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N-benzyl substitution markedly enhances the affinity of phenethylamine hallucinogens at the 5-HTa re-
ceptor. N-benzyl substituted derivatives of 2,5-dimethoxy-4-iodophenethylamine (2C-I), such as N-(2-
methoxybenzyl)-2,5-dimethoxy-4-iodophenethylamine (25I-NBOMe) and N-(2,3-methylenedioxybenzyl)-
2,5-dimethoxy-4-iodophenethylamine (25I-NBMD), have appeared recently as designer drugs, but have not
been characterized behaviorally. The head twitch response (HTR) is induced by 5-HT>4 receptor activation in
rats and mice, and is widely used as a behavioral proxy for hallucinogen effects in humans. Nevertheless, it is

ffsy Z‘;:Zc‘ljesi'ic not clear whether phenethylamine hallucinogens reliably provoke this behavior. Hence, we investigated
5_3;[.1.2 A whether 2C-I, 25I-NBOMe and 25I-NBMD induce head twitches in C57BL/6] mice. The HTR was assessed
Head twitch using a head-mounted magnet and a magnetometer coil. 2C-I (1—-10 mg/kg SC), 25I-NBOMe (0.1—1 mg/

LSD kg SC), and 25I-NBMD (1—10 mg/kg SC) induced the HTR. 25I-NBOMe displayed 14-fold higher potency than
2C-1, and the selective 5-HT»4 antagonist M100,907 completely blocked the HTR induced by all three com-
pounds. These findings show that phenethylamine hallucinogens induce the HTR by activating 5-HTx re-
ceptors. Our results demonstrate that 25I-NBOMe is a highly potent derivative of 2C-I, confirming previous
in vitro findings that N-benzyl substitution increases 5-HT>4 affinity. Given the high potency and ease of
synthesis of N-benzylphenethylamines, it is likely that the recreational use of these hallucinogens will
become more widespread in the future.

© 2013 Published by Elsevier Ltd.

1. Introduction

Serotonergic hallucinogens belong to two chemical classes: indo-
leamines and phenylalkylamines. Members of the phenylalkylamine
hallucinogen class can be further subdivided into phenethylamines
(including mescaline, 2,5-dimethoxy-4-bromophenethylamine (2C-
B), and 2,5-dimethoxy-4-iodophenethylamine (2C-I; Fig. 1)) and
phenylisopropylamines (such as 2,5-dimethoxy-4-iodoamphetamine
(DOI) and 2,5-dimethoxy-4-methylamphetamine (DOM)). All sero-
tonergic hallucinogens act as 5-HT,a agonists, and the phenylalkyl-
amines are selective for 5-HT;4 and 5-HTyc sites (reviewed by:
Nichols, 2004; Halberstadt and Geyer, 2011). It is generally accepted
that the characteristic subjective and behavioral effects of hallucino-
gens in both humans and animals are mediated by activation of the 5-
HT;4 receptor (Vollenweider et al., 1998; Geyer and Vollenweider,
2008).

* Corresponding author. Tel.: +1 619 543 5202; fax: +1 619 543 2493.
E-mail addresses: ahalbers@ucsd.edu, ahalberstadt@ucsd.edu (A.L. Halberstadt).

0028-3908/$ — see front matter © 2013 Published by Elsevier Ltd.
http://dx.doi.org/10.1016/j.neuropharm.2013.08.025

N-benzyl substituted phenethylamines are a new class of
serotonergic hallucinogens that are currently being marketed
online and distributed as “research chemicals” (Zuba and Sekuta,
2012; Zuba et al., 2013; Rose et al., 2013; Hill et al., 2013). These
compounds include  N-(2-methoxybenzyl)-2,5-dimethoxy-4-
iodophenethylamine (251-NBOMe, Fig. 1), N-(2-methoxybenzyl)-
2,5-dimethoxy-4-chlorophenethylamine (25C-NBOMe), and N-(2-
methoxybenzyl)-2,5-dimethoxy-4-methylphenethylamine (25D-
NBOMe). The addition of an N-benzyl substituent to phenethyl-
amine hallucinogens dramatically increases 5-HT,5 receptor af-
finity (Braden et al., 2006). For example, the 5-HT»4 affinity of 25I-
NBOMe (K; = 0.044 nM) is more than an order of magnitude
greater than that of 2C-I (K; = 0.73 nM). 25I-NBOMe is a potent
and highly efficacious 5-HT,4 agonist that is selective for 5-HT,
sites (Braden et al., 2006; Nichols et al., 2008; Ettrup et al., 2010,
2011). The increase in 5-HT,a affinity appears to be a conse-
quence of a specific T—m interaction between the N-benzyl moiety
and the aromatic ring of Phe339 (Braden et al., 2006). The high
affinity and efficacy of these N-benzylphenethylamines has made
them attractive agents for development as radioligands (Nichols
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Fig. 1. Chemical structures of phenethylamines.

et al., 2008) and Positron Emission Tomography (PET) radiotracers
(Ettrup et al., 2010, 2011, 2013), but also indicates that they may
have abuse potential. Anecdotal reports indicate that these com-
pounds produce hallucinogenic effects and are highly potent when
ingested sublingually, buccally, or by insufflation, but have very
low oral bioavailability. For example, 25I-NBOMe (“25-1", “N-
Bomb”, “Smiles”) appears to be active at doses as low as 50—
250 pg, and is typically used at dosages ranging from 500 to
800 g (Erowid, 2013). The duration of action of 25I-NBOMe varies
depending on the route of administration, ranging from 4 to 6 h
(insufflation) to 6—10 h (sublingual). Several fatalities and hospi-
talizations have occurred as a consequence of the recreational use
of 25I-NBOMe. Overdoses of 25I-NBOMe can produce tachycardia,
hypertension, seizures, bizarre behavior, and agitation persisting
for up to three days (Kelly et al., 2012; Rose et al., 2012, 2013; Hill
et al., 2013; Stellpflug et al., 2013). Currently, 25I-NBOMe is
controlled in four U.S. states (Virginia, Louisiana, Florida, and
Georgia), but none of the N-benzylphenethylamines are scheduled
federally or subject to international controls. Despite the wide-
spread use of these compounds, very little is known about their
behavioral or toxicological effects.

The head twitch response (HTR), a high-frequency paroxysmal
head rotation that occurs in rats and mice after 5-HT,a receptor
activation (Halberstadt and Geyer, 2011, 2013; Canal and Morgan,
2012), is widely used as a behavioral proxy in rodents for human
hallucinogen effects. Gonzilez-Maeso and colleagues compared
multiple behavioral paradigms and found that the HTR is one of
only a few behaviors that can reliably distinguish hallucinogenic
and non-hallucinogenic 5-HT,4 agonists (Gonzalez-Maeso et al.,
2007). These and other workers have used the HTR to identify 5-
HT,a-coupled signaling pathways, downstream neurochemical ef-
fects, and interactions with other transmitter systems that are
specifically relevant to hallucinogenesis (Marek, 2003, 2009;
Benneyworth et al., 2007; Gonzilez-Maeso et al., 2007; Schmid
et al., 2008; Schmid and Bohn, 2010; Egashira et al., 2011;
Moreno et al., 2012). If the HTR is a valid animal model of halluci-
nogen effects in humans, it is critical to confirm that all classes of
hallucinogens induce the behavior. Phenylisopropylamine and
indoleamine hallucinogens reliably induce the HTR (reviewed:
Halberstadt and Geyer, 2011), but there is some disagreement in the
literature regarding the effectiveness of phenethylamine

hallucinogens. Several studies have confirmed that mescaline in-
duces the HTR in rats and mice (Silva and Calil, 1975; Yamamoto

and Ueki, 1975; Gonzalez-Maeso et al., 2007), and 2,5-dimethoxy- Q1

4-n-propylthiophenethylamine (2C-T-7) has been shown to induce
head twitches in mice (Fantegrossi et al., 2005). By contrast, it has
been reported that even high doses of 2C-I, 2C-B, and 2,5-
dimethoxy-4-methylphenethylamine (2C-D) fail to induce the
HTR in rats (Moya et al., 2007). If the latter report is correct, the
inactivity of these phenethylamine hallucinogens strongly argues
against the use of the HTR as a behavioral proxy for human hallu-
cinogen effects. Therefore, additional studies with phenethylamine
hallucinogens are necessary to assess the validity of the HTR
behavioral model.

Since very little is known about the behavioral pharmacology of
N-benzylphenethylamines and they have not been directly
compared to their unsubstituted parent compounds in vivo, we
conducted a series of experiments to characterize the effects of
these compounds. We compared the effects of 2C-I and two N-
benzyl substituted derivatives (25I-NBOMe and 25I-NBMD; Fig. 1)
on HTR in C57BL/6] mice. HTR was assessed using a magnetometer
coil-based system that can detect the behavior objectively with
extremely high sensitivity and reliability (Halberstadt and Geyer,
2013). We also tested whether the 5-HT4 receptor is responsible
for mediating the HTR to 2C-I, 25I-NBOMe, and 25I-NBMD. The
experiments demonstrated that these phenethylamines induce the
HTR in mice by activating the 5-HT>4 receptor, and confirmed that
251-NBOMe is extremely potent in vivo.

2. Materials and methods
2.1. Subjects

Mice were housed in a vivarium at the University of California San Diego (UCSD),
an AAALAC-approved animal facility that meets Federal and State requirements for
care and treatment of laboratory animals. Male C57BL/6] mice (6—8 weeks old) were
obtained from Jackson Labs (Bar Harbor, ME, USA) and were allowed to acclimate for
1 week after arrival. Mice were housed up to 4 per cage in a climate-controlled room
with a reversed light-cycle (lights on at 19:00 h, off at 07:00 h). Food and water were
provided ad libitum, except during behavioral testing. Testing occurred between
10:00 and 18:00 h. Experiments were conducted in accord with NIH guidelines and
were approved by the UCSD animal care committee. All efforts were made to
minimize animal suffering and the number of animals used.

2.2. Detection of the head twitch response

The HTR was assessed using a head-mounted magnet and a magnetometer coil
(see Halberstadt and Geyer, 2013). Briefly, mice were anesthetized using a mixture of
ketamine (100 mg/kg IP) and acepromazine (5 mg/kg IP), and a small neodymium
magnet (4.57 x 4.57 x 2.03 mm, 375 mg) was attached to the center of the dorsal
surface of the cranium with dental resin; the magnet was mounted with the axis of
the N—S poles parallel to the dorsoventral plane of the head. HTR experiments were
conducted beginning 2 weeks after magnet implantation, and mice were tested
repeatedly with at least 7 days between test sessions. Head movements were
recorded and the HTR was analyzed as described previously (Halberstadt and Geyer,
2013). The mice were placed in a 12.5-cm glass cylinder surrounded by a magne-
tometer coil, and coil voltage was filtered (5—10 KHz low-pass), amplified, and
digitized (40 kHz sampling rate) using a Powerlab/8SP with LabChart v.7.3.2
(ADInstruments, Colorado Springs, CO, USA). The LabChart data was filtered digitally
(40—200 Hz band-pass) to remove extraneous head movements and high-frequency
interference, and responses were identified by manually searching for individual
sinusoidal wavelets with the following characteristics: (1) waveform and spectrum
consistent with 40—160 Hz activity; (2) >2 bipolar peaks; (3) amplitude exceeding
the background noise level; and (4) duration <0.15 s (coil voltage should be stable
during the period immediately before and after the response). In a previous study of
head twitches in mice (Halberstadt and Geyer, 2013), events were counted as head
twitches if their duration was <0.12 s. Extended testing, however, has demonstrated
that some mice occasionally display head twitches with slightly longer duration.

In some experiments, the magnetometer-based assessment of head twitch was
combined with simultaneous video recordings. The behavior of the mice within the
magnetometer coil was captured at 30 Hz using a CCD video camera, digitized, and
stored on a PC as an AVI file. Head twitches were counted by an observer blind to the
treatment and the magnetometer data. Potential responses were analyzed frame-
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by-frame using VirtualDub v.1.9.11 and were counted as head twitches if there was (M100,907; donated by Hoechst Marion Roussel Inc., Kansas City, MO, USA). Doses of
evidence of torsional head movement over consecutive frames. 2C-1, 251-NBOMe, and 25I-NBMD are expressed as the salt form of the drug; doses of

M100,907 are expressed as the freebase. 2C-I and 25I-NBOMe were dissolved in
2.3. Procedures isotonic saline; 25I-NBMD was dissolved in isotonic saline containing 2% Tween 80;
M100,907 was dissolved in water containing 5% Tween 80. All drugs were admin-
Mice were transferred to the testing room under black cloth 1 h before testing. istered subcutaneously at a volume of 5 mL/kg body weight.
The experiments were conducted in a well-lit room. The test beakers were cleaned
thoroughly between test sessions. For dose—response studies, mice were treated 2.5. Data analysis
with vehicle or 2C-1 (0.3, 1, 3, or 10 mg/kg; n = 5—6/group, 26 total; Experiment 1),
vehicle or 251-NBOMe (0.03, 0.1, 0.3, or 1 mg/kg; n = 5, 25 total; Experiment 2), or Head twitch counts were analyzed using one- or two-way analyses of variance
vehicle or 25I-NBMD (0.3, 1, 3, or 10 mg/kg; n = 5, 25 total; Experiment 3), and HTR (ANOVAs) with drug treatment as the between-subject factor. When appropriate,
was assessed for 30 min. For antagonist blockade studies, mice were pretreated with time was included as a repeated measure. Specific post hoc comparisons between
vehicle or M100,907 (0.001, 0.01, or 0.1 mg/kg) prior to treatment with 3 mg/kg 2C-1 selected groups were done using Tukey’s studentized range method. Significance
(n = 6, 24 total; Experiment 4), 0.3 mg/kg 25I-NBOMe (n = 5—6, 23 total; Experi- was demonstrated by surpassing an a-level of 0.05. EDsq, IDsq, and 95% confidence
ment 5), or 3 mg/kg 251-NBMD (n = 5—6, 21 total; Experiment 6), and HTR was limits (95% C.L.) were calculated using non-linear regression.

assessed for 20 min. Animals were tested immediately after administration of 2C-I,
25I-NBOMe, and 25I-NBMD, and 30 min after administration of M100,907.
3. Results

2.4. Drugs
3.1. Detection of the head twitch response using a magnetometer
Drugs used were 2,5-dimethoxy-4-iodophenethylamine hydrochloride (2C-I), coil
N-(2-methoxybenzyl)-2,5-dimethoxy-4-iodophenethylamine hydrochloride (25I-
NBOMe), N-(2,3-methylenedioxybenzyl)-2,5-dimethoxy-4-iodophenethylamine

hydrochloride (251-NBMD; Cayman Chemical, Ann Arbor, MI, USA), and (R)-(+)-o- Head twitches induced brief sinusoidal oscillations of magne-
(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenyl)ethyl]-4-piperidinemethanol tometer coil voltage. As we previously reported (Halberstadt and
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Fig. 2. (A, B) Magnetometer coil responses induced by head twitches. The left panels show the voltage response of the magnetometer coil, and the right panels are periodograms
showing the spectral density of the responses. The response in (A) peaked at 83.8 Hz and the response in (B) peaked at 64.4 Hz. The magnetometer recordings were band-pass
filtered (40—200 Hz) to attenuate the response to extraneous head movements and high-frequency noise. (C) Correlation between head twitch counts in simultaneous video
and the magnetometer coil recordings from 6 mice (r = 0.997).
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Fig. 3. Plots of magnetometer coil voltage responses showing the temporal distribu-
tion of head twitches induced by 2C-I during the 30-min test sessions. At this time
resolution, head twitches appear as high-amplitude bipolar deflections. The numbers

of head twitches detected were 5 (vehicle), 16 (0.3 mg/kg), 65 (1 mg/kg), 84 (3 mg/kg),
and 89 (10 mg/kg).

Geyer, 2013), the frequency of the vast majority of responses
peaked between 80 and 100 Hz (Fig. 2A), with some responses
including a 40—50 Hz sub-harmonic peak. However, in a minority
of responses, the frequency peaked between 50 and 80 Hz (Fig. 2B).
To validate the magnetometer data, the results in a subset of ani-
mals (n = 6) were compared with HTR counts obtained by video
analysis; the results obtained using the two methods (179
magnetometer responses; 175 video responses) were highly
correlated (r = 0.997, F(1,5) = 625.9244, p < 0.0001; Fig. 2C). Fig. 3
shows the temporal distribution of head twitches after adminis-
tration of different doses of 2C-I.

3.2. 2C-I dose—response

Administration of 2C-I produced a dose-dependent increase in
HTR (F(4,21) = 20.34, p < 0.0001). As shown in Fig. 4, the 1, 3, and
10 mg/kg doses of 2C-I significantly increased the number of head
twitches (p < 0.01, Tukey’s test). The 3 mg/kg dose of 2C-I was
maximally effective, producing 93.8 4+ 7.4 (mean + SEM) head
twitches during the 30-min observation period. The ED5q (95% C.L.)
for 2C-I was 0.83 (0.50—1.38) mg/kg.

HTR counts were also analyzed in 2-min bins to examine the
time-course of the response to 2C-I (Fig. 4). There was a significant

(3]
1

Head Twitch Counts (per 2 min)
o

o

10 20 30
Time (minutes)

Fig. 4. Effect of 2C-I on the head twitch response. (Top panel) Total counts over the 30-
min test session. (Bottom panel) Time-course of the head twitch response induced by
2C-I (in 2-min blocks). Data are presented as group means + SEM. **p < 0.01, signif-
icant difference from the vehicle control group.

interaction between 2C-I treatment and time (Drug x Time:
F(56,294) = 2.11, p < 0.0001). Inspection of the data showed that 3
and 10 mg/kg 2C-I induced a relatively constant level of HTR across
the entire test session, whereas the 1 mg/kg dose did not induce a
significant HTR until the sixth time block (ie., 10—12 min after
administration).

Experiment 1 initially included 30 mg/kg 2C-I, but this dose was
only administered to 3 mice, which were subsequently excluded
from analysis. Administration of 30 mg/kg 2C-I produced a high
rate of HTR during the first ~5 min of testing, but very few re-
sponses were observed subsequently and the mice became
completely inactive. Furthermore, the dynamics of some of the
head twitches induced by 30 mg/kg 2C-1 were atypical, with
duration exceeding 0.16—0.2 s (data not shown).

3.3. 25I-NBOMe dose—response

The 0.1, 0.3, and 1 mg/kg doses of 25I-NBOMe significantly
increased the HTR rate (F(4,20) = 55.66, p < 0.0001) (p < 0.01,
Tukey’s test; Fig. 5). The EDsq for 25I-NBOMe was 0.078 (0.054—
0.112) mg/kg. Based on molecular weight, 25I-NBOMe was 14-fold
more potent than 2C-I (F(1,43) = 9.662, p < 0.004; Table 1).

Analysis of the 30-min test session in 2-min bins demonstrated
that the response to 25I-NBOMe was temporally dependent
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Fig. 5. Effect of 25I-NBOMe on the head twitch response. (Top panel) Total counts over
the 30-min test session. (Bottom panel) Time-course of the head twitch response
induced by 25I-NBOMe (in 2-min blocks). Data are presented as group means + SEM.
**p < 0.01, significant difference from the vehicle control group.

(Drug x Time: F(56,280) = 6,29, p < 0.0001; Fig. 5). The interval
between drug administration and maximal effect on HTR decreased
as dosage increased, with the effect of 0.1 mg/kg peaking 10—
14 min post-administration, the effect of 0.3 mg/kg peaking 6—
8 min post-administration, and the effect of 1 mg/kg peaking 2—
4 min post-administration.

3.4. 25I-NBMD dose—response

The response to 25I-NBMD is shown in Fig. 6. Compared to
vehicle treatment, administration of 1, 3, and 10 mg/kg significantly
increased the head twitch rate (F(4,20) = 36.63, p < 0.0001). The
EDsq for 25I-NBMD was 1.13 (0.68—1.86) mg/kg. There was no dif-
ference between the potencies of 2C-I and 25I-NBMD
(F(1,43) = 0.2153).

Table 1
Head twitch response (HTR) induced by substituted phenethylamines.

As was found with 2C-I and 251-NBOMe, the response to 25I-
NBMD was time-dependent (Drug x Time: F56,280) = 8.05,
p < 0.0001; Fig. 6). Similar to 25I-NBOMe, the interval between 25I-
NBMD administration and maximal effect on HTR decreased as
dosage increased, with the effect of 1 mg/kg peaking 8—10 min
post-administration, the effect of 3 mg/kg peaking 6—8 min post-
administration, and the effect of 10 mg/kg peaking 2—4 min post-
administration.

3.5. Effect of M100,907 on the head twitch response induced by
phenethylamines

As shown in Fig. 7, M100,907 was a highly potent antagonist of
the HTR induced by 3 mg/kg 2C-1 (F(3,20) = 80.90, p < 0.0001),
blocking the response with an IDsg of 0.0045 (0.0021—-0.0097) mg/
kg. The effect of 2C-1 was completely blocked by 0.1 mg/kg
M100,907 and partially attenuated by 0.01 mg/kg (p < 0.01, Tukey’s
test). M100,907 also dose-dependently antagonized the HTR
induced by 0.3 mg/kg 25I-NBOMe (F(3,19) = 17.46, p < 0.0001),
with the IDsq calculated as 0.0062 (0.0017—0.0222) mg/kg. As was
found with 2C-1, 0.1 mg/kg M100,907 completely blocked the HTR
induced by 25I-NBOMe, and 0.01 mg/kg partially attenuated the
response (p < 0.01, Tukey’s test; Fig. 7). The HTR induced by 3 mg/
kg 25I-NBMD was blocked by M100,907 (ID5¢o = 0.0015 (0.0006—
0.0036) mg/kg; F(3,17) = 40.74, p < 0.0001). The two lowest doses
of M100,907 (0.001 and 0.01 mg/kg) significantly attenuated the
response to 25I-NBMD, and 0.1 mg/kg completely blocked the
response (p < 0.01, Tukey's test; Fig. 7).

4. Discussion

The present investigation was conducted to assess the behav-
ioral effects of 25I-NBOMe, a novel N-benzyl substituted derivative
of 2C-I that is an extremely potent 5-HT;4 agonist and a member of
a relatively new class of hallucinogens that are used recreationally.
Our studies demonstrated that 2C-I and 25I-NBOMe induce the
HTR, and confirmed that this effect is mediated by the 5-HT>x re-
ceptor. We also found that 25I-NBMD, the 2’,3’-methylenedioxy
homolog of 251-NBOMe, induces the HTR. Taken together, these
findings are consistent with the reports that 251-NBOMe and other
N-benzylphenethylamines act as hallucinogens.

The present studies demonstrated that 25I-NBOMe induces the
HTR with 14-fold greater potency than 2C-I (see Table 1). The
relative potencies of these two phenethylamines are consistent
with in vitro binding data and anecdotal reports from individuals
using them recreationally. For example, in a cell line expressing the
human 5-HT»p receptor, 25I-NBOMe displaced ['?°1]DOI binding
with 16-fold higher affinity than 2C-I (Braden et al., 2006). Like-
wise, 2C-I is active in humans at dosages of 14—22 mg (Shulgin and
Shulgin, 1991), so it is more than 10-fold less potent than 25I-
NBOMe. The HTR data show that 25I-NBOMe is highly potent; in
fact, 251-NBOMe (EDs5¢ = 78 pg/kg (0.17 umol/kg)) is only slightly
less potent than (+)-lysergic acid diethylamide (LSD)
(EDsp = 52.9 ng/kg (0.13 umol/kg); Halberstadt and Geyer, 2013).

Compound code EDso (umol/kg) Relative potency

EDso (mg/kg)

95% C.L. (mg/kg) Max HTR counts Dose (mg/kg)"

(mean + SEM)?
2C-1 242 1.0 0.83 0.50—-1.38 938+ 74 3
251-NBOMe 0.17 14.2 0.078 0.054-0.11 102.6 + 8.7 1
251-NBMD 2.36 1.0 1.13 0.68—1.86 80.2 £ 9.5 10

2 Counts per 30 min.
b Dose producing the maximal response.
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Similar to our findings with 25I-NBOMe, it was reported recently
that the 4-bromo analog 25B-NBOMe induces the HTR when
administered to mice at 0.5 mg/kg but not at 0.05 mg/kg (Ettrup
et al,, 2013). Unfortunately, Ettrup et al. (2013) only tested two
doses of 25B-NBOMe, and they did not confirm that 25B-NBOMe
acts via the 5-HTpa receptor. Taken together, these findings
demonstrate that N-benzylphenethylamines are behaviorally active
and highly potent.

Pretreatment with M100,907 (also known as MDL 100,907 or
volinanserin), a potent 5-HT»4 antagonist that is >200-fold selec-
tive for 5-HT,5 compared with 5-HT,p or 5-HT;¢ sites (Sorensen
et al., 1993; Dekeyne et al., 2002), blocked the HTR to 2C-I, 25I-
NBOMe, and 25I-NBMD. These findings confirm that these phene-
thylamine hallucinogens induce the HTR by activating the 5-HT,a
receptor, consistent with a large body of evidence that the HTR is
mediated by 5-HT4. M100,907 was highly potent in these studies,
blocking the behavioral effects of 2C-I, 25I-NBOMe, and 25I-NBMD
with IDsqg values of ~0.002—0.006 mg/kg (see Fig. 7). These find-
ings are notable because Schreiber has reported that M100,907
blocks the HTR to DOI in rats with an ID5g of 0.005 mg/kg (Schreiber
et al., 1995). Interestingly, slightly higher doses of M100,907
(IDsp = 0.03 mg/kg) are required to prevent the HTR induced by the
hallucinogen 5-methoxy-N,N-dimethyltryptamine in mice (Kehne

M100907 Dose (mg/kg)

Fig. 7. Effect of pretreatment with the 5-HT,4 antagonist M100,907 on the head twitch
response induced by phenethylamines. Mice were pretreated with varying doses of
M100,907 and then treated with 3 mg/kg 2C-I (top panel), 0.3 mg/kg 25I-NBOMe
(middle panel), or 3 mg/kg 25I-NBMD (bottom panel). Data are presented as group
means + SEM for the entire 20-min test sessions. **p < 0.01, significant difference from
2C-1, 251-NBOMe, or 25I-NBMD alone.

et al,, 1996). Although M100,907 does have modest affinity for 5-
HT,c and oq-adrenergic sites (Kehne et al., 1996), it is likely that
the doses of M100,907 that were used in these experiments are
selective for 5-HT,a receptors. Administration of 0.1 mg/kg SC
M100,907 failed to block the hyperlocomotion induced by the 5-
HT,c agonist m-chlorophenylpiperazine in rats (Gleason et al.,
2001), and the discriminative stimulus evoked by the 5-HTyc
agonist Ro 60-0175 is not blocked by doses of M100,907 up to
0.63 mg/kg SC (Dekeyne et al., 1999). In rats trained to discriminate
0.16 mg/kg M100,907 from saline, stimulus generalization did not
occur when a variety of 5-HT,¢ antagonists were tested at doses
known to block 5-HT;c sites (Dekeyne et al., 2002). There is also
evidence that M100,907 produces negligible occupation of central
dq-adrenergic receptors in mice at 1 mg/kg SC (Patel et al., 2001),
and that doses as high as 16 mg/kg fail to block the lethality
induced by the o agonist phenylephrine (Kehne et al., 1996).
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Our experiments confirmed that the phenethylamine halluci-
nogens 2C-I, 25[-NBOMe, and 25I-NBMD induce the HTR in mice.
Although the HTR is widely used as a rodent model of human
hallucinogenic effects, there is some evidence that phenethylamine
hallucinogens may not induce this behavior reliably. Specifically, it
was reported that 2C-I and two other 4-substituted 2,5-
dimethoxyphenethylamines do not evoke head twitches in rats
(Moya et al., 2007). One potential explanation for these discrepant
findings is that mice are more sensitive than rats to the HTR
response induced by certain compounds. For example, 1-(3-
trifluoromethylphenyl)piperazine (TFMPP) induces head twitches
in mice (Yarosh et al., 2007) but not in rats (Arnt and Hyttel, 1989;
Schreiber et al., 1995). Similar species differences have been re-
ported for the D partial agonist SKF 38393 (Schreiber et al., 1995;
Halberstadt and Geyer, 2013). Given the relatively low intrinsic
activity of 2C-I at the 5-HT>4 receptor (Acufia-Castillo et al., 2002;
Parrish et al., 2005; Braden et al., 2006; Moya et al., 2007), it may
not have high enough efficacy to elicit head twitches in rats.
Nevertheless, our findings confirm that 2C-I has sufficient 5-HT,4
efficacy to induce the HTR in mice. In addition to analyzing
aggregate HTR counts, we also assessed the time-course of the
response. The effects of 25I-NBOMe and 25I-NBMD peak during the
first 10 min and then progressively decline, whereas the response
to 2C-1 is relatively flat. The absence of a peak with 2C-I may reflect
its relatively low lipophilicity, potentially slowing its ability to
partition into the CNS. Alternatively, the maximal response to 2C-I
may be limited by its weak 5-HT4 efficacy. It was previously shown
for a series of 5-HT,4 agonists that a significant positive correlation
exists between 5-HTya efficacy and the maximum number of head
twitches observed (Vickers et al., 2001).

We assessed the HTR using a head-mounted magnet and a
magnetometer coil, a technique that can detect the behavior with
extremely high sensitivity and reliability (Halberstadt and Geyer,
2013). Indeed, the dose—response data shown in Figs. 4—7 are
extremely orderly, and we confirmed that there is a robust corre-
lation between HTR counts obtained using the magnetometer coil
vs. video recordings (see Fig. 2C). Analysis of the kinematics of DOI-
induced head twitches using high-speed video recordings revealed
that the response involves repetitive side-to-side head movement,
with the head movement occurring at an average frequency of 77—
98 Hz (Halberstadt and Geyer, 2013). However, in the present ex-
periments the magnetometer recordings indicated that the head
movement frequency during head twitches sometimes occurs at
frequencies below 77 Hz. There was no obvious relationship be-
tween the presence of the lower frequency responses and the in-
terval between surgery and testing, the number of previous test
sessions, the age of the mice, or the drug that was tested. We did
find that certain mice were more likely than others to display lower
frequency head movements, but this did not occur consistently in
all experiments. Compared with our previous studies, we implan-
ted the magnets in this group of mice using a larger amount of resin
to reduce the incidence of magnet loss or damage; nevertheless, it
is unlikely that the lower frequency head twitches are an artifact
due to the weight of the resin because we would expect the fre-
quency to be altered consistently across multiple experiments.
These experiments sampled a large number of head twitches
(>5700) and involved a larger cohort of mice, so it is possible that
the present data may more accurately reflect the normal range of
HTR head movement frequencies that occur in mice. Nevertheless,
it is important to note that our previous studies identified head
twitches based on the presence of sinusoidal waveforms with fre-
quency ranging from 40 Hz to 160 Hz (Halberstadt and Geyer,
2013), which is compatible with the present data.

In conclusion, 25I-NBOMe produces hallucinogen-like behav-
ioral effects in mice and is highly potent. This finding is consistent

with anecdotal reports that 25I-NBOMe induces hallucinogenic
effects at sub-milligram doses and is used recreationally. Several
25I-NBOMe overdoses and fatalities occurred in 2012 and 2013
(Kelly et al., 2012; Rose et al., 2012, 2013; Hill et al., 2013) possibly
as a consequence of the high potency of the drug. Some suppliers
may be attempting to mitigate these risks, as it is apparently now
common for 25[-NBOMe and other N-benzylphenethylamines to be
distributed on blotter paper, similar to LSD (Hill et al., 2013). While
this packaging could potentially reduce the incidence of accidental
overdose, it may facilitate the misrepresentation of 25I-NBOMe as
LSD, which has a higher safety index. 25I-NBOMe is synthesized
from 2C-I by reductive alkylation using a relatively simple one- or
two-step procedure (Heim, 2003). Although 2C-I was scheduled in
the United States in 2012, it is unlikely that this action will reduce
the availability of 25I-NBOMe because 2C-I is not controlled inter-
nationally and continues to be available from numerous suppliers.
Because a simple chemical modification of 2C-I increases its po-
tency by more than an order of magnitude, there is an economic
incentive favoring the distribution of 25I-NBOMe versus 2C-1. These
factors indicate that the availability and use of 25I-NBOMe is likely
to increase in the future.
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