/1
�
sjj/0

�
L=L0[1 ðL=L0/1Þ: (27)

Therefore, this directional change in s is understood to be a
structural change, which undergoes a phase transition. Note that
this change in s is reflected in the external mechanical properties,
such as t. Indeed, we observe that sjj discontinuously changes as a
function of L=L0 for sufficiently large l and k (this is not plotted).
Thus, the discontinuous change of s can be reflected in t as its
discontinuous change. At this discontinuous transition point, the
volume and the sectional area also discontinuously change as
mentioned above, although these discontinuities are relatively
small because the cylindrical shape remains identical. This struc-
tural change is considered to be very similar to the liquid-solid (or
liquid-vapor) phase transition of materials if the curve of t vs. L=L0
in Fig. 4 is identified with the pressure vs. density curve of mate-
rials. Indeed, the pressure increases with increasing density in the
pressure vs. density curve of the liquid-vapor transition. In the
small density region, where the material is in the vapor phase, the
pressure is expected to increase almost linearly with the density. As
jj , and the eigenvalues S1;2;3 vs. L=L0 for (c) l ¼ 1, k ¼ 0:3 and (d) l ¼ 3:33, k ¼ 0:2.
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the density increases further, the pressure stops increasing and has
a plateau, where the material turns to be in the two-phase coex-
istence state. If the density is further increased, the plateau of the
pressure terminates, and the pressure rapidly increases. In this
case, a real structural change occurs in the material, whereas in the
LCE model, the terminology “structural change” only refers to the
change in s.

In Fig. 5(b), we plot the mean value of the angle q defined by

q ¼ 90� ð180=pÞcos�1sjj: (28)

The plotted results show that the angle increases from qx0 to
90� with increasing L=L0. However, q becomes not exactly zero (90)
degree even for small (large) strain L=L0. This is not always
consistent to the actual experimental data reported in Refs. [2,5],
where the scaled strain is used instead of L=L0. The reason for these
deviations in the data is that the tetrahedron hardly deforms for
relatively large k, and this protects s from being parallel to the z-
axis. The reason why q for k ¼ 0:2 is slightly smaller than q for k ¼
0:3 is that the deviation of the cylinder axis from the z-axis for k ¼
0:2 is relatively larger than that for k ¼ 0:3.

To see the ordering of the variable s in more detail, we calculate
the eigenvalues S of the tensor order parameter defined by

Qmn ¼ 3
��
smsn


� dmn
�
3
�
: (29)

If s is completely ordered, the largest eigenvalue S1 becomes
S1/1, and the other two eigenvalues S2 and S3 are expected to be
S2;3/� 0:5. We find from the data in Fig. 5 (c),(d) that the variable
s is almost completely ordered, although the axis of s changes with
increasing L. The completely ordered alignment of s in Fig. 5 (d) is
expected from the fact that the assumed coefficient l ¼ 3:33 is
relatively large.

Fig. 6(a) shows that the mean sectional area A ¼ V=L decreases
as L=L0 increases. The plateau of the volume V in 6(b), except for the
large L=L0 region, reflects a structural change. Indeed, V at L=L0x1
slightly increases as L=L0 increases, whereas V remains constant in
the region of L=L0 where t has the plateau. More precisely, we
should recall that the tetrahedron resists deforming to be oblong
unless k/0. For this reason, the tetrahedron shape (not the size) is
expected to remain almost unchanged when the size is enlarged in
the height direction, and consequently, the tetrahedron volume
increases with increasing height. Thus, the volume V of the cylinder
is expected to increase with increasing L=L0 for ks0. However, V
does not change in this manner and remains almost constant. This
Fig. 6. (a) The mean sectional area Að¼ V=LÞ vs. L=L0, and (b)
constant V represents a certain lattice structural change that cor-
responds to the change of the variable s in our model. For the re-
gion L=L0 >1:4 in Fig. 6(b), V linearly increases with L=L0. This
implies that the bond length (and hence S1) also increases, and this
is the reason why t defined by Eq. (22) increases (Fig. 4) in this
region. We also note that the volume V does not reflect the
continuous transition between the nematic and isotropic phases.
3.2. Elongation

As in the previous section, the tension coefficient is fixed to
g ¼ 1. The symbol L denotes the maximal diameter of the oblong
sphere in this section (whereas in the previous section, L denotes
the height of the cylinder). For the simulations of the elongation,
we use spheres of size ðN;N2Þ ¼ ð853;314Þ, ðN;N2Þ ¼ ð2423;1002Þ,
and ðN;N2Þ ¼ ð4601;1402Þ, where N is the total number of vertices,
N2 is the total number of vertices on the surface, and N includes N2.
The partition function for the spherical body is

Zsph ¼
X
s

Z 0 YN
i¼1

driexp½ � Sðr;sÞ�; (30)

where
R 0 denotes that the center of mass of the sphere is fixed to

the origin of R3. In sharp contrast to Zcyl in Eq. (12), Zsph in Eq. (30)
has no two-dimensional integrations. This implies that no
constraint except

R 0 is imposed on the sphere. As mentioned in
Section 2, the self-avoiding potential U2D is assumed in this case for
the surface triangles. Since this self-avoiding interaction in U2D is
non-local, the elongation simulation is relatively time consuming
compared to the soft-elasticity simulations in the previous sub-
section. In Ref. [39], the two-dimensional bending energy
S2 ¼ P

ij
ð1� ni$niÞ, which is defined only for the surface, is exam-

ined rather than S2 in Eq. (1), and the elongation phenomena are
also observed. This two-dimensional S2 is not included in the
Hamiltonian for the simulations in this paper.

We note that the spherical body does not shrink to a point-like
collapsed ball because of the scale invariance of the partition
function as discussed in Section 3.1. Indeed, from the equation
vlog ZsphðaÞ=va

��
a¼1 ¼ 0 corresponding to Eq. (14), we obtain

2ghS1i � 3ðN � 1Þ ¼ 0, where g ¼ 1. Thus, we have

hS1i=N ¼ 3=2 (31)

in the limit of N/∞. Since S1 is given by S1 ¼ ð1=4NÞP
ij
Gij[

2
ij
the volume V vs. L=L0 for the same l and k as in Fig. 4.



Fig. 7. Snapshots of the elongation simulations for the non-polar model for (a) l ¼ 0:2 (symmetric phase) and (b) l ¼ 0:427 (elongated phase). These are obtained at k ¼ 0:1, and
the total number of vertices is N ¼ 4601. Small (red) cylinders represents the variable s defined at the vertices. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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and Gij ¼
P
tet

gijðtetÞ is finite, the mean value of [2ij becomes finite.

This finiteness of [2ij implies that the spherical body does not shrink

to a small ball evenwithout boundary conditions such as the upper
and lower plates in the soft elasticity simulation in Section 3.1.

First, we present snapshots of symmetric and non-symmetric
(elongated) spheres for the non-polar model in Fig. 7(a) and (b),
where k ¼ 0:1. The variable s defined at the vertices is almost
random for the symmetric phase in Fig. 7(a), whereas it is almost
aligned or ordered along the oblong direction for the elongated
phase in Fig. 7(b). There is no difference in the outside views be-
tween the polar and non-polar models.

There are several reasons for why the surface appears quite
rough. One of the reasons is that the variable s is prohibited from
being vertical to the edges of tetrahedron because of the divergence
of gij in Eq. (4). This divergence of gij can be avoided on rough
surfaces. Another reason is that the total number N of vertices is not
so large. If N is large enough, then the surface appears relatively
smooth. It is also possible to smother the surface by including the
two-dimensional bending energy on the surface into the Hamilto-
nian [39]. However, we should emphasize that the surface rough-
ness such as the ones in the snapshots does not make any
influences on the elongation phenomenons in the model. The
important point is that the tetrahedron does not always represent
the actual structure of LCE, it is introduced only for the dis-
cretization of spherical body such that its size is negligible
compared with the size of spherical body in the limit of N/∞.

We plot the strain L=L0 vs. l in Fig. 8(a) and (b), where L0 is L for
l ¼ 0. For l ¼ 0, the sphere is not elongated, and hence, it remains
symmetric. The stiffness is fixed to k ¼ 0:1 in both the polar and
non-polar cases. Note that large (small) l corresponds to low (high)
temperature since l has units of kBT . Therefore, the increasing l

along the horizontal axis from the origin to the right direction
simply corresponds to the decreasing temperature. The solid lines
connecting the data symbols are obtained by interpolating the data
for the lattices of size N ¼ 853, N ¼ 2234, and N ¼ 4601 with the
Legendre polynomial. By fitting these interpolated data L=L0 line-
arly against 1=N, we obtain the thick solid lines corresponding to
the data in the limit of N/∞. Note that L=L0 in the large l region
becomes relatively smaller for larger k, such as k ¼ 0:3 and k ¼ 0:5,
which are not plotted. The large k protects the sphere from elon-
gating. The results of L=L0 vs. l plotted in Fig. 8 are consistent with
those of the experimental ones reported in Refs. [2,4] (see Fig. 1(b)),
although our results are obtained under zero external tensile stress,
where the elongation axis is spontaneously determined. In the
experiments reported in Refs. [2,4], the curve of L=L0 vs. the tem-
perature T is measured, whereas in Fig. 8, the curve of L=L0 vs. l is
plotted. This is the major difference between the data in Fig. 8 and
the experimental data.

The elongation is caused by the transition between the disor-
dered (¼ spherical) and ordered (¼ elongated) phases of s. This
transition can be reflected in the variance defined by

CS0 ¼ ð1=NÞ
�D

S20
E
� hS0i2

�
: (32)

This variance CS0 can be called specific heat corresponding to the
energy S0, because of the relations �ðv=vlÞlogZ ¼ hS0i and

�ðv2=vl2ÞlogZ ¼ hS20i � hS0i2. Note that the coefficient l2 is not
included in CS0 of Eq. (32), however the critical behavior of CS0 is
independent of this coefficient. Although S0=N (which is not
plotted) varies almost continuously, we observe from Fig. 8(c) and
(d) that CS0 has a peak Cmax

S0
, which increases with increasing N.

Note that the critical point lcðNÞ, where CS0 has the peak Cmax
S0

, is
the point where L=L0 suddenly increases from L=L0 ¼ 1 in both the
polar and non-polar cases. We obtain the scaling coefficient a in
Cmax
S0

� Na such that

a ¼ 0:22±0:07 ðpolarÞ;
a ¼ 0:51±0:08 ðnonpolarÞ; (33)

for k ¼ 0:1. This implies that the model has a continuous tran-
sition for both the polar and non-polar cases. These results confirm
the continuous nature of the transition between the nematic and
isotropic phases in LCE [2]. Therefore, we consider that the FG
model in this paper corresponds to the main chain LCE, because the
main (side) chain LCE undergoes a continuous (discontinuous)
transition in experiments [2]. Although the order of the transition
remains continuous or second order in both models, the coefficient
a of the non-polar model is larger than that of the polar model. This



Fig. 8. L=L0 vs. l of the (a) polar and (b) non-polar models, and the variance CS0 vs. l of the (c) polar and (d) non-polar models. k ¼ 0:1. The thick solid lines in (a) and (b) are those
for N/∞ obtained from the linear fitting of data by 1=N.
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is consistent to the fact that the change of L=L0 at the transition
point is more abrupt in the non-polar model than in the polar
model as we have confirmed in Fig. 8(a), (b).

The order parameter m of the transition for the polar model is
given by

m ¼ 〈s〉 ðpolarÞ: (34)

This magnetization m changes just like in the ferro-magnetic
transitions (see Fig. 9(a)). The susceptibility

c ¼ N
�D

s2
E
� 〈s〉2

�
(35)

has a peak at the transition point, where L=L0 begins to increase.
The peak value cmaxðNÞ is expected to scale according to
cmaxðNÞ � Nn; indeed, we have n ¼ 0:64±0:08 (Fig. 9(b)). This im-
plies that the variable s also plays an important role in the elon-
gation phenomenon of the model.

To see the ordering of the variables s for the non-polar model,
we calculate the eigenvalues of the tensor order parameter in Eq.
(29). The eigenvalues S1;2;3ðS1 >S2 >S3Þ abruptly change at the
transition point (Fig. 9(c)). We also find that S1;2;3/0 for l/0 and
S1/1, S2;3/� 0:5 for l/∞. This implies that s becomes random
(ordered) in the limit of l/0 (l/∞) at the transition point
lcðx0:25Þ.

To evaluate the ordering of the variables s along the elongation
axis, we calculate the parameter
mE ¼ ð1=2Þ
�
3
D
ðs$tEÞ2

E
� 1

�
ðnonpolarÞ (36)

for the non-polar model. In this expression, the elongation axis
tE is evaluated by

tE ¼ rI � rJ��rI � rJ
��;

��rI � rJ
��

¼ Max
���ri � rj

��ði; j ¼ vertices on the surfaceÞ�; (37)

where I and J denote the vertices on the surface such that the
distance

��rI � rJ
�� is the maximum. If this axis tE is identical to the

ordered axis of s, mE is identified to S1. We find from Fig. 9(d) that
the variable s almost aligns along the elongated direction as we
have confirmed in the snapshots in Fig. 7(b).

The continuous transition of s is reflected in the volume V.
Indeed, V continuously changes at the transition point in both the
polar and non-polar models. However, the change of V is relatively
small even at the transition point (Fig. 10(a) and (b)), and the
continuous transition is not reflected in the variance CV of V in both
models (these are not plotted).

Next, a constraint on the volume V, such as

V ¼ V0 ¼ constant; (38)

is imposed on the simulations. In the simulations for the elon-
gation in Figs. 8 and 9 (as well as in Fig. 7), no constraint, including



Fig. 9. (a) m vs. l and (b) the susceptibility c vs. l of the polar model. The peak of susceptibility cmax vs. N is plotted in a log-log scale in the small window in (b). (c) The eigenvalues
S1;2;3 of the tensor order parameter Qmn in Eq. (29) vs. l, and (d) the parameter mE (and S1) vs. l of the non-polar model.

Fig. 10. The volume V vs. l for the (a) non-polar and (b) polar models.
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the one in Eq. (38), is imposed. The reason why this constraint is
imposed here is to determine whether the elongation can be
observed without the volume change. In fact, we have observed
that the elongation accompanies a small variation of V as in Fig. 5(d)
and in Fig. 10(a) and (b). In the simulations without the constraints,
the volume changes in the MC process only when the vertices on
the surface are updated, whereas it remains unchanged in the
update of vertices inside the body. Therefore, if the volume is
rigorously fixed under the constraint of Eq. (38), the vertices on the
surface can move only in specific directions such that the surface
shape remains unchanged from the initial smooth cylinder. For this
reason, we impose a constraint on the volume V such that
V0 � DV 	 V 	 V0 þ DV (39)

where DV is the volume of the regular tetrahedron, the bond length
of which is given by the mean bond length in the equilibrium
configuration. The equilibrium bond length is expected to remain
constant from the relation S1=N ¼ 3=2, which comes from the scale
invariance of Zsph. From this, we find that DV=V0 becomes very
small, and the rate of acceptance for the vertex moving on the
surface is almost uninfluenced by this constraint. Hence, the
constraint of Eq. (39) is accurate and meaningful, and this tech-
nique is the same as the one used in the enclosed-volume constant



Fig. 11. The volume constant simulation results: L=L0 vs. l of the (a) polar and (b) on-polar models, and CS0 vs. l of the (c) polar and (d) non-polar models. The thick solid lines in (a)
and (b) correspond to L=L0 vs. l for N/∞.
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simulations for membranes in Ref. [40].
The results of L=L0 vs. l in both the polar and non-polar cases for

k ¼ 0:1 in Fig. 11(a)e(d) are almost identical to those in
Fig. 8(a)e(d) obtained from the model without the constraint on V.
The phase transition between the symmetric and elongated phases
also remains unchanged. We have Cmax

S0
ðNÞ � Na, a ¼ 0:48±0:10 for

the case of non-polar and k ¼ 0:1 (Fig. 11(d)). This component a is
identified to the second of Eq. (33) within the error.
4. Summary and conclusion

In this paper, we introduce a new model for a 3D liquid crystal
elastomer (LCE). This model is constructed on the basis of Finsler
geometry (FG). Regarding the soft elasticity and elongation phe-
nomena of LCE, we confirm that theMonte Carlo data are consistent
with the existing experimental results. From these numerical
simulations, we find that the mechanism for the anisotropy in the
FG model is deeply connected with the interaction of s with the
position r of s. This interaction is coarse grained and implemented
in the model via the Finsler metric.

We provide speculative comments on several possible applica-
tions of FG modeling.

The first is the deformation of a thin LCE [43]. The mechanism of
a deformation of a thin LCE under non-uniform illumination of
visible light can be understood in the framework of FG modeling.
For such thin LCE, the temperature dependence of physical quan-
tities can be evaluated with the parameter l in our model. The
second is the deformation of LCE under external electric fields [44].
The variables s is aligned by an electric field along or vertical to the
electric field, and deformation of LCE is expected to be independent
of how s is aligned. Finally, the so-called J-shaped stress-strain
diagram of biological materials, such as blood vessels and skin,
can also be considered in the scope of FG modeling [45].
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A. 3D Finsler metric

In this Appendix, we show how to obtain the 3D Finsler metric
in Eq. (9) with the help of FG modeling in a self-contained manner.
The anisotropy in LCE, such as oblong shape for example, is
considered to be connected with the internal molecular structure,
such as the direction of liquid crystal molecules. This intuitive
picture for the anisotropy is understood in the context of the Finsler
geometry model.

The Hamiltonian of the LCE model includes the Gaussian energy
S1 described in Eq. (8). In this S1, rð2R3Þ denotes the LCE position,
gab is the inverse of the metric gab, which is a 3� 3 matrix, and g is
its determinant.



Fig. A.1. (a) A smooth tetrahedron 1234 in M, and (b) the piece-wise linear tetrahedron 1234 in R3.
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Since the LCEs are considered to be a 3D body in R3, the induced
metric gab ¼ var,vbr can be assumed for the LCE model. Here,
however, we slightly generalize the metric function to implement
the Finsler metric. For this purpose, it is convenient to consider that

r is a mapping from a three-dimensional parameter space M to R3

such that r : MHðx1; x2; x3Þ1rðx1; x2; x3Þ2R3 (see Fig. A.1(a),(b)).
This spaceM is considered as a three-dimensional manifold, which

is locally identified with a domain in R3. The elements of gab are
functions on M, and gab is assumed to be positive definite
ð⇔P

ab
gabvavb >0 for all ðv1; v2Þsð0;0ÞÞ.

M is called a Finsler space if M is equipped with a Finsler func-
tion L [20,21]. Let C be a curve onM such that CHt1xðtÞ2M; then,
the Finsler length s along C is defined using L such that

s ¼
Zt

t0

Lðx; yÞdt


⇔
ds
dt

¼ Lðx; yÞ
�
; (A.1)

where x ¼ ðx1; x2; x3Þ and y ¼ ðy1; y2; y3Þ ¼ ðdx1=dt; dx2=dt; dx3=dtÞ
denote a point on C and a tangential vector along C, respectively.
The original Finsler function L is given by

LðxðtÞ; yðtÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

y2i

s ,������v
������; (A.2)

where v and

�����v
����� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i
ðdxi=dsÞ2

r
are a vector along C and its length

with respect to the special parameter s, respectively [20]. This L
satisfies ds=dt ¼ L (see Ref. [22] in more detail on this point). Note
that v is a tangential vector of C with respect to the Finsler length s
along C, and hence, the length jvj plays a role of unit Finsler length.

Since the integral
R ffiffiffiffiffiffiffiffiffiffiffiP

i
y2i

r
dt provides the ordinary length of C, L is

considered to be the ratio of the ordinary length unit and the Finsler
length unit along C. This ratio depends on the direction of C (or v) if
jvj depends on the direction.

The problem is where jvj comes from. One answer to this
problem is that

v ¼ ðs$tÞt; (A.3)

where sð2S2Þ is a three-dimensional unit vector corresponding to
a liquid crystal (LC) molecule and t is a unit tangential vector along
the tetrahedron edge. For the non-polar interaction, �s and s are
identified. It is natural to consider that s is given at the vertices of
the tetrahedrons in R3 because the tetrahedrons correspond to an
LCE. This implies that v2R3, although it should originally belong to
M. The important point to note is that we simply assume the same
length jvj on the smooth tetrahedron in M to define the Finsler
function L. Note that v ¼ 0 for any s with s,t ¼ 0, and in this case,
the Finsler function L is not defined along the direction corre-
sponding to this t.

Let v12 be the component of v along the edge (or bond) 12 of the
tetrahedron, as shown in Fig. A.1(b). Thus, we have

v12 ¼ jv$t12j ¼ js1$t12j; v13 ¼ jv$t13j ¼ js1$t13j;

v14 ¼ jv$t14j ¼ js1$t14j; (A.4)

where si is s at vertex i and tij is the unit tangential vector along the
bond ij at vertex i. Note that vijsvji in general. Using these vij, we
calculate L on the smooth tetrahedron 1234 in Fig. A.1(a) as follows.
First, we assume that the local coordinate origin of the smooth
tetrahedron is at vertex 1, and then bonds 12,13 and 14 correspond
to the coordinate axes x1, x2 and x3. Therefore, the discrete Finsler
function L12 on the x1 axis of the smooth tetrahedron is given by
L12 ¼ R ðdx1=dtÞdt=v12 ¼ R

dx1=v12 ¼ 1=v12, where
R
dx1 ¼ 1 is

assumed for bond 12. We also have L13 ¼ 1=v13, L14 ¼ 1=v14 for
bonds 13 and 14. We assume that gab is the Euclidean metric dab on
the smooth tetrahedron in Fig. A.1(a), in which the coordinate
origin is at vertex 1; then, by replacing the elements of dab with the
Finsler length squares L212, L

2
13 and L214, we have the Finsler metric in

Eq. (9).
B. Physical unit of stress t and Young modulus E

We present the expression for experimental Young modulus E
obtained by using the simulation results tðLÞ and experimental data
texp. For this purpose, it is convenient to introduce the notion of
lattice spacing a½m�, which is fixed to a ¼ 1 under the unit of kBT ¼
1 in the simulations. All physical quantities that have the unit of
length should be multiplied by a. The inverse temperature
b ¼ 1=kBT is also fixed to b ¼ 1ð⇔kBT ¼ 1Þ in the simulations, and
as a consequence gS1 has the unit of kBT in Eq. (22) for example. By
including these parameters a, b and kBT in the calculation of scale
invariant property of the model introduced in Subsection 3.1, we
have
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texpðEÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2ghS1i � 2N2d � 3N3dÞkBTE

LA0a
3

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ghS1i � 2N2d � 3N3d

LA0

s ffiffiffiffiffiffiffiffiffiffi
kBTE

a3

s

x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ghS1i � 2N2d � 3N3d

LA0

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 10�21E

a3

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ghS1i � 2N2d � 3N3d

LA0

s ffiffiffi
E

p
:

(B.1)

In the second line of Eq. (B.1), kBT is replaced by
kBTx4� 10�21½Nm�, where the room temperature is assumed for T.
It should be noted that a is given by
4� 10�21 ¼ a3ð⇔ax1� 10�7½m�Þ if the unit of kBT is explicitly
used. This texpðEÞ has the unit ½Pa� if E is given with the unit of ½Pa�.
Using the fact that the simulation result tðLÞ is obtained from this
texpðEÞ in Eq. (B.1) by replacing E with Esimð¼ 1½Pa�Þ, we have

t Lð Þ ¼ texpðEsimÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ghS1i � 2N2d � 3N3d

LA0

s ffiffiffiffiffiffiffiffiffi
Esim

p
: (B.2)

Note that the right hand side (¼ the final expression) is exactly
identical to tðLÞ in Eq. (22) if Esim is given by Esim ¼ 1. From Eqs.
(B.1) and (B.2), we obtain tðLÞ= ffiffiffiffiffiffiffiffiffi

Esim
p ¼ texp=

ffiffiffi
E

p
. Thus, we finally

have

E ¼ �
texp

�
tðLÞ�2Esim ¼ �

texp
�
tðLÞ�2½Pa�; (B.3)

where Esim ¼ 1½Pa� is assumed. This is a relation between the
simulation data ftðLÞ; Esimð¼ 1Þg and experimental data ftexp; Eg,
where the unit of these quantities is ½Pa�.
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