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scattering studies of deformed polymer melts 
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1 Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA 
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Abstract 

It has long been established that the coherent scattering intensity of neutrons by isotropic 

mixtures of hydrogenous and deuterated polymers of matching molecular weights is, to the first 

approximation, proportional to the single-chain structure factor of the polymer chain. The 

validity of this fundamental relation for equilibrium, undeformed polymer melts is well 

supported by the extensive experimental and theoretical investigations over the past several 

decades. The generalization of this relation to the case of nonequilibrium, deformed polymer 

melts, however, is not a trivial one. Despite its widespread usage in small-angle neutron 

scattering (SANS) studies of deformed polymer melts, the assumed proportionality between 

coherent scattering intensity and single-chain structure factor has received very little 

experimental scrutiny. This work quantitatively examines this issue through spherical harmonic 

expansion analysis of the anisotropic SANS spectra of deformed polystyrene melts of different 

levels of deuterium labeling. It is shown that the classical assumption works extremely well over 

a wide range of scattering wavevectors, where the isotropic component of the SANS spectrum 

and the leading term of structural anisotropy vary by more than two orders of magnitudes. 

Keywords: Small-angle neutron scattering, polymer melts, rheology 
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1. Introduction 

Small-angle neutron scattering (SANS) is a powerful experimental technique for examining 

the conformational changes of polymers under flow and deformation and has been widely 

applied in rheological studies of polymer solutions [1-3] and melts [4-19]. For isotopically 

labeled polymer melts consisting of hydrogenous and deuterated chains of comparable lengths, 

extensive experimental and theoretical studies have shown that the coherent scattering intensity 

from such systems in the quiescent state is proportional to the single-chain structure factor (form 

factor) of the polymer. This important result has been generalized to the case of nonequilibrium 

state – polymers under flow and deformation. Indeed, it has been the working hypothesis in the 

past 40 years or so that the coherent scattering intensity ����(�) from deformed, isotopically 

labeled polymer melts directly reflects the anisotropic single-chain structure factor ���	
�(�): 

 ����(�) ∝ ���	
�(�). (1) 

Despite the central role of this assumption in SANS studies of polymer rheology, there has been 

only one experimental study that explicitly examines its validity [20]. Additionally, this early 

pioneering work suffers a few drawbacks,1 and has not completely resolved the issue. Taking 

advantage of the spherical harmonic expansion (SHE) technique [4, 5, 21-28], this study re-

examines the aforementioned fundamental assumption in small-angle neutron scattering 

investigations of deformed polymers in a quantitative and rigorous manner. From a scientific 

viewpoint, the contributions of this work are threefold. First, the SHE method allows one to 

extract and quantify the isotropic and anisotropic components of the 2D SANS spectra over a 
                                                           
1 First, the chain lengths of the protonated and deuterated polystyrenes were not perfectly matched in the work of 
Boué et al.[20], with the degree of polymerization of the protonated chain 17% higher than that of the deuterated 
chain. Second, no rheological data were described in this work. It’s unclear whether the sampled examined by 
SANS exhibited identical stress-strain behavior under tension. Third, for the stretched samples, the SANS data were 
only reported over a rather limited Q range. And the two-dimensional SANS spectrum was not fully utilized – only 
the scattering intensities in the parallel and perpendicular directions were analyzed. Lastly, the low-Q behavior 
cannot be clearly resolved by the inverse intensity plot (1/�(�) vs. ��). 
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wide range of scattering wavevectors. This provides a robust route to rigorously examining the 

fundamental assumption in small-angle neutron scattering studies of deformed polymer melts 

(Eq. 1). Second, we explicitly show that the samples for the scattering investigation indeed 

exhibit identical rheological behavior, in both the linear and nonlinear viscoelastic regimes. 

Lastly, our experiments are based on carefully designed model systems: the degrees of 

polymerization of the deuterated and hydrogenous components differ by only a few percent, with 

their polydispersity index (PDI) extremely close to unity. These improvements allow us to draw 

a definitive conclusion on the validity of Eq. (1), removing any lingering doubt about this long-

held assumption.  

Besides the apparent scientific motivation, this investigation also serves a pedagogical 

purpose. While the application of small-angle neutron scattering to polymer rheology has a long 

history, some practitioners are not familiar with the theoretical framework for formulating and 

interpreting experiments. In particular, many systems of practical interest, from the point of view 

of scattering, are far more complicated than the classical case of isotopically labeled melts. By 

dissecting the small-angle neutron scattering theory and experiment involving a simple system of 

hydrogenous and deuterated chains of identical degree of polymerization, we expose the 

underlying fabric for data interpretation. This exercise may serve as a useful reference for future 

studies of complex systems, where analysis and interpretation of anisotropic SANS spectra can 

be much more challenging.  

2. Theoretical background 

2.1. Traditional theoretical argument 

Before delving into the experimental details, we pause to review the traditional theoretical 

argument that leads to Eq. (1) for deformed polymers. As a special case, the validity of Eq. (1) 
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has been extensively tested in undeformed, isotropic polymer melts [20, 29, 30], where the 

scattering intensity has no dependence on the polar angle. Specifically, the coherent scattering 

intensity from isotopically labeled polymer melts consisting of hydrogenous and deuterated 

chains of identical lengths is given by 

 ����(�) = (�� − ��)��(1 − �)������(�), (2) 

where ��  and ��  are the coherent scattering length of the deuterated and hydrogenous chain 

segments (“repeating units”), respectively, � is the volume fraction of the hydrogenous chains, 

����  is the polymer segment number density, and �  is the degree of polymerization of the 

polymer chain (i.e., number of segments per chain). �(�) is the single-chain structure factor of 

the polymer chain: �(�) ≡ ���	
�(�). From this point onwards, we will drop the subscript 

“chain” and use �(�) to denote the single-chain structure factor in this article, unless otherwise 

stated. Since the scattering intensity from an isotropic sample does not depend on the orientation 

of �, Eq. (2) is often written as ����(�) = (�� − ��)��(1 − �)������(�), where � is a scalar. 

As a classical formula, Eq. (2) has been derived and re-derived numerous times in the literature 

by different authors through various methods [31-35]. Here we review the argument presented by 

Higgins and Benoît in their book on polymers and neutron scattering [32] and point out that no 

explicit assumption about the sample anisotropy has been made in this derivation. In other words, 

their argument can be applied to both isotropic and deformed polymers. However, we must 

realize that this fact alone does not guarantee the validity of Eq. (2) for the deformed state. As a 

cautionary tale, we will demonstrate at the end of this article that a similar but more general 

formula for polymer blends is valid for the isotropic state but fails when the polymers are 

deformed. In this case, there is no explicit assumption about the sample anisotropy in the 
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theoretical argument, either. Because of the subtlety of the issue, a direct and careful 

experimental examination of Eq. (2) appears rather necessary. 

For a mixture of hydrogenous (ordinary) and deuterated chains, the coherent scattering 

intensity for a given volume can be expressed as 

 ����(�) = ��
� ���(�) + 2�������(�) + ��

� ���(�), (3) 

where � !  is the partial structure factor defined as � !(�) = ∑ ∑ 〈$%&�∙(()%(*)〉,-
./0

,1
2/0 , with �  

and �! being the total number of chain segments for species 3 and 4, respectively. Under the 

assumption of incompressibility, which is typically true for polymeric liquids on large length 

scales, we have Δ��(() + Δ��(() = 0 , where Δ��  and Δ��  are the fluctuations of number 

density for the hydrogenous and deuterated chain segments, respectively. Here, the implicit 

assumption is that the molecular volumes of the hydrogenous and deuterated segments are the 

same. With this incompressibility condition, it can be shown that 

 ���(�) = ���(�) = −���(�). (4) 

The details of this fundamental result for small-angle neutron scattering are further discussed in 

Appendix A. Using Eq. (4), we can rewrite Eq. (3) as 

 ����(�) = (�� − ��)����(�) = (�� − ��)����(�) = −(�� − ��)����(�). (5) 

As is well known, a more general form of Eq. (5) can be conveniently expressed in terms of 

scattering length density, when the molecular volumes of the hydrogenous and deuterated chain 

segments are different. Evidently, this subtle point has no essential bearing on the current 

problem, as it only involves the proportionality constant between ����(�) and � !(�). 

As shown in Appendix A, Eq. (5) is supposed to be valid for both isotropic and deformed 

states. Furthermore, in the case of mixtures of hydrogenous and deuterated chains of identical 

degree of polymerization, Eq. (5) directly leads to the prediction that ����(�) ∝ ���	
�(�), when 
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the mixing of the two polymers is ideal (see Appendix B), without any requirement about 

structural symmetry. In other words, the classical theory asserts that for incompressible, ideally 

mixed hydrogenous and deuterated polymers of identical chain lengths, the coherent scattering 

intensity is always proportional to the single-chain structure factor, regardless of the deformation 

state. As pointed out in the Introduction, despite the extensive experimental evidence supporting 

Eq. (1) in the isotropic, equilibrium state, the anisotropic, nonequilibrium case has not been 

adequately studied. From a theoretical perspective, an obvious lingering question is whether non-

ideal mixing of hydrogenous and deuterated chains would pose a serious problem for data 

interpretation in the deformed state.  

2.2. Spherical harmonic expansion analysis 

Boué’s previous neutron scattering study on this subject [20] examines the intensities from 

uniaxially stretched polymers in the parallel and perpendicular directions. This approach, 

however, does not fully exploit the two-dimensional SANS spectra of the deformed polymers [5]. 

The current investigation takes advantage of the spherical harmonic expansion framework [4, 5, 

21-28], which permits quantitative analysis of small-angle scattering spectra. For the current 

problem of small-angle neutron scattering by deformed polymers, the intensity at low �  is 

completely dominated by coherent scattering. We define a structure factor �(�) of the polymer 

melt: �(�) ≡ �(�)/ lim:→< �
��(�). �(�) takes on the meaning of the single-chain structure 

factor when Eq. (2) applies. More generally, �(�) can be simply regarded as a normalized 

scattering intensity, as the validity of Eq. (2) is the very subject of this investigation. For uniaxial 

extension, �(�) can be expanded by spherical harmonics as 

 �(�) = ∑ �=
<(�)>=

<(?, @)=:�B�� , (6) 
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where >=
<(?, @) is the real spherical harmonic function of degree C and order zero and �=

<(�) is 

the corresponding � -dependent expansion coefficient. Figure 1 illustrates the details of the 

scattering geometry, where the stretching direction coincides with the D axis and the detector 

plane is parallel to the ED plane. As explained in Ref. [5], the relevant spherical harmonics for 

uniaxial extension are essentially all the even degree Legendre functions: >=
<(?, @) = Θ=(?) =

√2C + 1H=(cos ?), and the expansion coefficients �=
<(�) can be straightforwardly obtained from 

the 2D SANS spectra as �=
<(�) = 0

�
L sin ? N?O

< �PQ(�, ?)Θ=(?)/ lim:→< �
��(�). 

 

Fig. 1. Illustration of the scattering geometry. The stretching direction is along the z axis and the 

two largest flat surfaces (xz plane) of the rectangular sample are perpendicular to the incident 

neutron beam. ? is the polar angle from the positive z axis with ? ∈ S0, TU and @ is the azimuthal 

angle in the xy plane from the x axis with @ ∈ S0,2T). 

2.3. Design philosophy of the experiment 

To examine the assumption that the anisotropic coherent scattering intensity from 

isotopically labeled, deformed polymer melts is proportional to the single-chain structure factor, 

i.e., ����(�) ∝ ���	
�(�), we perform small-angle neutron scattering experiments on samples 

with various h/d ratios, uniaxially stretched under identical conditions. In our current context, the 

measured scattering intensity �(�), according to the traditional theoretical argument, can be 

expressed in the following form: 
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 �(�, �) = �<(�)���	
�(�) + �VW�(�), (7) 

where the �(�, �), zero-angle coherent scattering intensity �<(�), and “background” �VW�(�) 

depend on the volume fraction of the hydrogenous polymer, but the single-chain structure factor 

���	
�(�) does not. Therefore, our goal is to test whether the apparent anisotropic single-chain 

structure factor, defined as �(�) ≡ S�(�) − �VW�U/�< , is indeed independent of the sample 

composition. The previous investigation by Boué and coworkers [20] examined the structures of 

�(�) only in parallel and perpendicular directions to stretching, without a complete analysis of 

the 2D SANS spectra. Additionally, their inverse intensity plot (1/�(�) vs. ��) placed emphasis 

on the high-Q region, making it difficult to resolve the behavior at low �s. In contrast, by 

employing the spherical harmonic expansion technique outlined in the preceding section, this 

study quantitatively surveys the full anisotropic structures in a broad range of scattering 

wavevectors. Specifically, we will compare the expansion coefficients �=
<(�)  of different 

samples to see if the degree of isotope labeling has any impact on the result. 

3. Materials and methods 

3.1.Sample preparation 

Our experimental system is a blend of deuterated (d-PS) and hydrogenous polystyrenes (h-PS) 

of matching degree of polymerization. The deuterated polystyrene (with Mw=253 kg/mol and 

Mn=252 kg/mol) was synthesized by anionic polymerization in benzene with sec-butyllithium as 

the initiator. The hydrogenous polystyrene (with Mw=222 kg/mol and Mn=218 kg/mol) was 

purchased from Polymer Source. The h-PS and d-PS are dissolved in toluene at five different h/d 

ratios (2:98, 4:96, 8:92, 16:84, and 32:68) and precipitated in excess methanol. The resulting 

blends were dried in a vacuum oven first at room temperature for approximately six hours and 

then at 130°C for more than 12 hours (overnight) to completely remove the residual solvent. The 
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linear viscoelastic properties of these polymer mixtures were characterized by small-amplitude 

oscillatory shear measurements in the temperature range from 120 to 200°C on a DHR2 

rheometer (TA Instruments) with parallel-plate geometry (8mm in diameter). The temperature 

was controlled by DHR2’s convection Environment Test Chamber with nitrogen as the gas 

source. 

To prepare for the small-angle neutron scattering experiments, the isotopically labeled 

polystyrenes were molded into rectangular specimens on a Carver hydraulic press at 200°C. 

They were then uniaxially stretched on an RSA-G2 Solid Analyzer with a constant engineering 

strain rate of 0.02 s%0 (i.e., constant crosshead velocity) to a stretching ratio of Z = 1.8 at 125°C. 

Immediately after the deformation, cold nitrogen gas were introduced to the convection oven of 

the RSA-G2 to quenched the stretched sample into a glassy state. According to the estimates 

presented in Section 4, the longest chain relaxation time \ and the Rouse relaxation time \] of 

the polystyrene2 are 6.87 × 10a and 279 s, respectively, at 125°C. As a result, the instantaneous 

Rouse Weissenberg number bc\]  was greater than unity throughout the stretching experiment. 

Additionally, the long relaxation times ensured that molecular relaxation was negligible during 

the quenching procedure.  

3.2.Small-angle neutron scattering 

Small-angle neutron scattering measurements of both the isotropic and deformed polystyrene 

samples were performed on the EQ-SANS beamline of the Spallation Neutron Source (Oak 

Ridge, TN). The scattering geometry is shown in Fig. 1, where the stretching direction is along 

the D axis and the flat surfaces (ED plane) of the rectangular sample are perpendicular to the 

                                                           
2 Since the chain lengths of the h-PS and d-PS are closely matched, we do not make a distinction between the two 
polymers here and ignore the subtle changes of relaxation times with the h/d ratio. This simplification avoids 
redundancy in the discussion. 
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incident neutron beam. The polymer sample was held in place by two quartz windows in a 

standard demountable titanium sample cell. A total of three instrument configurations were used 

to cover a � range from approximately 0.004 to 0.2 Å%0. The measured intensity was corrected 

for sample transmission, sample cell scattering, detector background and sensitivity, and placed 

on the absolute scale by using measurement of a standard sample. 

 

Fig. 2. Linear viscoelastic spectra of the polystyrene samples of different h/d ratios, constructed 

by using the Time-Temperature Superposition (TTS) Principle. ef is the shift factor for the TTS 

procedure. The reference temperature is 125°C. Solid symbols: g′(i). Open symbols: g″(i).  

4. Results and discussion 

4.1.Equilibrium properties 

To improve upon the previous effort [20] to establish the validity of Eq. (1) in the 

nonequilibrium state, we first try to match the length of the hydrogenous and deuterated chains 

as closely as possible. Since the rheology of entangled polymers is sensitive to molecular weight, 
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mismatch in chain length can result in different rheological responses as we vary the h/d ratio of 

the samples. Fig. 2 shows the dynamic moduli [g′(i) and g″(i)] of the polystyrene samples of 

different h/d ratios, constructed by using the Time-Temperature Superposition (TTS) Principle 

[36]. Evidently these five samples exhibit nearly identical linear viscoelastic spectra. We report 

below only the molecular characteristics of one of the samples, the PS mixture with h/d = 16:84. 

The rubbery plateau modulus (g,
< ), determined from the inflection point of g′(i) , is 

approximately 0.26 MPa. The relation k� = lmn/g,
< gives us an entanglement molecular weight 

ko  of 12.3 kg/mol and an average entanglements per chain (p q kr/ko ) of 18. From the 

crossover frequency is  of the storage and loss moduli, the longest chain relaxation time is 

estimated to be \ q is
%0 q 6.87 × 10a s at 125°C. On the other hand, the Rouse relaxation time 

\], calculated using Osaki’s formula [37, 38], is 279 s at the same temperature. 

 

Fig. 3. Small-angle neutron scattering spectra of the isotropic, undeformed polystyrene samples 

of different h/d ratios. Solid lines: Fits by the Debye function [Eq. (8)]. Inset: Zero-angle 
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scattering intensity �<  as a function of �(1 − �) . � : Volume fraction of the hydrogenous 

polymer. 

Consistent with the linear viscoelastic data, the SANS measurements show that apart from 

different levels of isotope labeling, these samples have almost exactly the same melt structures in 

the equilibrium state (Fig. 3). Additionally, the data can be well described by the classical Debye 

function: 

 �(�) = �<tu(��mv
�) + �VW�, (8) 

where tu(E) = �
Pw ($%P + E − 1). The resulting radii of gyration (mv) from the Debye fits are 

nearly identical for the five samples: 132 Å for the h/d = 2:98 sample, 133 Å for 4:96, 128 Å for 

8:92, 132 Å for 16:84, and 138 Å for 32:68. And the zero-angle scattering intensity �< scales with 

�(1 − �), as expected (inset of Fig. 3). These results are, not surprisingly, in line with the 

previous investigations in the literature [20, 29, 30]. The observed low-� upturn in the h/d = 2:98 

and 4:96 samples might be attributed to the presence of micro-sized voids [20]. 

4.2.Response under deformation 

Having verified the basic properties of the polystyrene melts in the equilibrium state, we now 

turn own attention to the deformed case. Fig. 4 shows the engineering stress xy as a function of 

engineering strain by during stretching for all the samples. In accordance with our expectation, 

these samples exhibit identical stress-strain curves during the entire deformation process. As 

mentioned in the materials and methods section, the samples were rapidly quenched into a glassy 

state at the end of uniaxial extension, and the frozen melt structures at Z = 1 + by = 1.8 were 

examined by the SANS experiments. (Due to the limitation of SANS counting statistics and the 

size of RSA-G2 environmental chamber, Z = 1.8 was a stretching ratio at which the experiment 

could be comfortably performed.) The (apparent) 2D single-chain structure factor, defined as 
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�(�P, �Q) = z�(�P , �Q) − �VW�{/�<, is presented in Fig. 5 for the five deformed samples with 

different h/d ratios. Here, the background �VW�  and the zero-angle scattering intensity �<  are 

obtained from the Debye fitting of the equilibrium SANS spectrum in Fig. 3. Upon visual 

inspection, we see that these properly subtracted and normalized 2D spectra indeed look identical 

to each other, in agreement with Eq. (1). 

 

Fig. 4. Engineering stress xy as a function of engineering strain by during stretching for all the 

samples at 125�. 

To show that the samples indeed have identical anisotropic melt structures, we may select the 

�(�P, �Q) of one sample as the reference and subtract it from the spectra of other samples. 

However, this seemingly simple method does have a few drawbacks. First, since it is nontrivial 

to use logarithmic scales for � values, the low-� information is always highly compressed on 

such 2D plots. Second, the �(�) of this system decays rapidly as the � increases. Presenting the 

differential spectra on either linear or logarithmic scales has its own problems. Finally, the use of 

“colormap” is a delicate art and highly subjective. Depending on the color mapping scheme, the 
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same data can create rather different visual impressions. While we by no means are advocating 

the spherical harmonic expansion technique as the only way of analyzing anisotropic 2D SANS 

spectra, it does appear to be a more tractable method for the current problem. 

 

Fig. 5. Two-dimensional single-chain structure factors C|t0< �(�P , �Q)  of the stretched 

polystyrene samples of different h/d ratios: (a) 2:98, (b) 4:96, (c) 8:92, (d) 16:84, and (e) 32:68. 

As indicated in the main text, the single-chain structure factor �(�P , �Q)  is determined as 

�(�P, �Q) = z�(�P , �Q) − �}~�{/�<. 

To bring our analysis to a more quantitative level, we compute the spherical harmonic 

expansion coefficients of the single-chain structure factor, using the procedure detailed in section 

2.2. The first three expansion coefficients for the uniaxial symmetry, �<
<(�), ��

<(�), and ��
<(�), 

are shown in Fig. 6 for all the samples. As explained in our previous work [5], the spherical 

harmonic expansion analysis is model independent and the determination of �=
<(�)  is also 
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independent of each other because of the orthogonality of the spherical harmonic functions.3 In 

other words, the values of �<
<(�), ��

<(�), and ��
<(�) are not affected by the truncation of the 

expansion at a finite degree C. Higher degree expansion coefficients are not presented here, as 

their magnitude is rather small. As a trivial fact, we note that �<
<(�) is the isotropic component 

of the single-chain structure factor �(�), whereas ��
<(�) is the leading anisotropic expansion 

coefficient. Additionally, it is perhaps helpful to point out that background subtraction has no 

effect on ��
<(�), because �VW� is assumed to be isotropic and therefore only affects �<

<(�). 

Consistent with our visual “impression” from Fig. 5, the expansion coefficients from the 2D 

SANS spectra, �<
<(�), ��

<(�), and ��
<(�), are nearly identical for all the five samples [Fig. 6 (a)]. 

As discussed earlier, the slight low-� upturn in �<
<(�) of the h/d = 2:98 and 4:96 samples might 

be attributed to the presence of micro-sized voids. Further plotting the magnitude of �<
<(�) and 

��
<(�) on a logarithmic scale [Figs. 6 (b) and (c)], we clearly see that the data from different 

samples fall on top of each other over a wide � range, when �<
<(�) and |��

<(�)| vary more than 

two orders of magnitudes. This striking agreement unquestionably supports the validity of Eq. (1) 

for mixtures of hydrogenous and deuterated polymers of matching chain lengths in the 

nonequilibrium state, providing a strong experimental proof for this long-held belief in the 

community. Together with the evidence from the earlier investigation [20] and detailed 

theoretical justifications in Appendices A and B, this study should present a final and convincing 

case for this fundamental assumption in small-angle neutron scattering studies of deformed 

polymer melts. 

                                                           
3 In general, computing �=

�(�) from small-angle scattering experiments is a nuanced issue. Please see ref. [28] for a 
further discussion. 
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Fig. 6. (a) Spherical harmonic expansion coefficients, �<
<(�), ��

<(�), and ��
<(�) of the stretched 

polystyrene samples of different h/d ratios. (b) �<
<(�) presented on a double-logarithmic scale. (c) 

Absolute value of ��
<(�). 
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5. Conclusions and Additional Remarks 

In summary, this work critically examines a fundamental assumption in small-angle neutron 

scattering studies of deformed polymer melts. By combining anionic polymerization, judiciously 

designed sample preparation procedures, and the spherical harmonic expansion technique, we 

quantitatively analyze the small-angle neutron scattering spectra from a series of deformed 

polymer melts that differ only in the degree of deuterium labeling. We show that the measured 

coherent scattering intensity is indeed proportional to the single-chain structure factor for 

mixtures of hydrogenous and deuterated polymers of matching chain lengths, even in the 

deformed state. 

Some readers may still wonder why we have spent so much effort to carefully examine, and 

in some sense re-examine, this old and seemingly closed case (depending on their viewpoint) in 

SANS studies of polymer melts? We now offer some further explanation. It is well known that 

for isotropic polymer melts, Eq. (2) can be derived from a more general result for binary polymer 

blends on the basis of the random phase approximation (RPA) [31]:  

 
(}�%}�)w����

�(�)
= 0

,�����(�)
+ 0

,�����(�)
− 2�, (9) 

where � is the Flory interaction parameter, and the lengths �� and �� of the hydrogenous and 

deuterated chains are generally not equal. Setting � = 0 and �� = ��, we trivially recover Eq. 

(2). Interestingly, SANS experiments have demonstrated that this RPA formula [Eq. (9)] is 

generally invalid in the deformed state [10], due to the phenomenon of viscoelastic phase 

separation [39-44]. On the other hand, this study shows that Eq. (2) holds extremely well for 

mixtures of hydrogenous and deuterated polymers of matching chain lengths even in the 

nonequilibrium state. Therefore, as long as the polymeric mixtures of matching molecular 

weights are far away from the phase boundary in the equilibrium state, it is typically not essential 
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to consider the interaction parameter � in the deformed state. (While this is a logical conclusion 

from our study, the readers should take this recommendation with caution.) Additionally, 

viscoelastic phase separation [39-42] does seem to be main factor for the failure of the general 

RPA formula [Eq. (9)] under deformation. Because of the absence of viscoelastic asymmetry in 

mixtures of polymers of matching chain lengths, Eq. (2) remains valid in the deformed state, just 

as indicated by the theoretical analysis (Appendices A and B) and current and past experimental 

results. 
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Appendix A. Small-Angle Neutron Scattering by Incompressible Liquids  

We reproduce here the derivation of the fundamental theorem for small-angle neutron 

scattering by incompressible liquids [Eq. (5)]. Although this is a well-known result, we assume 

that not all readers are familiar with the mathematical details of its derivation. By exposing the 

underlying mathematics, we show that this theorem is valid for incompressible liquids in both 

isotropic and deformed states. Our proof below is slightly more detailed than the one presented in 

the classical textbook by Higgins and Benoît [32]. 

For the convenience of the derivation below, we rewrite the partial structure factor � !(�) in 

the continuous form: 
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 � !(�) = ∬〈� (�)�!(( + �)〉$%&�∙(d�d( = L �(()$%&�∙(d(, (A1) 

where �  is the number density of species 3. Focusing on the characteristic function �(() ≡

L〈�3(�)�4(( + �)〉d�, we see that 

 �(() = L〈� (�)�!(( + �)〉d� = L〈S∆� (�) + 〈� 〉US∆�!(( + �) + 〈�!〉U〉d�, (A2) 

where ∆� (()  represents the spatial fluctuation of number density of species 3 : ∆� (() ≡

� (() − 〈� 〉. Expanding the product in Eq. (A2), we have 

 �(() = n0 + n� + na + n�, (A3) 

with n0 = L〈∆�3(�)∆�4(( + �)〉 d� , n� = 〈� 〉〈�!〉 L d� , na = 〈�!〉 L〈∆� (�)〉d� , and n� =

〈� 〉 L〈∆�!(( + �)〉d�. The third term na is zero by definition. And the fourth term n� is also 

zero in most practical cases because it computes the total density fluctuation within a “shifted” 

volume. Physically, whether we consider the volume defined by � or � + ( should not change 

the average density fluctuation, which is zero for incompressible liquids. Therefore, we have 

 �(() = L〈∆� (�)∆�!(( + �)〉 d� + 〈� 〉〈�!〉�. (A4) 

Substituting this result to Eq. (A1) yields 

 � !(�) = ∬〈∆� (�)∆�!(( + �)〉$%&�∙(d�d( + 〈� 〉〈�!〉�(2T)a�(�). (A5) 

Since the last term can be discarded for any practical considerations, we have: 

 �  (�) q ∬〈∆� (�)∆� (( + �)〉$%&�∙(d�d(, (A6) 

 � !(�) q ∬〈∆� (�)∆�!(( + �)〉$%&�∙(d�d(. (A7) 

In the current context, we consider the case of a binary mixture, consisting of hydrogenous and 

deuterated molecules. The incompressibility condition implies ∆��(() + ∆��(() = 0. Therefore 

 ���(�) + ���(�) q ∬〈∆��(�)S∆��(( + �) + ∆��(( + �)U〉$%&�∙(d�d( = 0. (A8) 

Similarly, we can show that ���(�) + ���(�) = 0. The coherent scattering intensity from a two-

component system can be formally expressed as ����(�) = ��
� ���(�) + 2�������(�) +
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��
����(�) . Applying the above results obtained from the incompressibility condition, the 

scattering intensity can be rewritten as 

 ����(�) = (�� − ��)����(�) = (�� − ��)����(�) = −(�� − ��)����(�). (A9) 

The presented derivation contains nothing original. The goal of this exercise is to emphasize, 

by rigorous mathematics, that the above fundamental relation [Eq. (A9)] holds in both isotropic 

and deformed states. In reality, no liquid is completely incompressible. The consequence of finite 

compressibility has been considered and discussed by a number of authors [45, 46]. However, 

the present experimental study, along many others in the literature, shows that for isotopically 

labeled polymer melts the incompressibility assumption works well and there seems to be no 

need to consider the finite compressibility of polymeric liquids.  

Appendix B. Scattering from Isotopically Labeled Polymer Melts 

Now we further consider the application of the above theorem to small-angle neutron 

scattering by isotopically labeled incompressible polymer melts, consisting of hydrogenous and 

deuterated chains of identical degree of polymerization [32]. Once again, the analysis itself 

contains nothing original. Our goal is to highlight, by dissecting the classical proof, the basic 

assumptions that need to be re-examined in the context of flow and deformation. Following the 

approach of Higgins and Benoît [32], one can separate the interchain and intrachain contributions 

to the partial structure factors as: 

 ���(�) = k���
����,
���	(�) + k�

���
����,
����(�), (B1) 

 ���(�) = k���
����,
���	(�) + k�

���
����,
����(�), (B2) 

 ���(�) = k�k��������,
����(�), (B3) 

where k  is the number of chains of species 3 in the system and �  is the number of segments 

per chain, commensurate with the coherent scattering length calculation. Let k  be the total 
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number of molecules and �  the volume (molar) fraction of the hydrogenous polymer. 

Furthermore, in the case of ideal mixing, we have ���,
����(�) = ���,
����(�) = ���,
����(�) 

and ���,
���	(�) = ���,
���	(�). The above equations can therefore be rewritten as 

 ���(�) = �k���
���	(�) + ��k����
����(�). (B4) 

 ���(�) = (1 − �)k���
���	(�) + (1 − �)�k����
����(�). (B5) 

 ���(�) = �(1 − �)k����
����(�). (B6) 

It follows that 

 �k���
���	(�) + ��k����
����(�) = −�(1 − �)k����
����(�), (B7) 

which further yields 

 �
���	(�) = −k�
����(�). (B8) 

Finally, we have 

 ����(�) = (�� − ��)��(1 − �)k���
���	(�). (B9) 

It should be pointed out that Eq. (2) as well as the rest of the main text uses “absolute intensity” 

whereas “nominal (total) intensity” is adopted in the appendices. These two kinds of intensities 

differ by a normalization constant, which is the volume of the system. With this in mind, it is 

easy to see that Eq. (B9) leads directly to Eq. (2).  

Mathematically, the above derivation involves only elementary arithmetic and is not affected 

by deformation. Additionally, the basic assumptions that ���,
����(�) = ���,
����(�) =

���,
����(�) and ���,
���	(�) = ���,
���	(�) do not require polymers to be in the isotropic state. 

However, in making these assertions, we do implicitly assume that isotopic labeling, i.e., 

deuteration, does not affect the structure and dynamics of the system in any significant way. In 

other words, the mixing of the hydrogenous and deuterated components is ideal or nearly ideal. 

This is a reasonable assumption when the system is far away from the phase boundary.  
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Quantitative examination of a fundamental assumption in small-angle neutron 
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