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A B S T R A C T   

Thermoplastic elastomer (TPE) by ABA triblock copolymer chains undergoes microphase separation with bridge 
and loop chains. TPE has a multi-scale structure containing both bridge chain networks and microphase sepa
rated structures in meso scale. In the uniaxial elongation process of TPE, coalescence and breaking of domains 
occur, and an irreversibly deformed structure forms at high strain. To understand the structural changes in an 
elongation, we performed coarse-grained molecular dynamics simulations of the elongation process of TPE and 
analyzed the changes of both the bridge chain network and domain structure by graph theory. Both the changes 
of the domain structures and recombination of bridge chains can be understood by the descriptors of each graph 
structure. Using the graph description, two types of structures can be found in the elongation process; recov
erably and destructively deformed structures. The graph is one of the most useful mathematical descriptors to 
understand the topology of bridge chain network inside the structures of TPE in the elongation process, including 
fracture of domains with a microscopic chain conformation.   

1. Introduction 

Thermoplastic elastomer (TPE) [1] has attracted attention as a 
recyclable material, and if it is heated above the glass transition tem
perature, it can be molded again. Many studies of development of high 
functional TPEs and detailed analysis of these materials have been 
performed. ABA triblock copolymers are sometime used as the primary 
molecule of TPE, where the A and B species are hard and soft blocks 
connected by covalent bonds, respectively. At the mesoscale, micro
phase separated structures, such are spheres, cylinders, gyroids, and 
lamellar domain structures, form by self-assembly [2,3]. For a small 
fraction of the A block, the microphase separated structure is a 
body-centered cubic (BCC) sphere structure (Fig. 1(a)). A schematic 
diagram of the ABA domain is shown in Fig. 1(b), in which the spherical 
A domain is composed of A blocks and the B matrix domain constitutes 
the middle B block. Two types of ABA block copolymer conformations 
are found in this structure: bridge and loop chains. If two A blocks 
belong to the same A domain, the chain is called a loop chain. If two A 
blocks are in different A domains, the chain is called a bridge chain. 

These conformations have been investigated by theory [4], experiments 
[5,6], Monte Carlo simulations [7,8], and molecular dynamics simula
tions [9]. From the viewpoint of the higher order structure, it can be 
considered that the domain network forms as a “bridge chain network”. 
In the expansion process, the domain structures deform and the distance 
between the domains on the elongation axis increases. As a conse
quence, some bridge chains expand and contribute to the mechanical 
stress during deformation. 

For TPE, understanding of the structure and dynamics of bridge 
chains is very important. Many simulation studies of analysis of TPE 
materials have been reported. Structural analysis for microphase sepa
ration [10–12] has been performed by self consistent field (SCF) theory 
[13–16] and the mechanical properties [9,16–18] have been investi
gated by molecular dynamics simulations [19]. The bridge fraction has 
also been investigated by SCF theory [20], and the bridge fraction in the 
equilibrium structure is estimated to be almost 70%. 

Aoyagi et al. [9] investigated elongation of TPE and analyzed the 
bridge fraction by coarse-grained molecular dynamics (CGMD) simula
tions. They constructed the initial structure based on the bead-spring 
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model using a density-biased Monte Carlo method [21] with the density 
field obtained by a SCF simulation and then performed a uniaxial 
elongation simulation. They found that the number of domains de
creases until the strain becomes 2.0, and it then increases in the larger 
strain range. The bridge fraction decreases until strain of 2.5, and it then 
increases when the strain is larger than 2.5. They also found that many 
chains are pulled out of the domains and the domains are finally 
destroyed for strain of above 3.5. They analyzed cycle deformation of 
TPE by CGMD simulations with analysis of the number of domains and 
bridge fraction, and they found that recoverable cycle deformation oc
curs under small strain. If the recent data and topological analysis are 
applied to deformation of TPE, more detailed analysis of the deforma
tion process of TPE can be performed and deformation of TPE can be 
understood in much more detail. 

To understand the structural changes of TPE during elongation, 
analysis of the structure, including both the chain conformations and 
domain structures, is required. In other words, the multiscale structures 
during deformation with fracture of the domain need to be understood. 
To describe these multi-scale structures of TPE, we used graph theory 
[22], which is a discrete mathematics or information technique method 
to analyze complex networks. The “small world” problem is one of the 
successful applications of graph theory [23]. Recently, the topology of a 
special synthesized polymer chain has been represented by a graph [24, 
25]. If graph theory is applied to TPE, the structural information of both 
the bridge chains and domain structures can be simply represented. 

Here, we used graph theory to describe both the molecular 

conformation and domain structure of TPE in the uniaxial elongation 
process. This descriptor includes information about not only the bridge 
chain network and its topology, which contributes to the mechanical 
stress, but also the domain structure, and we used this method to analyze 
deformation of TPE. In Section 2, we give an overview of the simulation 
method. In Section 3, the results of the CGMD simulations in the elon
gation process are discussed and the details of the graph for the BCC 
spherical phase separated structure by the ABA triblock copolymer are 
presented. In addition, the recoverably and destructively deformed 
structures are analyzed by the correlation among the quantities obtained 
by graph theory. In Section 4, we give the conclusions of the study. 

2. Simulation method 

To simulate mechanical extension of TPE by the ABA triblock 
copolymer, we used the bead-spring (BS) model of Kremer and Grest 
[19]. The polymer consists of N beads connected by the bonding 
potential, 

UBðrÞ¼UFENEðrÞ þ ULJðrÞ ; (1)  

where r is the distance between the beads. UFENEðrÞ and ULJðrÞ are given 
by 
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where k is the spring constant, R0 is the maximum extension of the 
spring, ε is the unit of the energy, σ is the unit of the length, and rcut is the 
cutoff distance of the potential. The non-bonding interaction between 
the polymer segments separated by distance r is given by the Lennard- 
Jones potential ULJðrÞ. The parameters for the A and B beads will be 
described later. 

Time evolution of the beads at position rn is calculated by the Lan
gevin equation, 

m
d2rn

dt2 ¼ �
∂U
∂rn
� Γ

drn

dt
þWnðtÞ (4)  

where m is the mass of the beads, U is the total potential energy of the 
system, and Γ is the friction constant. WnðtÞ is the Gaussian white noise 
which is generated by the following equation. 

WnðtÞWmðt’Þ¼ 2kBTmΓδnmІδðt � t’Þ : (5) 

We used the following parameter set: k ¼ 30:0ε=σ2, R0 ¼ 3:0σ, and 
Γ ¼ 0:5τ� 1, where τ is the unit of time. These parameters are the same as 
those of Grest and Kremer. The interval of one time step is 0.01τ, and the 
unit of temperature is T0 ¼ kB=ε. 

In this study, we focused on analysis of the structure of TPE. We used 
the simulation model and simulation conditions proposed by Aoyagi 
et al. [9]. For description of the hard and soft segments, the non-bonding 
interaction potential and temperature are controlled. To describe the 
hard domain by the A sub-chain, the attractive interaction potential 
(cutoff distance rcut ¼ 2:5σ) is imposed between A particles. Using this 
potential, aggregation of A particles, which is the spherical A domain, is 
derived. The temperature is also controlled and is set to T ¼ 0.4 [T0], 
which is less than the glass transition temperature of the melt polymer of 
A particles. Conversely, the B sub-chain is the model in a rubber state 
and the repulsive potential is set by using rcut ¼ 1:12246σ. The density 
of the particle is set to 0.85 σ� 3, and periodic boundary conditions are 
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Fig. 1. (a) Model structure and (b) molecular structure of the ABA domain.  
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applied in the x, y, and z directions for the cubic simulation box. 
Construction of the initial structure is important to simulate the TPE 

of the ABA triblock copolymer. To realize the BCC sphere microphase 
separated structure by the ABA polymer, we used the node density 
biased Monte Carlo (NDBMC) method [9]. Here we will briefly describe 
the NDBMC method. First, a three-dimensional SCF simulation of the 
ABA block copolymer system is performed and the segment density ϕ(i, 
r) is obtained, where i and r are the segment number from one end and 
the position, respectively. A SCF simulation for A3B44A3 is performed. 
The parameters for the SCF simulation are χ ¼ 2.4 and system size ¼ 32 x 
32 x 32 with periodic boundary conditions. From the SCF simulation, the 
spherical domain structure described by the segment density, ϕ(i,r), is 
obtained. Using ϕ(i,r), a Monte Carlo simulation with the segment 
density weighted potential is performed to insert each bead of a polymer 
chain for CGMD and construct the initial structure. In the Monte Carlo 
simulation, the size of a single segment for SCF corresponds to two beads 
for CGMD. Note that the parameters for CGMD in the NDBMC simulation 
are the same values used in the following CGMD simulation. A relaxa
tion simulation is then performed of 5.0x104 τ and the equilibrium 
structure with the BCC spherical domain is obtained. 

Once the initial structure is obtained, a uniaxial elongation simula
tion is performed with a constant deformation rate of 0.00284436 σ/τ in 
the z direction. In each 100 steps, a small deformation of the simulation 
system with Poisson ratio 0.5 is applied. In this deformation, each bead 
moves under the condition of affine deformation, and the volume of the 
system is kept constant. In each interval of deformation, the polymer can 
relax, and deformation with chain relaxation is realized. 

3. Results and discussions 

3.1. Elongation simulation 

The initial structure and the spherical domains of the A component 
ordered in the BCC sphere positions are shown in Fig. 2(a). In this 
structure, there are loop and bridge chains, and examples of these chains 
are shown in Fig. 2(b) and (c). Using this initial structure, we performed 
a uniaxial elongation simulation. 

Snapshots during the elongation simulation are shown in Fig. 3. In 
this figure, only the interfaces of the A domain, whose density is 0.4 
[σ� 3], are shown. From the initial structure (Fig. 3(a)) to the structure at 
strain of 2.0 (Fig. 3 (b)), the domains coalesce. From strain of 2.0 (Fig. 3 
(b)) to strain of 4.0 (Fig. 3(c)), domain breaking and coalescence occur. 
To quantitatively analyze the structures, we estimated the number of 
domains and bridge fraction at each strain, and they are shown in Fig. 4 
(a). As the strain increases, the number of domains decreases until strain 
of 2.0. When the strain becomes larger than 2.0, the number of domains 
increases. The bridge fraction decreases until strain of 3.0, and it then 
increases for larger strain. The stress-strain curve obtained by the CGMD 
simulation is shown in Fig. 4(b). The gradient decreases at strain of 3.0. 
These features are almost the same as a previous study [9], because the 
simulation conditions, including the block ratio, were the same and the 
simulation can be replicated. 

Using the simulation results, the structural changes of the domains in 
the expansion process were analyzed. Collapse and breaking are phe
nomena derived from conformational change of the triblock copolymer. 
Therefore, by determining the domains that belong to each A sub-chain, 
the trace of each domain at each strain can be analyzed. A schematic 
diagram of the transition of the domains at each strain (γ) is shown in 
Fig. 5. The spheres show the domains at each strain, and the connected 
lines between two domains at different strains indicate the historical 
relation between the domains. For example, the 5th domain at strain of 
1.5 originates from the 10th domain at strain of 1.0. Because the 1st 
domain at γ ¼ 1.5 originates from the 1st, 2nd and 3rd domains at γ ¼
1.0, domain collapse occurs. The 2nd, 4th, and 5th domains at γ ¼ 3.0 
are related to the 3rd domain at γ ¼ 2.5, which breaks into three do
mains. By these analyses, the changes of the domains can be understood. 

In the strain range 0.0–2.0, many domains collapse, and the number of 
domains decreases. Conversely, in the strain range 2.0–5.0, both domain 
collapse and breaking occur, and, as a result, the number of domains 
increases. This simultaneous event can only be observed by analysis of 

(a)

(b)

(c)

Fig. 2. (a)Snapshot of the initial structure of the spherical domain and exam
ples of (b) bridge and (c) loop chains in the domain structure. 
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the conformation of each polymer. 

3.2. Graphs of the elongation simulation results 

In section 3.1, we discussed the change of the domains along with the 
strain by precise analysis of the polymer conformation. Next, we propose 
the description of the connectivity of the domains by bridge chains at 
each strain. To express the connectivity of the domains by bridge chains, 
we used graph theory, which can be used to analyze networks appeared 
in various situations such as social networks, transportation networks, 
neural networks etc. [22,23]. The graph structure for the bridge chain 
networks in TPE is shown in Fig. 6. The eight-domain system shown in 
Fig. 6(a) is chosen as an example, and its graph is shown in Fig. 6(b). A 
node drawn by a circle indicates a domain in TPE, and a connected line, 
which is called an edge, indicates a connected bridge chain in TPE. If 
there are one or more connected bridge chains, a connected line is drawn 
so that existence of bridge chains is recognized. For example, a bridge 
chain exists between the 1st and 3rd domain in Figs. 6(a), 1st and 3rd 
circles are connected by edges in Fig. 6(b). The graph structure will 
describe the topology of bridge chain network and using this descriptor 
we can understand the changes in the elongation process. 

Using this definition, the domain network composed of all of the 
bridge chains in the initial structure for the CGMD simulation is shown 
in Fig. 7(a). The original domain structure with the domain numbers is 
shown in Fig. 7(b). In this structure, there are 16 domains, and these 
domains are connected by several bridge chains. Because periodic 

boundary conditions are applied in the CGMD simulation, the 13th, 
14th, 15th, and 16th domains become neighbors of the 1st, 2nd, 3rd, and 
4th domains, and the circular-type graph shown in Fig. 7(a) is applied. 
Here we focus on the 9th domain, which is located at the center of the 
simulation box. In Fig. 7(a), the 9th domain is joined to the 3rd, 4th, 5th, 
6th, 7th, 8th, 10th, 11th, 12th, 13th, 14th, 15th, and 16th domains. 
Among these domains, the 5th, 6th, 7th, 8th, 13th, 14th, 15th, and 16th 
domains are the nearest neighbor domains of the 9th domain, the 3rd, 
10th, and 12th domains are the next nearest neighbor domains, and the 
4th and 11th domains are the second next nearest neighbor domains. It 
can be easily determined that most of the bridge chains are classified as 
connected chains between nearest or next nearest domains. Because 
most of the domains are connected by bridge chains, it is almost a perfect 
graph, in which all of the edges are joined. 

Next, we will discuss the graphs for other strains. As shown in Fig. 5, 
there are only eight domains at γ ¼ 2.0, which is less than the number of 
domains in the initial structure because of coalescence of domains. This 
number can be easily determined from the graph shown in Fig. 8(a). 
From the viewpoint of the connectivity, most of the domains remain 
connected in the deformation process. At γ ¼ 3.0 (Fig. 8(b)) and 4.0 
(Fig. 8(c)), the number of domains increases, and the defects of the edges 
increase. This originates from both breaking and coalescence of do
mains, which will be described in detail later. At γ ¼ 5.0 (Fig. 8(d)), 
many of the domains are connected by bridge chains, although there are 
fewer lines than in the initial structure. In this graph, there are many 
unicursal ring (polygon) structures, which is confirmed by several lines. 
This feature means that the domain network is connected through the 
periodic boundary, which may affect the mechanical stress in the 
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(a)

(b)

(c)

Fig. 3. Snapshots of the interfacial structure in the expansion simulation at 
strain of (a) 0.0, (b) 2.0, and (c) 4.0. 

Fig. 4. Simulation results of the (a) the changes of the fraction of bridge chains 
and number of domains, and (b) stress-strain curve. 

H. Morita et al.                                                                                                                                                                                                                                  



Polymer 188 (2020) 122098

5

deformation process. 

3.3. Application of graph theory to analyze domain breaking and 
coalescence 

As an application of graph theory, we show the analysis of the 
breaking and coalescence of domains using graphs. Focusing on a chain, 
snapshots and graphs of these processes are shown in Fig. 9. In Fig. 9(a) 
the domain structure at γ ¼ 2.5 is shown with the bridge chain between 
the 1st and 5th domains. Its graph is shown in Fig. 9(d), where the 
specific bridge chain is indicated by a dashed line. If the strain increases 
to γ ¼ 2.6, the right domain breaks into the 5th and 6th domains. At γ ¼
2.6, the same chain bridges the 1st and 5th domains (Fig. 9(b)), and its 
graph is indicated by a dashed line in Fig. 9(e). At γ ¼ 2.6, the 5th 
domain is only connected to the 1st domain and the elongated bridge 
chain becomes unstable. To maintain the elongated chain structure, 
both A sub-chains must be pinned by the interfacial force originating 
from the attractive interaction between other A sub-chains within the A 
domain. However, the right part of A of the chain is released from the 
pinned force. Therefore, the chain shrinks, and the right part of the A 
sub-chain wants to join to another A domain. The domain structure at γ 
¼ 3.0 is shown in Fig. 9(c). The right domain coalesces with another 
domain and forms the 4th domain. As a result, the right A sub-chain 
belongs to the 4th domain at γ ¼ 3.0. This result indicates that free- 
end-like domains, such as the 5th domain at γ ¼ 2.6, are unstable and 
they are transient structures in the breaking and coalescence of domains. 
In the graphs shown in Fig. 9(d)–(f), the change of the domain structure 
and recombination of the bridge chain can be described. 

In the graphs shown in Fig. 8 (b) and 8 (c), and 8 (d), there are many 
free-end-like domains and those are formed by the similar mechanism of 
domain breaking shown in Fig. 9. In Fig. 8(c) at γ ¼ 3.0, 2nd, 3rd, 5th, 

Fig. 5. Change of the domain structures at each strain (γ). The connected lines 
indicate the history of domains distinguished by the contained A sub-chains. 

Fig. 6. Examples of (a) a domain structure and (b) its graph. The dark gray 
circles and light gray lines show the spherical domains and bridged chains, 
respectively. 
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Fig. 7. (a) Graph of the initial structure and (b) the original domain structure.  
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8th, 10th,11th, 14th, and 15th domains are free-end-like domains. The 
background of each domain can be tracked back by Fig. 5. Within those 
domains, 2nd, 5th, 8th, 11th, and 14th domains are formed by the 
domain breaking in the deformation from γ ¼ 2.5 to γ ¼ 3.0, and 3rd, 
10th, 15th domains are derived from γ ¼ 2.0 to γ ¼ 2.5. Detail changes of 
domains along the deformation can be traced by graphs combined with 
Fig. 5. 

By a type of domain breaking shown in Fig. 9, per one time of domain 
breaking, both only one domain and only one bridge chain increase. 
Within the strain from 2.0 to 3.5, number of domains increases and 
many of the increased domains are made by a similar domain breaking 
shown in Fig. 9. Although number of domains increases in those strain 
range, number of bridge chains decreases as shown in Fig. 4. This is due 
to the coalescence of domain occurred with the same range. For 
example, from Fig. 5, 6th and 7th domains at γ ¼ 2.0 coalesce to 7th 
domain at γ ¼ 2.5. 3rd and 4th domains or 6th and 7th domains at γ ¼
2.5 coalesce to 4th and 12th domains, respectively. The contributed 
domains in those coalescences are larger domains. Once coalescence 

occurs, many bridge chains change to loop chains, and bridge fraction 
decreases. By an analysis combined with Figs. 5 and 8, the changes of 
both number of domains and bridge fraction along the strain can be 
explained. 

3.4. Correlation analysis among the physical quantities obtained by graph 
theory 

To represent the adequacy and usefulness of the graph as a 
descriptor, we analyzed the physical quantities obtained by graph the
ory, which may become the numerical descriptor of the structure based 
on graph theory. Several physical quantities can be calculated from the 
graph, and we choose three following parameters, number of triangles, 
transitivity, and clustering coefficient. Once a graph was drawn, many 
triangles are formed by edge lines, and the number of triangles is the 
total number of triangles constituted by edges. The number of triangles 
depends on the diversity of the bridge chain and entropy of the system. 
As the strain increases during expansion, the number of triangles de
creases, which may be related to expansion of the polymer chains. The 
transitivity is defined as the parameter which is a number of triangles 
divided by total number of triangles of the perfect graph by total nodes. 
The transitivity can be understood as the perfectivity of the graph and 
the inhomogeneity of the expanded structure can be understood from 
the change of the transitivity. Though the local clustering coefficient is 
defined as the ratio between the number of existing edges within the 
neighborhood of a node and the number of possible edges within the 
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Fig. 8. Graphs for strain of (a) 2.0, (b) 3.0, (c) 4.0, and (d) 5.0.  

Fig. 9. Snapshots and graphs of breaking and coalescence of domains. (a)–(c) 
show the snapshot of the chains of interest and (d)–(f) show graphs at strain of 
2.5, 2.6, and 3.0. Dashed lines in (d)–(f) indicate the polymer chains shown in 
Fig. (a)–(c), respectively. 
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neighborhood of a node at the focused node, the averaged clustering 
coefficient is averaged value of local clustering coefficients. The aver
aged clustering coefficient is the index of a small network or ring. The 
decrease of this value in the expansion process may be related to the 
decrease in the number of small triangles. The number of triangles, 
transitivity, and clustering coefficient are given in Table 1. 

The correlation between these physical quantities can be represented 
by scatter diagrams, which are shown in Fig. 10. In these diagrams, the 
strain, stress, number of domains, and number of bridge chains are also 
taken as parameters. Several linear relations can be found in Fig. 10. 
Among the number of domains, number of triangles, and number of 
bridge chains, there are two types of linear relations in each figure: low 
and high gradient lines. For the scatter diagram between the number of 
domains and number of triangles, the low and high gradient lines 
indicated by the two arrows correspond to the data for strain below and 
above about 2.2, respectively. This result indicates that the mechanism 
of deformation at the level of the polymer chain and domain structures 
switches at about strain of 2.2. In Fig. 4(a), the number of domains starts 
to increase at about strain of 2.2 and domain breaking (i.e., domain 
fracture) occurs. In a previous study [9], a compression simulation was 
performed until γ ¼ 0 from the expanded structure in which domain 
breaking occurs and the obtained structure at γ ¼ 0 did not recover to 
the initial structure. We speculate that the two linear relations may 
correspond to the recoverably and destructively deformed states. 

To verify the recoverably or destructively deformed structures in the 
elongation simulation results, we performed a compression simulation 
until γ ¼ 0 from each elongated structure and counted the number of 
domains at γ ¼ 0 to compare with 16 domains in the initial structure. In 
other words, we performed elongation-compression cycle simulations 
for different maximum strains and counted the number of domains after 
cycle simulation. Fig. 11 shows the number of domains after the 
compression simulation from each elongated structure. Horizontal axis 
indicates the strain at the start point of compression simulation. For 
compression from the elongated structures of less than or equal to 2.0 
strain, the number of domains is about 16, which is almost same as the 
number of domains of the initial structure. This indicates that the 
domain structure is almost recovered after the elongation-compression 
cycle simulation. In contrast, for compression from the elongated 
structures of greater than 2.0 strain, the number of domains is less than 
16 and the domain structure is not recovered after the cycle simulation. 
For compression from the elongated structure of large strain, domain 
coalescence occurs in the compression process and reconfiguration of 
broken domains and bridge chains occurs. From these compression 
simulations, the boundary between recoverable and destructive defor
mation is the same as the transition point of the strain between the two 
lines shown in Fig. 10. We also performed simulations using other initial 
structures. The same results were obtained, although the boundary 
strains were fluctuated. From these results, the fractured domain 
structure can be confirmed using the correlation among the number of 
domains, number of triangles, and number of bridge chains, and the 
quantities obtained from the graph theory can be used as an indicator of 
fracture inside the TPE. 

4. Conclusion 

Graph theory including information about both the domain and 
bridge chain network structures composed of the ABA block copolymer 
is applied to analyze the deformed domain structure during elongation 

of TPE. Using this analysis, the structures of the domain and the bridge 
chain network can be simply described and the changes of the number of 
domains and recombination of the network, such as breaking and coa
lescence of domains, in the deformation process can be easily found. 
This is an important description method for many-chain systems in 
microphase separated structures, and it can also be applied to other 
types of structures, such as lamellar and cylindrical phase separated 
structures. Once the graph is obtained, the graph itself and the physical 

Table 1 
Number of triangles, transitivity, and average clustering coefficient calculated from the graph at each strain.  

Strain 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 

Number of Triangle 657 657 630 255 78 48 54 54 48 75 90 
Transitivity 0.718 0.710 0.753 0.870 0.857 0.658 0.425 0.316 0.318 0.441 0.479 
Average_clustering coefficient 0.719 0.670 0.709 0.802 0.767 0.453 0.341 0.386 0.198 0.290 0.252  

Strain

Stress

Num of
Domains

Num of
Triangles

Num of
bridge chains

Transi�vity

Clustering 
coefficient

Fig. 10. Scatter diagrams among the physical quantities strain, stress, number 
of domains, number of triangles, number of bridge chains, transitivity, and 
clustering coefficient. The diagonal figures are histogram along the horizon
tal axis. 

Fig. 11. Comparison between the number of domains after one cycle of the 
elongation–compression simulation and the initial structure. The horizontal line 
at 16 is the number of domains in the initial structure. 
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quantities determined from the graph can be treated as the parameters 
to describe the structure of TPE and the topology of bridge chain 
network, which cannot be found by usual analysis. It is derived that the 
two types of deformation state in the deformation process can be 
analyzed. In the future, we will apply this method to analyze the frac
tured structures of other microphase separated structures. 
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