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H I G H L I G H T S

• A coarse-grained model is developed to study deformations in polycarbonate.

• Various deformation modes are investigated.

• The critical yield stress is evaluated at different strain rates and temperatures.

• Multi-temperature and multi-loading master yield stress curves are built.
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A B S T R A C T

A coarse-grained particle model was developed for the simulation of deformations in polycarbonate. Coarse-
grained molecular dynamics simulations of uniaxial and multiaxial deformations are carried out to determine the
critical yield stress for various strain rates. From the calculated values, a master curve of the yield stress as a
function of the strain rate is built at 300 K. It is found that the predicted results and experimental values are
aligned on the same curve and can be described by a simple Cowper-Symonds relation. Furthermore, using the
Williams, Landel and Ferry equation, a master curve is built to predict the yield stress at finite temperatures. By
investigating additional deformation modes, two supplementary master curves are built at 300 K: one for the
void nucleation and one for the shear yielding.

1. Introduction

In recent years, the continuous need for lightweight and high per-
formance materials for automotive applications has brought manu-
facturers to use polymers for the design of light components.
Polycarbonate (PC) is a typical example of a polymer material that
offers unique properties such as high strength to weight ratio, high
thermal resistance, optical transparency, etc. PC is frequently used as
panoramic sunroof or car headlight covers however, for applications as
car body elements, it is necessary to further reduce the thickness of the
parts while maintaining their high toughness to withstand the impact of
stones and other road debris that might hit the car body during driving.

For the development of automotive body panels based on PC, a
profound knowledge of the mechanical properties of the material is
mandatory. This information is commonly obtained from experiments
involving various testing methods to characterize the materials prop-
erties. The corresponding material constitutive laws are then im-
plemented into finite element programs for performing continuum

model simulations of, e.g., fracture and deformations. Although this
approach is well established in the industry, alternative approaches
such as atomistic simulations have gained a growing interest due to
recent advances in computational power and numerical algorithms. In
this so-called bottom-up approach, valuable information from atomistic
simulations is used for developing models capable of providing accurate
predictions of the material's mechanical properties.

The yield stress is regarded as an important property to characterize
the mechanical behavior of polymers and its dependence on strain rate
and temperature is well known. This dependence is captured by master
yield stress curves that are commonly used for predicting the yield
stress at any strain rate and/or temperature [1].

The first works investigating the relationship between the yield
stress and the strain rate in PC were carried out by Bauwens in the early
to mid-1970s [2–4] where strain rates less than 1 s-1 were considered.
The authors reported a linear dependence between the tensile yield
stress and the logarithm of the strain rate [3].

In the past decade, strain rates up to 4.5×103 s−1 were achieved
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using dynamic techniques such as the split Hopkinson tension bar
(SHTB). Various authors noticed that the yield stress values increased
dramatically for higher strain rates [5–8]. A plot of the yield stress vs.
strain rate would appear as bi-linear with a large gap in the data set
between the quasi-static and SHTB data [8]. However, the experimental
measurements at moderate strain rates (0.5 s-1–32 s-1) from Cao et al.
[6] revealed a non-linear strain rate dependence of the yield stress.

Strain rates above 103 s−1 can be currently achieved with compu-
tational approaches such as molecular dynamics (MD). All‐atom (AA)
and coarse‐grained (CG) simulations are considered to be the most
suitable approaches to investigate the mechanical properties of poly-
mers at high-strain rates. In particular the CG method enables the si-
mulation of more realistic and sophisticated models by extending the
simulation time and length scale.

In the present work, a CG-potential was developed to estimate the
yield stress of PC at high strain rates. The methodology and potential
parameters are introduced in the first part of this paper. Applications of
the CG potential for mechanical deformations in strained systems are
presented in the second part where several master yield stress curves
are built. Finally, a summary of results and discussion is provided in the
last section.

2. Coarse-grained model

The strength of the CG method lies in its ability to simplify the
complex chemical structure of a macromolecule by substituting its
chemical groups for particles. As illustrated in Fig. 1, the molecular
formula of PC consists of three groups of atoms: carbonate, phenylene
and isopropylidene which are replaced in the CG model by the particle
A, B, and C, respectively. A formula unit of PC containing 33 atoms is
thus reduced to 4 particles.

2.1. Potential parametrizations

Numerous CG-based approaches for the modeling of PC have been
developed over the last 20 years [9–13]. This work is an improvement
of the CG-potential that was introduced in our previous work [14,15].

The total energy of our CG model is given by:

  ⏟= + +
−

E E E Etotal b a
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nb
non bond interaction (1)

where the bonding interaction is given by the sum of the bond (Eb) and
angle (Ea) terms. The non-bonding interaction is modeled by a pair
potential.

The functional form of the terms used in Equation (1) are given by:
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with r, θ and r̄ the bond length, bond angle and interparticle distance,
respectively. The constants Kn

b, Kn
a, r0 and θ0 are potential parameters

that are determined by AA molecular dynamics. In comparison to our
previous CG model [14,15], no dihedral term is included in this model.

The dihedral angle (or torsion angle) is formed between two planes
intersecting in 3-dimensional space. During deformation simulations,
the PC chains can be strongly stretched if they do not have enough time
to disentangle from each other. If such situation happens, the polymer
chains are forced into a linear conformation and the dihedral angle
cannot be evaluated. Consequently, a divergence instability occurs
which can sometimes be recognized by a peak in the total potential
energy and/or on the stress-strain curve. (An example of a stress-strain
curve showing several peaks is shown on Fig. S5 in the supporting
material). The consequence is particularly critical for the simulation of
deformations where these instabilities are promoting void nucleation
and, as a direct result the yield stress magnitude is underestimated.

This instability problem has been reported in the literature [16,17]
and a possible solution is to change the potential functional form of the
dihedral term. We found out that for PC the contribution of the dihedral
term to the energy and forces is minimal and that it can be therefore
safely omitted. We include in the supporting material as well a figure
comparing several stress-strain curves with and without the dihedral
term using our previous version of the CG model [14,15] (Fig. S6). Only
strain rates higher than 109 s-1 are presented. Indeed, for high strain
rates, the simulation time is too short for a proper stretching of the
polymer chains to occur and the instability is rarely observed.

2.2. CG potential parameters

2.2.1. Bonding interaction
Simulations were performed using the LAMMPS simulation package

[18]. To parametrize the bonding interaction (Equation (1)) AA-MD
simulations were performed on a 64-mer PC single chain using the
COMPASS [19,20] all-atom force field. In order to ensure that the CG
model can simulate properly the stress-strain behavior of PC under
deformation, the fitting procedure includes a polymer chain under in-
creasing external tension. A 64-mer chain is fixed at both ends and
maintained at three separation distances (450 Å, 600 Å and 800 Å). The
parameters are fitted by an iterative scheme and the fitting procedure is
carried out simultaneously on the three chain lengths.

The CG potential parameters for the bonding interaction are given
in Table 1.

2.2.2. Non-bond interaction
The pair potential functions for the non-bond interaction Φ r(¯ )ij ij are

optimized in order to reproduce typical material properties of PC, i.e.,
the radial distribution functions (RDFs) g r(¯)IJ for particle pairs
( =I J, A, B,C), the mass density ρ, the bulk modulus B and the coeffi-
cient of thermal expansion (CTE) α. Especially to model the material's
response to an external strain or stress, ρ, B and α need to be reproducedFig. 1. Illustration of the CG mapping scheme for a PC monomer.
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with higher accuracy than the RDFs. The material properties (reference
data) are obtained from AA-MD calculations.

Classically a 12-6 Lennard-Jones potential model is employed for
the treatment of the non-bond interaction. However, softer types of
potentials like the 9-6 Lennard-Jones or Morse potential have become
favored models in the field of coarse-grained simulation [21,22]. We
employed here the Morse potential function for the non-bond interac-
tion. The functional form of the potential is:

= −− − − −[ ]Φ r D e e(¯) 2IJ IJ
β r r β r r

0,
2 (¯ ¯ ) (¯ ¯ )IJ IJ IJ IJ0, 0, (5)

where D IJ0, , βIJ and r̄ IJ0, are potential parameters determined in-
dividually for each particle pair I-J. Hence, eighteen parameters in total
have to be optimized.

The potential development procedure consists of three stages:
(1) several AA-MD calculations are carried out to obtain basic proper-
ties of PC which are used as reference data for parametrization;
(2) potential parameters are optimized to reproduce the RDFs as an
initial guess; (3) the parameters are adjusted using universal scaling
factors to fit the bulk properties ρ, B and α.

In the first stage, we performed AA-MD calculations to obtain the
RDFs and the bulk properties mentioned above using a simulation cell
with 128 PC chains consisting of 64 monomers each. The mass density
was evaluated with a simulation cell equilibrated at 300 K and zero
external stress. The bulk modulus B was evaluated from the change in
volume under the hydrostatic stress = −σ 10 MPa to+ 10 MPa at 300 K.
The CTE α was evaluated from the change in volume at =T 200 K to
400 K and zero external stress. The reference data of the RDF for each
particle pair Φ r(¯)IJ

ref was obtained after converting the AA equilibrium
structure (300 K, no external stress) into the CG representation.

During the second stage, we optimize the potential function ΦIJ in a
similar way as in the iterative Boltzmann inversion (IBI) scheme [23].
For each iteration step n, the RDFs g r(¯)IJ

n are evaluated with the n-th
provisional potential function Φ r(¯)IJ

n using a simulation cell with 128 PC
chains consisting of 64 monomers each. The potential function at the (n
+1)-th step +Φ r(¯)IJ

n 1 is determined to fit −Φ r k T g r g r(¯) ln( (¯)/ (¯))IJ
n

IJ IJ
n

B
ref ;

this procedure is a simple extension of the IBI scheme to any arbitrary
analytic functions. Note that the potential function at this stage is still
not optimized enough for reproducing the bulk properties.

In the third and final stage, we further modify the potential function
obtained at the previous stage by scaling the potential parameters with
universal scaling factors:
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where c1, c2 and c3 are the scaling factors that need to be optimized at
this stage in order to reproduce the bulk properties ρ, B and α. The
parameters c1 and c2 were changed in a stepwise manner and the
parameter c3 was independently adjusted for each pair of c1 and c2 to
reproduce the mass density ρ at 300 K and =σ 0 MPa. A series of CG-

MD calculations is performed to evaluate B and α with each scaling
factor c c c( , , )1 2 3 under the same calculation conditions as the AA-MD
calculations at the stage 1.

The changes in RDF during the individual stages of the fitting pro-
cedure are shown in the supporting material (Fig. S4).

Table 2 lists the optimized potential parameters for the Morse po-
tential with a cut-off radius =r 12c Å. The corresponding function
profiles are shown in Fig. 3.

2.2.3. Fitting results
Probability density distributions obtained from AA-MD and CG-MD

for the 450 Å chain are compared in Fig. 2. An examination of the
curves shows a good agreement for the bond lengths. Bond angles are
reproduced by the CG model as well except for the ‘phenylene-carbo-
nate-phenylene' (B-A-B) angle. A distribution with three peaks is ob-
served in the AA simulation while only one peak is present in the CG
model (see Fig. 2 b). The origin of the discrepancy is attributed to the
inability of the mathematical model (Equation (3)) to reproduce mul-
timodal distributions.

Table 3 lists the bulk properties obtained with the CG model and
compares them to the AA-MD result and experimental values. Basic
material properties of PC are reproduced with an excellent accuracy by
the CG model. Especially, the error between CG-MD and AA-MD si-
mulations for ρ and α is within 1%. Although a relatively large dis-
crepancy is found for the bulk modulus B, the error is less than 20% and
the CG-MD result lies in between those obtained by AA-MD and the
experimental ones. The glass transition temperature Tg is determined
from the change in slope of the specific volume as a function of the
temperature curve. A theoretical value of 402 K is also in a good
agreement with the experimental value of 420 K. Plots of the specific
volume as a function of the temperature used for the determination ofTg
are provided in the supporting material (Figs. S2 and S3).

With the good agreement of the coefficient of thermal expansion, we
assume that the volume-pressure-temperature relationship is reason-
ably well reproduced in the temperature range from 100 K to 400 K.
Temperatures above Tg were not investigated since the CG model might
not capture all aspects of the material behavior at these temperatures.

3. Results and discussion

3.1. Mechanical deformations of PC

A simulation cell containing 4000 CG particles (equivalent to ca.
34,000 atoms) was used for deformation analyses. The system was in-
itially annealed and equilibrated until the system becomes fully relaxed.
The system was then cooled down to the target temperature for de-
formation analyses.

We investigate five types of deformations: (i) uniaxial tension with
transverse strain constraints ( = =ε ε 0xx yy and =ε εt˙zz ), (ii) uniaxial
tension without transverse strain constraints ( = =σ σ 0xx yy , =ε εt˙zz ),
(iii) uniform biaxial tension ( =σ 0xx , = =ε ε εt˙yy zz ), (iv) uniform triaxial
tension ( = = =ε ε ε εt˙xx yy zz ), and (v) shear ( = = =σ σ σ 0xx yy zz , =γ γt˙xy ).

The CG-MD simulations were carried out using a Nosé-Hoover
thermostat and barostat as implemented in LAMMPS. A time step of 2 fs
was set for all CG-MD analyses.

The effect of molar mass, cell size and temperature on the

Table 1
CG potential bonding parameters for PC.

A-B B–C

r0 (Å) 3.70 3.40

Kb
2 (kcal/mol Å−1) 10.0 80.0

Kb
3 (kcal/mol Å−3) 0.00 300

K b
4 (kcal/mol Å −4) 1200 2000

A-B-C B-A-B B–C–B

θ0 180 180 76.0
K a

2 (kcal/mol rad-2) −2.00 0.00 55.0

K a
3 (kcal/mol rad-3) 0.00 1.50 −1.00

K a
4 (kcal/mol rad-4) 20.0 1.00 1.00

Table 2
CG potential non-bond parameters for PC. Each particle pair is represented by a
Morse potential.

A-A A-B A-C B–B B–C C–C

D0 [kcal/mol] 0.527 1.198 1.807 0.591 0.013 0.790
β [Å −1] 1.157 0.755 0.764 0.812 1.452 1.060
r̄0 [Å] 4.984 5.520 5.547 5.838 6.465 5.788
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mechanical properties has already been discussed elsewhere in the lit-
erature [15].

Fig. 4a illustrates a typical stress-strain curve obtained from a uni-
axial tensile test simulation with transverse strain constraints. The si-
mulation cell contains 16 PC chains of each 64-mers ( =ε̇ 109 s-1,

=T 300 K). Note that the curve shown in Fig. 4a is the result of a
smoothing operation carried out with Bézier curve to minimize the
noise in the raw data. The yield stress is determined from the maximum
of the (smoothed) curve.

3.2. Master tensile yield stress curves

3.2.1. Master curve at 300 K
Fig. 4b shows the variation of the yield stress as a function of the

strain rate at 300 K. The results from CG-MD are obtained for a range of
high strain rates (106 s-1 to 1011 s-1). Evaluation of the yield stress at
lower timescales are computationally time consuming and only prac-
tical for small sizes of simulation cells that are not suitable for the study
of deformations. For lower strain rates ( −10 3 s-1 to 103 s-1), experimental
measurements compiled from various sources [4–6,8] are added on the
figure. Results from AA-MD simulations at high strain rates are added
on the figure as well. The difference observed between CG-MD and AA-
MD becomes larger as the strain rate increases. This effect is due to
friction between atoms that is currently not reproduced in our CG
model.

The plot shows an non-linear trend in the data across many orders of
magnitude. A fit including the calculated data and experimental results
is carried out using the Cowper-Symonds [26] equation:

= ⎡
⎣⎢

+ ⎛
⎝

⎞
⎠

⎤
⎦⎥

σ ε σ ε
C

( ˙ ) 1 ˙ ρ

Y 0

1/

(7)

where C and ρ are two material parameters and σ0 is the static yield
stress. From the fit presented in Fig. 4b, the parameters for PC at 300 K
were determined as: =C 347 s-1, =ρ 11.64 and =σ 490 MPa. We com-
pared the Cowper-Symonds equation to several alternative equations
and obtained exactly the same fit with the more sophisticated co-
operative equation [27,28] (see discussion in section 3.3).

It should be noted that the fit is highly sensitive to the dataset range
used. For example, if only data from CG-MD are considered for the fit of
the Cowper-Symonds equation, the parameters for PC at 300 K change
to =C 4.95 s-1, = × +ρ 6.42 10 10 and =σ 1510 MPa. Therefore, to ensure
a good quality of the fit, a dataset covering a wide range of strain rate is
highly desirable.

3.2.2. Multi-temperature master curve
By applying a lateral shift to the yield stress values obtained from

CG-MD at different temperatures, it is possible to build a master curve
which collapses all the data into a single line at a reference tempera-
ture. In Fig. 5, the horizontal shift is evaluated at 300 K by the Williams,
Landel and Ferry method [29]. The relation between the shift factor aT

and temperature is expressed as:

=
−

+ −
a C T T

C T T
log ( )

( )T
1 S

2 S (8)

where C1 and C2 are two material constants. TS is a reference tempera-
ture specific to PC.

Using (−8.86, 101.6) [30] and 700 K for, respectively (C1, C2) and
TS, the data at different temperatures are shifted to the master curve at
300 K. The good correlation obtained between strain rate and tem-
perature is suggesting that, by simply knowing the shift factor, pre-
diction of the strain rate can be directly obtained at other finite

Fig. 2. Probability distributions of (a) bond lengths and (b)
bond angles for a 64-mer single chain of PC fixed at 450Å:
comparison of the AA-MD model (upper panel) to the CG-MD
model (lower panel).

Fig. 3. Inter-particle potential (Equation (5)) for each particle pair in the CG
model.

Table 3
Bulk properties of PC obtained by CG and AA models; mass density ρ, bulk
modulus B, coefficient of thermal expansion α and glass transition temperature
Tg.

CG-MD AA-MD Experiment

ρ [g/cm3] 1.19 1.19 1.19c

B [GPa] 2.90a 3.50a 2.36–2.64c, 2.95–3.08c

α [ −10 6 K-1] 63.1b 63.4b 65.0d

Tg [K] 402 – 420e

a Average value between = −σ 10 MPa and + 10 MPa at 300 K.
b Average value between 200 K and 400 K with =σ 0 MPa.
c See Ref. [13] and references therein.
d Ref. [24].
e Ref. [25].
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temperatures.

3.2.3. Multi-loading master curve at 300 K
In Fig. 6, additional deformation modes at 300 K are added on the

original plot of the uniaxial tension. It is found that deformations can be
grouped into two categories: the ones that leads to void nucleation and
growth (constrained uniaxial tension and triaxial tension) and the ones
where the structural integrity is maintained against distortion (un-
constrained uniaxial tension, biaxial tension and shear). In the first
category, the simulation cell undergoes a large volume expansion
during deformation, which promotes the formation of voids. In the
second category, the deformation modes are closely related to shear
deformations. Indeed, the unconstrained uniaxial tension is geome-
trically equivalent to a shear deformation with a slight volume change
if the cell symmetry axes are rotated by 45° with respect to the re-
ference coordinate system. As for the biaxial tension, the deformation is
equivalent to an unconstrained uniaxial compression and is therefore
related to a shear deformation by the same rotation of 45°.

The values for the uniaxial and biaxial deformations reported on
Fig. 6 are the resolved shear stresses of the corresponding deformations
whose magnitudes are one half the yield stress values. Points marked as
'×' are shear stresses obtained from CG-MD shear simulations. We added
for comparison experimental shear stress values measured between
3× −10 5 s-1 and 2× 103 s-1 in PC [31,32]. The experimental data show a
trend towards higher values than the results obtained with CG-MD. The
underestimation of the yield stress for the shear deformations is basi-
cally attributed to the oversimplified description of the molecular
structure in the CG model. The shear deformation occurring under
unconstrained uniaxial/biaxial stress conditions is caused by the sliding
of molecular chains on each other. The behavior of molecules in such
situation is closely related to the detailed atomistic structure of the
molecular chains, which is not taken into account in the CG model. In
other words, the surface of the CG particles is too smooth to experience
an inter-molecular friction or viscous retardation, thus particles can
slide (or move) more easily than in the all-atom structures. On the other
hand, when the volume expansion under stress plays the most im-
portant role and when void nucleation is expected as in the case of
triaxial stress conditions, the yield stress (and bulk modulus) can be

Fig. 4. (a) Representative stress-strain curve from a CG-MD simulation and a uniaxial tensile test with transverse strain constraints. (b) Yield stress as a function of the
logarithm of the strain rate at 300 K for PC: CG-MD data are from this work, experimental results are compiled from Refs. [4–6,8]. The fit is carried out using the CG-
MD data and experimental results.

Fig. 5. Master curve for the yield stress as a function of the strain rate for PC
under uniaxial tension. Data from CG-MD simulations at various temperatures
are shifted onto a master curve at a reference temperature (TS).

Fig. 6. Yield stress as a function of the strain rate for various deformations at a
temperature of 300 K.
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well reproduced by simply adjusting the non-bond term.
Note that the above-mentioned problem about underestimation of

stress (or elastic modulus) is the case not only in the present model but
also in general CG models with simple descriptions of the non-bond
interaction. Thus, for a quantitative evaluation of the stress or elastic
modulus, a more complex formulation of the non-bond interaction is
inevitable; e.g., several additional terms may be introduced to describe
viscous and/or frictional forces exerted on the molecular chains.
Alternative approaches involve the use of dissipative particle dynamics
or Lowe-Andersen dynamics [33]. We plan to address this issue in a
future development of the CG model.

3.3. Comparison of constitutive equations for the yield stress in PC

The Cowper-Symonds equation [26] is used for fitting both sets of
experimental and simulation data. Three alternative equations are
compared to the Cowper-Symonds model: the Ree-Eyring, the modified
Eyring and the cooperative equations. For a listing of these constitutive
equations, the reader is referred to other publications on the topic (e.g.,
Ref. [34]).

The Cowper-Symonds equation is chosen here due to its simplicity
and general ease of implementation in finite element softwares.

As seen in Fig. 7, while the Cowper-Symonds equation is remarkably
similar to the cooperative equation, the Ree-Eyring and modified Eyring
models are not able to fit the data properly within the strain rate range.

The cooperative equation [27,28] has the following form:

= + ⎛
⎝

⎞
⎠

−σ σ k T
V

ε
ε

2 sinh ˙
˙

n
Y i

B 1
*

1

(9)

where σi, V, ε̇* and n are the internal stress, the activation volume, the
characteristic strain rate and a material parameter, respectively.

Table 4 compares the parameters obtained from a fit to the Cowper-
Symonds and cooperative equations. It is striking to note that the in-
ternal stress and exponential parameters of both equations are iden-
tical, thus indicating the validity of the Cowper-Symonds equation for
the construction of master yield stress curves in PC. The activation
volume V and characteristic strain rate ε̇* in the cooperative equation
have been found to be highly sensitive to the initial guess in the fitting
procedure and, as a consequence, it is very difficult to obtain consistent
values for these two parameters. The discrepancy with the parameters
published in Ref. [34] is attributed to the different dataset used for
fitting. In their work, the authors used exclusively the experimental
data of Cao et al. [6].

4. Summary and conclusion

A CG particle model for the simulation of deformation processes in
PC was developed. Various tensile deformations were applied on a si-
mulation containing 4000 CG particles (equivalent to ca. 34,000
atoms). Under uniaxial tension, the yield stress is reported for several
high-strain rates and a fit using both experimental results and simula-
tion values is carried out with the Cowper-Symonds [26] constitutive
equation. Despite being a very general model, the Cowper-Symonds
model produces the same result as the cooperative [27,28] model for a
strain rate range between −10 6 s-1 to 1011 s-1. The critical stress as a
function of the logarithm of the strain rate follows an non-linear trend
and the static yield stress at 300 K is found to be 49MPa.

The Williams, Landel and Ferry equation [29] is used for con-
structing a master curve that includes yield stresses at different tem-
peratures. The 300 K master curve is built from a shift factor aT which
depends on two constants (C1, C2) and a reference temperature (TS)
whose values are reported in the results section.

Finally, different deformation modes were investigated. The de-
formation modes can be classified into two main categories according
to their mechanical response to external loading: (a) deformations
leading to void nucleation and growth and (b) shear deformations. The
triaxial tension and constrained uniaxial tension belong to the first
category and are found lying on the same line (see Fig. 6). The un-
constrained uniaxial tension, biaxial tension and shear belong to the
second category and their shear stress values fall on a clear and unique
trend line (Fig. 6). However, compared to experimental measurements
of the shear stress in PC, the shear stress obtained from CG-MD simu-
lations are found to be strongly underestimated. This is due to the ab-
sence of friction in our CG potential and this issue shall be addressed in
a future improvement of the model.
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