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Self-consistent field theory is used to make direct predictions for the maximum possible cell densities for
model polymer foam systems without recourse to classical nucleation theory or activation barrier kinetic
arguments. Maximum possible cell density predictions are also made subject to constraining the systems
to have maximal possible internal interface and to have well formed bubbles (no deviation from bulk
conditions on the interior of the bubble). This last condition is found to be the most restrictive on
possible cell densities. Comparison is made with classical nucleation theory and it is found that the
surface tension is not an important independent consideration for predicting conditions consistent with
high cell density polymeric foams or achieving the smallest possible bubble sizes. Instead, the volume
free energy density, often labelled as a pressure difference, is the dominant factor for both cell densities
and cell sizes.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Polymeric foams are made by generating bubbles with
a blowing agent of gas or supercritical fluid in a polymer melt and
then solidifying the polymer to trap the bubbles [1]. Depending on
the material application, different types of foams can be created.
For many existing or potential applications, very high quality foams
are needed, with the definition of “high quality” also depending on
the application. One common ambition is to create foams with very
high cell densities, that is, with large numbers of bubbles per unit
polymer volume. For this, one wants not only very small bubbles,
but also that these cells are positioned close together. The hope is
that this will create a large total amount of bubble surface within
the polymer matrix and give the foam very good properties. For the
same reason, one typically wants well-defined bubbles, in that the
cells strongly exclude the matrix polymer. Taken together, a foam
with these aspects might be described as a high quality foam.

In order to create the “best” possible foamwith given chemistry
of polymer and blowing agent, one may have to try a huge number
of variations of experimental conditions (temperature, pressure,
methods of processing, additives, and so forth). It is desirable to
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have theoretical guidance that would point to conditions that are
more likely to allow the creation of a high quality foam. The most
common theoretical methods are based on variations of classical
nucleation theory (CNT). CNT has many advantages, most impor-
tant among them being the simplicity of the approach, but CNT has
been shown to be insufficient in many situations [2e11]. There is
evidence that it can be used for some polymer foam predictions
[12e15] but for very high quality foams, specifically nanocellular
foams, we have shown in our previous publication that CNT fails
badly [16]. Specifically, we showed that when the curvature of the
bubble is on the same size scale as the polymer molecules, CNT is
no longer an appropriate approach for predicting bubble nucleation
rates. It is through such nucleation rates that cell densities would be
predicted and so, for high cell density polymeric foams, CNT should
make quantitatively wrong, and as we show below, qualitatively
incorrect predictions of cell densities.

In this paper, we show that self-consistent field theory (SCFT)
provides an in-principle method of predicting cell densities of
polymer foams. Unlike CNT, no nucleation energy barrier or
nucleation rate need be calculated. Therefore, arguments about
exponential pre-factors are rendered irrelevant. Also, no integra-
tion over time of the nucleation rate is needed; rather the cell
density prediction is a direct result of the SCFT calculation. Indeed,
using SCFT, one can find cell densities corresponding to the bubble
critical radius, the radius of maximal bubble surface area and the
radius of maximal polymer exclusion from the interior of the
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bubble (more will be said about these conditions in the Results and
discussion section). Thus one can choose what is meant by the
“best” possible polymeric foam and select the corresponding cell
density for that case. Since SCFT is an equilibrium statistical
mechanical approach, and therefore includes no kinetic informa-
tion, the best methods for processing the polymer foam are not
addressed by SCFT. Rather, SCFT provides an upper bound on the
cell density, with experiment expected to find lower values of cell
density. If one is interested in nanocellular foams for example, one
can use SCFT to avoid spending too much time experimentally
searching points of the parameter space for which SCFT maximal
cell density predictions are low and concentrate on areas where the
cell density has the possibility of being high.

We have given in depth presentations of the SCFT method in
previous publications [16e19] and there are many excellent
reviews [20e22]. The SCFT theory is therefore only briefly reviewed
here in Section 2. As a first attempt at cell density predictions, we
will follow the formalism of our previous work [16] and limit
ourselves to an incompressible equation of state. By this, we mean
there is no volume change upon mixing, regardless of temperature
or pressure, so that there is no swelling of the polymer by the gas.
This approach has been shown to be sufficient for qualitative
understanding [15,17,18]. For quantitatively accurate predictions,
more realistic equations of state should be used. Incompressible
results can then be used as a baseline to isolate equation of state
effects. In Section 3 we will give some examples of cell density
predictions and how we define the “best” possible foam. We will
also show qualitative differences in predictions between SCFT and
CNT. The origins of the failure of CNT are discussed in depth in our
previous work [16]. In Section 4 we summarize our results. In
particular we find that the volume free energy density (pressure
difference) parameter must be considered the controlling factor for
cell density predictions, rather than the surface tension.
2. Theory

Self-consistent field theory (SCFT) is a mean field, equilibrium
statistical mechanical methodology. It neglects fluctuations and, in
the form presented here, does not deal with dynamics. It most
commonly uses a Gaussian string model to represent polymeric
degrees of freedom. Derivational details and possible modifications
and extensions have been reviewed in several works [20e22]. The
SCFT model for a bubble of fluid in a polymer matrix can be
summarized by the free energy functional [16]
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where 4p(r) and 4s(r) are the local (position dependent) volume
fractions of polymer and gas (or fluid), respectively. The subscript
“s” is used for the gas volume fraction since it is customary in SCFT
to refer to molecules lacking polymeric internal degrees of freedom
as “solvent” molecules. We will continue to use this term in this
paper. The total system volume fractions for polymer and solvent
are (1 � fs) and fs, respectively, and single molecule partition
functions are given by Qp and Qs, respectively. The ratio of the
volume of a solvent molecule to a polymer molecule is denoted by
a, with the volume of one polymer segment being r�1

0 and the
degree of polymerization being N. The segregation between solvent
molecules and polymer segments is given by a Flory-Huggins
parameter c. This parameter is inversely proportional to
temperature T and is also related to the chemistry of the polymer
and solvent molecules. The mean fields felt by each solvent mole-
cule or polymer segment due to interactions with all other mole-
cules and segments in the system are given by wðrÞs or p. The left
hand side of (1) is the system free energy (F) per systemvolume (V),
made dimensionless using appropriate factors. In this work, all
lengths are phrased in terms of the radius of gyration of a polymer,
Rg. Variation of Eq. (1) with respect to all functions yields a set of
coupled, non-linear equations to be solved self-consistently. In
order to complete this set, one also needs the equation of state. In
this work we follow our previous derivation and, for simplicity,
choose an incompressible equation of state [16]. This is given by the
equation

4pðrÞ þ 4sðrÞ ¼ 1 (2)

The SCFT equations are solved numerically as described in previous
work [16e19] and results have been found to be in good qualitative
agreement with polymer surface tension experiments [19,23e28].

In this formalism, the overall solvent (gas) volume fraction fs

is held constant at some experimental value and one changes the
size of the bubble by changing the size of the system volume V.
The volume V is therefore the average volume per bubble and is
the size of the calculational box in SCFT. Therefore, as new
generations of bubbles nucleate and grow, the single, typical,
bubble that we study incorporates the depletion of dissolved gas
in the system. This is in the same spirit as the approach of Amon
and Denson [29] except that they did not include explicit poly-
meric degrees of freedom. The typical cell number density would
then be trivially found as the inverse of V. It is customary in
polymer foaming however to define the cell density as the
number of bubbles per unit volume of polymer [30]. We follow
this convention here and therefore the cell density is the inverse of
the product of the calculational box volume times the polymer
volume fraction. This would be the best possible cell density to
the extent that the extreme case of the kinetic foaming
phenomena can be predicted by thermodynamic theory. In
reality, the polydispersity of bubble size and kinetic limitations
would prevent the experimental system from reaching this cell
number density. Nonetheless, the maximal possible cell density
still provides the essential guidance of which conditions are
favorable for the production of high quality foams and which are
not. If the radius of a bubble is defined as the equimolecular
surface, as we have done in our previous paper [16] and as we
will do here, one can find the cell density as a function of bubble
radius. The best possible foam for given input experimental
conditions (chemistry or temperature c, dissolved gas, polymer
molecular weight N, and so forth) is that foam for which the cell
density is highest subject to other relevant constraints. Other
considerations might include the smallest possible radius of
bubble, the maximum amount of bubble surface area per volume
of foam, or the smallest radius cell that completely excludes
polymer from its interior. We shall examine all these cases in the
Results and discussion section.

This prescription for using SCFT as a guide for predicting good
quality foams can be compared and contrasted with CNT and more
involved theories based on CNT. Although CNT itself is widely
known to have problems, many improved theories are modifica-
tions of CNT and, as such, may point in wrong directions for some
applications despite improving CNT quantitatively for others. We
have discussed the origins of the failure of CNT in our previous
publication [16]. Here, we will look rather at the operational details
of CNT predictions, specifically, where CNT can be trusted and
where not, based on a comparisonwith SCFT results to follow in the
Results and discussion section.
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Fig. 1. At cN ¼ 160. (a) Dimensionless bubble number density versus radius of
a bubble. (b) Dimensionless bubble number density at the critical radius of a bubble at
different solvent density systems.
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The quality of a foam is typically predicted from CNT based on
nucleation rates. The nucleation rate is given by

J ¼ J0exp
�
� DF�

kBT

�
(3)

where J0 is a prefactor associated with the characteristic time scales
of motion in the system, kB is Boltzmann’s constant and T is the
temperature [1,4,16]. The activation barrier DF* is given by CNT as

DF�
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¼ 16p
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where g and DFV are the dimensionless surface tension and
dimensionless volume free energy density, respectively [31], and
are, for CNT, inputs of the theory that are independent of bubble
radius R. The bubble size in CNT is given by a critical radius (here
made dimensionless by dividing by the unit of length Rg)

R�

Rg
¼ 2g

DFV
(5)

where DFV is defined to be a positive quantity. Given the inputs g
and DFV , the typical bubble size is predicted using (5) and cell
densities are found by integrating the nucleation rate expression
(3) over time based on the activation barrier (4). One also has to
derive through other means a form of the exponential prefactor of
(3). CNT can only predict cell densities at the critical radius and
gives no information about cell densities at the radius that maxi-
mizes the bubble surface area to volume ratio or at the radius at
which bubbles size is minimizedwithout allowing polymer to enter
the interior of bubbles e more will be said about these cases in the
Results and discussion section. The parameters g and DFV are
inputs for CNT, found through other theoretical methods or from
experiment, but they are outputs of SCFT [16]. We shall see in the
Results and discussion section that the CNT assumption that g and
DFV are not functions of bubble radius will cause qualitative
disagreements between CNT and SCFT with respect to predicting
under what conditions a high cell density can be created.

3. Results and discussion

As mentioned, the “best foam” can be defined in several
different ways. One can choose the foamwith the smallest possible
bubbles, that is, with a radius equal to the critical radius. Alterna-
tively, one can choose the foamwith the highest amount of internal
surface area. Surprisingly, this is, in general, not the same as the
foam with the smallest, critical radius bubbles, as we will show.
Lastly, one can choose the foam with significant exclusion of
polymer. Again, we will show that this is different from and, in
general, more restrictive than the previous two cases. In other
words, both at the critical radius and the radius of maximal bubble
surface area, we usually find significant deviations from bulk
conditions within the bubbles. In practice, the definition of the
“best” foam would depend on the application and would likely be
a combination of the above three possibilities. In this paper, we
consider all three cases and find that the typical bubble radius is
different in these situations. Specifically, we examined systems
with cN ¼ 160 and different global volume fraction values in the
nucleation and growth region ranging from 0.17 to 0.29. We
calculated the bubble number density, the total bubble surface area
per polymer volume, and the solvent volume fraction value at the
center of a bubble as a function of bubble radius for each case. As
mentioned, in most cases, requiring the bubble to exclude all
polymer from the bubble center is the most limiting definition and
fixes the bubble size and cell density.
To begin, the simplest attitude, and the one most relevant to the
formation of nanocellular foams, is to consider that the smallest
possible bubble is themost desirable outcome. This smallest bubble
is, of course, just the critical radius. Since in this SCFT methodology,
the volume associated with each bubble is adjusted to maintain the
correct overall solvent volume fraction, this means that, unlike CNT,
we automatically know the average cell number density of the system
once the radius has been found. It is just the inverse of the product of
the SCFT outputted volume times the polymer volume fraction. The
bubble cell density for a variety of solvent volume fractions at
a segregation of cN ¼ 160 is shown in Fig. 1(a). The bubble cell
densities at the corresponding critical radii are shown in Fig. 1(b). It
is not surprising that for all cases, the maximum cell density
corresponds to the critical radius, that is, the smallest possible
bubble. However, although for some values of fs the critical radii
are similar, for example fs ¼ 0.29 and fs ¼ 0.26, the maximum cell
densities can be radically different. Clearly, a prediction of the
smallest possible bubble size alone under given conditions is not
sufficient to predict the “quality” of a foam.
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The prediction of higher cell densities with increased blowing
agent is consistent with the observations of Goel and Beckman [13]
and later observations, for example, references [15,32e34].

Surprisingly, the critical radius does not correspond to the
maximal bubble surface area per polymer volume. A foam with
a small bubble size but very few bubbles will likely not be of much
use. It is the very large amount of internal interface that gives foams
many of their desirable properties. The SCFT approach allows us to
predict the average bubble area per polymer volume which is
shown in Fig. 2(a) for cN ¼ 160 and a selection of fs values.

One observes that the maximum bubble surface area per poly-
mer volume, A/Vp, does not occur at the critical radius, but at
slightly larger radii. In Fig. 2(b), the cell density corresponding to
this maximum A/Vp is shown. From Fig. 1(a) one also notices that
there are fewer bubbles at the maximum A/Vp radius than at the
critical radius. Therefore the increased area per polymer volume is
not arising due to merely having more bubbles. Instead, SCFT is
showing us that initially, bubbles harvest gas through a process of
re-arrangement of molecules in their own localities with less
interactionwith other bubbles. In this way, they increase their radii
a

b

Fig. 2. At cN ¼ 160. (a) Total dimensionless bubble surface area per polymer volume
Vp ¼ fp�V versus bubble radius. (b) Dimensionless bubble number density at the
radius of the maximum of A/Vp.
and areawhile changing their associated volumemore slowly. After
the A/Vp maximum radius however, the bubbles must compete
more with each other for gas. They harvest gas molecules from
other bubbles and their associated volumes must grow more
quickly relative to their surface areas. From both Figs. 1 and 2, it is
clear that the “best” foam is one with a high gas content. This gives
many cells with large total surface area. In practice however, too
much fluid brings one close to the spinodal, that is, the limit of
metastability of the mixture, where nucleation and growth ceases
and well-formed spherical bubbles will not be created. Rather, one
would expect to get bicontinuous structures. One needs to keep the
gas content low enough to avoid the spinodal but high enough to
achieve large cell densities and plentiful bubble surface area. SCFT,
in principle, offers a method to predict both these quantities for
given conditions and gas content [35].

While the requirement for a maximal bubble area per polymer
volume increases the radius of bubbles beyond the critical radius,
so too does a requirement that the bubbles be, individually, of
“good quality”. By this, we mean that the interior of the bubble
should be well segregated and almost free of polymer, that is, the
interior of the bubbles should reach bulk conditions. Poorly formed
bubbles would, for most applications, undermine the usefulness of
the foam, just as a low amount of internal interface would. Fig. 3(a)
shows, for cN ¼ 160, the solvent volume fraction at the center of
the bubble as a function of bubble radius for various overall solvent
volume fractions fs.

For all cases, the “quality” of the bubble is poor at the critical
radii, that is, bulk conditions are not reached at the center of the
bubble. In fact, all the curves fall on top of each other, indicating
that for a given cN, the center volume fraction value is a universal
function of radius. For cN ¼ 160, we see from this figure that
a radius of about R ¼ 0.7Rg will give good quality bubbles. Fig. 3(b)
shows the corresponding cell densities at this radius for different
overall solvent volume fractions. As before, the greater the dis-
solved gas, the higher the cell density.

Overall, we find that, consistent with experimental experience
[13,15,32e34], to get the “best” possible foam one should dissolve
the greatest amount of blowing agent into the polymer melt while
remaining away from the spinodal point, that is, the point of
absolute instability of the mixture. SCFT can then be used to predict
the smallest possible radius for which the interior of a typical
bubble remains well segregated. If good quality bubbles are not
required for an application, one may attempt to form smaller
bubbles with the limit being either the maximal area to polymer
volume ratio, or the critical radius itself. It is likely that such small
bubbles would be much more difficult to quench and therefore the
bubble internal bulk condition sets an effective limit on the
“smallness” of bubble achievable under given experimental
conditions. SCFT can predict this condition and the accompanying
maximum possible cell density. The amount of internal interface
can also be easily extracted, as discussed above. Thus SCFT provides,
in principle, a way of predicting the minimum possible bubble size
and maximum possible cell density and interface for given condi-
tions. Actual experiments would almost certainly fall short of this
idealized limit since SCFT contains no kinetic information; real
systems could often not find a kinetic pathway to the SCFT
prediction. Nonetheless, such predictions could be extremely useful
in excluding certain experimental conditions from consideration:
SCFT can quickly survey families of conditions and identify those
conditions where there is a possibility of forming a useful foam.

Since CNT, and more advanced theories based on CNT, are
typically used to predict nucleation rates and through this cell
densities, it is appropriate to compare SCFT to CNT. Unlike CNT, the
parameters g and DFV are derived within the SCFT theory [16] and
are found to have significant radius dependence. We calculated g
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Fig. 4. (a) Dimensionless surface tension g versus radius of a bubble at cN ¼ 160. (b)
DFV at cN ¼ 160 and R ¼ 0:7Rg .
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b

Fig. 3. At cN ¼ 160. (a) Solvent volume fraction value at the center of a bubble versus
radius of the bubble. (b) Dimensionless bubble number density at the bubble radius
R ¼ 0:7Rg at different solvent density systems.
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and DFV as well as DF* as a function of a bubble radius for a variety
of segregations cN (which is inversely proportional to temperature)
and overall solvent volume fractions. At a given temperature, g is
the same function of a bubble radius irrespective of solvent density
of a system. This means that the predictions of CNTand SCFTwill be
qualitatively the same as far as DFV is concerned as the following
example reveals. If we choose the cN ¼ 160 system with a bubble
radius of R ¼ 0.7Rg, which preserves a good quality bubble (no
significant deviation from pure solvent at the center of the bubble),
the surface tension is the same for different solvent density systems
as shown in Fig. 4(a).

As we increase the overall volume fraction fs however, we find,
from SCFT, a larger DFV (Fig. 4(b)) and a higher bubble number
density (Fig. 3(b)). From the CNT perspective, a higher DFV for
constant g would give, from Eq. (4), a lower activation barrier. This
lower barrier, when substituted into Eq. (3) gives a higher nucle-
ation rate and, therefore, a higher cell density. Therefore both SCFT
and CNT predict higher cell densities for larger gas saturation, or in
other words, a bigger DFV predicts a higher cell density in both
theories. Similarly, from CNT, Eq. (5) predicts a smaller critical
bubble size with larger DFV for constant g. Fig. 3 shows this to be
the case with SCFT as well.

The situation becomes more interesting when we consider
a change in temperature. We examine the case of cN ¼ 120, which
corresponds to a higher temperature (or different chemistry),
taking volume fractions values fs ranging from 0.28 to 0.39, within
the nucleation and growth region for cN ¼ 120. Repeating the
same analysis as for cN ¼ 160, we choose a fixed radius of bubble,
R ¼ 0:96Rg , for which the interior of the bubble deviates little from
pure solvent for all overall volume fractions fs. This is shown in
Fig. 5.

Through SCFT, we find that this increase in temperature causes
the surface tension to drop, as expected, for all radii and all overall
volume fractions. See Fig. 6.

In comparing the high and low temperature cases (cN ¼ 120
and cN ¼ 160, respectively) a CNT analysis might proceed some-
thing like the following. All other factors being constant, Eq. (4)
predicts a smaller CNT activation barrier, and therefore, from (3),
a higher nucleation rate and a higher cell density for the high
temperature case (cN ¼ 120). Although SCFT predicts the
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bFig. 5. Solvent volume fraction at the center of a bubble versus radius of a bubble at
cN ¼ 120.
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intuitively expected lower surface tension for high temperature, it
predicts instead a lower cell density for the high temperature, cN ¼
120 case than for the low temperature, cN ¼ 160 case. This is
shown in Fig. 7(a).

SCFT also disagrees with the naive CNT analysis in that the
critical radius is smaller for low temperatures (high surface
tension) e compare Eq. (5). The divergence of predictions between
CNTand SCFT is evenmore pronounced if we use the critical radii of
bubbles for a given common overall solvent volume fraction rather
than the preferred radius at which bulk conditions are met within
the bubbles. Either way, the radius (critical or preferred) is smaller
for low temperatures and the cell density is higher for low
temperatures.

The cause of the disagreement can be traced to the neglect of the
variation of DFV with temperature when using CNT. SCFT results,
shown in Fig. 7(b), reveal that DFV is smaller for higher tempera-
tures (cN ¼ 120), so a fair application of CNT would predict
Fig. 6. Dimensionless surface tension g at cN ¼ 120 and cN ¼ 160.

Fig. 7. At cN ¼ 160, fs ¼ 0.29 and cN ¼ 120, fs ¼ 0.29 (a) Dimensionless bubble
number density. (b) DFV versus a radius of a bubble.
a larger critical radius, a larger activation barrier and a lower
nucleation rate and ultimate cell density, in agreement with SCFT
predictions. Although g and DFV are considered to be constants
with respect to bubble size within CNT, they are both assumed to
have temperature dependence. This dependence has to be
measured or calculated outside of CNT. From the above SCFT anal-
ysis, we find that DFV is by far the more important parameter in
foaming processes, with DFV trends within CNT controlling the
correct behaviour and g trends being irrelevant. For SCFT and CNT
to agree, one finds that increasing the size of DFV is the best way to
create a high cell density foam as opposed to trying to reduce
surface tension g. From Fig. 8 we see that at lower temperature
(high cN), it is easier to achieve large DFV values even at low
overall solvent volume fractions.

We can therefore conclude that to make a high cell density
foam, one should work at as low a temperature as possible so as to
have a high DFV value, smaller bubble sizes and higher cell
densities. This conclusion is in agreement with the experimental
findings of Goel and Beckman [13] and many others. For some
recent examples, see references [15,33,36,37]. The accompanying



Fig. 8. DFV at cN ¼ 120 and cN ¼ 160.
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high surface tension, despite working against the above trends in
principle, is subordinate to the DFV parameter. Goel and Beckman
required a low surface tension at low temperatures to fit to CNTand
to use CNT to account for the observed increased cell density. In
fact, we see that the surface tension can and should be high at low
temperatures; the cell density will increase, in contradiction to
CNT. Furthermore, a non-negligible surface tension value might be
expected in order to maintain the structure of the smallest foams.
Wong et al., despite observing lower initial nucleation rates at low
temperatures, still found marginally higher cell densities. Leung
et al. also observed higher cell densities at lower temperatures and
found the surface tension to have a minimal effect, as expected
from SCFT. Such an “inverse” temperature dependence has been
discussed in the context of non-polymeric nucleation by Talanquer
et al. [38,39].

It may seem counter-intuitive that surface tension becomes less
important for small bubbles, since the surface to volume ratio will
be higher and, as a result, the surface would be expected to be
increasingly important. This unexpected result can be explained in
terms of the findings our of previous publication [16]. There, it was
found that the surface tension drops significantly for smaller
bubbles due to highly curved surfaces allowing more polymer
configurations without additional energy penalties. This means
that the excess free energy (free energy of the interface) drops
faster than the area shrinks as we decrease the bubble size. Thus
the intensive surface contribution (per unit of surface e the surface
tension is the excess free energy per unit area) was found to be less
for small cells than for large cells. From this perspective, it’s not
surprising that the surface tension doesn’t have a prominent role,
even for small bubbles. Amon and Denson have also found the
surface tension to be unimportant to the foaming process in their
theoretical work [29].
4. Conclusions

We have demonstrated an in-principle method of determining
an upper bound on the possible cell density of a polymer foam
depending on conditions such as temperature, chemistry or
amount of blowing agent. This self-consistent field theory method
provides maximal cell densities as a function of bubble radius so
that one can extract the cell density at the critical radius, the radius
of maximum bubble surface area to polymer volume, or the radius
of near complete polymer exclusion from the interior of a bubble. It
is this last condition that is likely the most appropriate for many
foams and it is the one that predicts the lowest cell density for any
given set of experimental conditions. The method is “in-principle”
in that the theory as presented assumes an incompressible equa-
tion of state. More realistic equations of state should be incorpo-
rated into the formalism for quantitative predictions. Even without
such equations of state, the method reveals that when using clas-
sical nucleation theory to make predictions about polymer foam
cell densities, the surface tension parameter is much less important
than the volume free energy density (often phrased as a pressure
difference). It is this latter parameter that dominates the behaviour
of the CNT equations, at least for situations where the radius
dependence of the surface tension and volume free energy density
is important, such as nanocellular foams. The SCFT method
provides a facile route to setting limits on the possible cell densities
of polymeric foams without requiring intermediate calculations or
exponential pre-factors, and is applicable for both nanocellular and
more typical polymeric foams.
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