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Drug addiction is a progressive and compulsive disorder, where recurrent craving and relapse to drug-
seeking occur even after long periods of abstinence. A major contributing factor to relapse is drug-
associated cues. Here we review behavioral and pharmacological studies outlining novel methods of
effective and persistent reductions in cue-induced relapse behavior in animal models. We focus on
extinction and reconsolidation of cue-drug associations as the memory processes that are the most likely
targets for interventions. Extinction involves the formation of new inhibitory memories rather than
memory erasure; thus, it should be possible to facilitate the extinction of cue-drug memories to reduce
relapse. We propose that context-dependency of extinction might be altered by mnemonic agents,

Cue thereby enhancing the efficacy of cue-exposure therapy as treatment strategy. In contrast, interfering

Reinstatement
Memory
Neuroadaptation

with memory reconsolidation processes can disrupt the integrity or strength of specific cue-drug
memories. Reconsolidation is argued to be a distinct process that occurs over a brief time period after
memory is reactivated/retrieved - when the memory becomes labile and vulnerable to disruption.

Reconsolidation is thought to be an independent, perhaps opposing, process to extinction and disruption
of reconsolidation has recently been shown to directly affect subsequent cue-drug memory retrieval in
an animal model of relapse. We hypothesize that a combined approach aimed at both enhancing the
consolidation of cue-drug extinction and interfering with the reconsolidation of cue-drug memories will
have a greater potential for persistently inhibiting cue-induced relapse than either treatment alone.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Cue-induced craving often precedes and accompanies compul-
sive drug use and is a major challenge to the successful treatment of
addiction. Drug-associated cues acquire powerful conditioned
reinforcing properties that promote drug-seeking and -taking that
are not easily disrupted. These cues are highly persistent in their
ability to induce relapse and, critically, may not readily extinguish
when these stimuli are no longer predictive of the actions of
addictive drugs. Despite therapeutic interventions and techniques
aimed at behaviorally inducing cue extinction in addicts, these
methods have not yet proven efficacious in promoting abstinence.

Here we review a new focus for the National Institutes on Drug
Abuse (NIDA) research that should aim to identify combinations of
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behavioral and pharmacological methods to effectively and
persistently reduce the ability of drug-associated cues to induce
relapse - largely focusing on cocaine as a prototypical addictive
drug. Pre-clinical models and translational studies should capitalize
not only on the vast and diverse knowledge gained from the past 35
years of NIDA research on drug-induced neuroadaptations and the
neurocircuitry associated with relapse, but also on fundamental
learning and memory processes. The integration of such informa-
tion would obviously be advantageous for the development of
novel treatment strategies to combat addiction. Specifically, we
review recent research that systemic and brain specific manipula-
tions known to alter opposing mnemonic processes — consolidation
of extinction and reconsolidation - can be targeted to reduce the
impact of drug cues in addiction. We also argue that the mecha-
nisms that subserve cue-induced relapse to drug-seeking are
associated with drug-induced adaptations in DA/glutamate-regu-
lated signaling cascades. This may produce resistance to extinction
(associated with altered cortical regulation of drug-associated cues)
but also favor enhancements in reconsolidation of drug cues. As
such, drug-induced neuroadaptations may contribute to the
persistence and impact of drug-associated memories.
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The neurobiological mechanisms of extinction and reconsoli-
dation of natural and drug-related appetitive cues are being iden-
tified in part from the wealth of knowledge established from years
of research on aversive/fear-related Pavlovian processes. With this
arsenal of information we can challenge ourselves to develop
a number of hypothesis-based treatment strategies to identify
novel behavioral and pharmacological methods to effectively and
persistently reduce cue-induced relapse in addiction. We argue
here that a promising approach would be to (1) enhance cue
extinction learning with agents that are known or predicted to have
mnemonic effects, (2) extinguish cues in multiple contexts to
reduce the context-dependency of extinction, (3) alter contextual
processes that depend on the hippocampus, (4) inhibit reconsoli-
dation, and finally, (5) do a combination of the above.

In 1974, with the establishment of NIDA, a “war on drugs” was
waged. In the past 35 years of funded research, NIDA’s program
initiatives and investigators have significantly advanced our
understanding of neurobiological mechanisms and neuro-
behavioral phenomena that underlie addiction. We have learned
that there may be no “magic bullet” to “just say no” to drugs.
Instead, it will “take a village” - social/societal/genetic/psycholog-
ical/neural information - to combat addiction. We now have the
“audacity of hope” - the knowledge and expertise - to find an
effective treatment using a combination of approaches spear-
headed by NIDA's scientific mission. This began with the funda-
mental premise and the acknowledgement that addiction be
considered a brain disease - an idea initiated and promoted by
NIDA’s Directors. Like other diseases, addiction is a chronic and
relapsing disorder that involves complex biological, environmental
and social factors. With this history of NIDA support for research,
we are prepared to approach future investigations into reversing
the destruction that addiction produces. NIDA’s most important
achievement, consequently, has been the use of science to delineate
critical concepts underlying the etiology, pathophysiology and
treatment of drug addiction.

2. Clinical evidence for cue learning in addiction

Drug addiction is a progressive, chronic relapsing disorder,
where craving and relapse to drug-seeking and -taking behavior
persist even after long periods of abstinence. Environmental
conditioned cues previously associated with drugs are major
contributors to relapse. These cues evoke salient and pervasive
memories of the drug experience that induce craving and precipi-
tate relapse to drug-seeking and -taking. Neuroimaging studies in
human addicts reveal that drug-associated cues produce neural
activation in the same mesocorticolimbic circuitry known to
produce the reinforcing properties of addictive drugs, and that the
magnitude of activation of these regions is predictive of craving
(Grant et al., 1996; Childress et al., 1999; Garavan et al., 2000; Kilts
et al,, 2001; Bonson et al., 2002) and the probability of relapse
(Sinha and Li, 2007; Kilts et al., 2001; Maas et al., 1998). Likewise,
dopamine release in the dorsal striatum is enhanced in cocaine
dependent individuals viewing cocaine cues and the increase in
dopamine is positively correlated with self-reported craving
(Volkow et al., 2006). In addition, clinical studies have shown that
discrete cues paired with smoked cocaine or alcohol can elicit
conditioned responses including changes in heart rate, skin
conductance, and reported craving after fairly limited training
(Foltin and Haney, 2000; Field and Duka, 2002). Foltin and Haney
(2000) reported that these conditioned responses are reduced over
several extinction sessions, but it is not known how enduring the
conditioned effects of environmental cues are when repeatedly
paired with drug in a chronic addict. Therefore, treatment strate-
gies that reduce the motivational properties of drug cues have great
potential to reduce craving and relapse in addicts.

3. Cue learning in addiction

Several researchers have proposed that addiction develops due
to aberrant neuroplasticity in the mesocorticolimbic dopaminergic
circuitry that mediates reward-related learning (Kalivas and
O’Brien, 2007; Hyman et al., 2006; Everitt and Robbins, 2005; Jones
and Bonci, 2005; Self, 2004; Kelley, 2004; Di Chiara, 1999; Jentsch
and Taylor, 1999). A primary component of reward-related learning
and the development of addiction are the strong associations that
develop between stimuli in the environment that are predictive of
reward (cues) and the reward itself (e.g., drugs). As learning about
reward-associated stimuli develops such cues gain progressively
greater control over behavior (Jentsch and Taylor, 1999) and this
may be associated with time-dependent changes in dopamine
release in response to drug-associated cues in the nucleus accum-
bens and prefrontal cortex (PFC; Torregrossa and Kalivas, 2008).
Cues associated with drugs of abuse can increase drug self-
administration and precipitate ‘relapse’ in animal models of
addiction (de Wit and Stewart, 1981; Shaham et al., 2003; Epstein
et al., 2006; See, 2002, 2005). Indeed, in these models the moti-
vational properties of drug-paired discrete and contextual cues can
even be augmented over time, or “incubate” (Grimm et al., 2001),
which highlights the necessity to directly target drug-associated
cues as a component of therapeutic interventions.

Several studies have demonstrated that the amygdala is
involved in incentive learning and contributes to the representa-
tion of the incentive value of conditioned stimuli (reviewed in
Everitt et al., 2003; Balleine and Killcross, 2006). At least two
discrete nuclear complexes within the rodent amygdala have been
implicated in these processes, the central nucleus (CeA) and the
basolateral complex (BLA). The CeA is connected with hypotha-
lamic and brainstem regions that are involved in mediating auto-
nomic and consummatory responses to stimuli with incentive
value. Lesions of the CeA block the acquisition of Pavlovian stim-
ulus-reward conditioning and the effects of Pavlovian conditioned
motivational influences on instrumental actions (see Everitt et al.,
1999; Cardinal et al., 2002). Specifically, lesions of the CeA but not
BLA abolish Pavlovian to instrumental transfer (PIT) and Pavlovian
approach (Killcross et al., 1998; Hall et al., 2001; but see Blundell
etal., 2001). Moreover, lesions of the CeA, but not the BLA, block the
potentiation of conditioned reinforcement by psychostimulants
(Burns et al., 1993).

The BLA, however, does regulate other aspects of cue-related
learning. For example, Hatfield et al. (1996) and Whitelaw et al.
(1996) have demonstrated that lesions of the BLA, but not the CeA,
block second-order conditioning and impair reinforcer devaluation.
Lesions of the BLA also reduce the reinforcing properties of estab-
lished conditioned reinforcers (Burns et al., 1993), and prevent cue-
induced reinstatement of cocaine-seeking (Meil and See, 1997).
Damage within the BLA thus produces impairments in reinforcer
valuation and in the ability of conditioned stimuli to affect instru-
mental responding (Killcross et al., 1997; Malkova et al., 1997;
Holland and Gallagher, 1999). These data suggest that the BLA is
involved in the stimulus-reward associations critical for the
representation and transfer of information about the motivational
value of conditioned stimuli to instrumental or motor responses,
presumably via its projections to the ventral striatum and PFC.
Interestingly, lesions of the BLA abolish the outcome-specific
effects of Pavlovian stimuli on instrumental behavior, while lesions
of the CeA disrupt the general motivational properties of reward-
associated cues (Corbit and Balleine, 2005), providing further
information regarding the dissociable contribution of the CeA and
BLA to behavior motivated by reward-associated stimuli, and
increasingly, data suggest that these amygdala subregions make
important and dissociable contributions to cue-drug-motivated
behavior.
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4. Extinction versus reconsolidation

Learning and memory of stimulus-reward associations have
been hypothesized to be composed of several phases that may
involve distinct neurobiological processes. These phases include
acquisition, consolidation, retrieval, reconsolidation of the memory
after retrieval, and extinction, which involves learning of a stim-
ulus-no reward association (Alberini et al., 2006; Bouton, 2004). Of
these, memory extinction and reconsolidation offer the most real-
istic opportunities to influence the strength of a drug-associated cue
memory. After pairing of a cue such as a tone or light with an
unconditioned stimulus such as a footshock or drug, the cue comes
to elicit an array of behavioral and physiological conditioned
responses (e.g., freezing or approach; changes in heart rate; changes
in respiration). With repeated presentations of the non-reinforced
cue, these conditioned responses dissipate or “extinguish”.
Extinction is widely accepted to involve new learning that inhibits
or overrides initial learning rather than forgetting (Bouton, 2004).
Responses to an extinguished cue can re-emerge with the passage
of time (spontaneous recovery), changing contexts (renewal), or
presentation of the unconditioned stimulus (reinstatement). On the
other hand, reconsolidation is the process of restabilizing the
memory trace after it is retrieved or “reactivated”, possibly
strengthening it and returning the memory to long-term storage
(Tronson and Taylor, 2007). While no one has directly proven that
reconsolidation strengthens cue-drug memories, the expression of
conditioned fear is somewhat enhanced after reactivation, and is
further enhanced by PKA activation in the amygdala compared to
non-reactivated controls (Tronson et al., 2006). Spatial memory in
the Morris water maze also is enhanced after memory reactivation
by re-exposure to the context (Flint et al., 2007). Therefore, recon-
solidation of cues may later enhance cue-motivated behavior.

While retrieval of a previously consolidated memory can induce
a period of lability during which the reconsolidation of that
memory can be manipulated, the retrieval of a cue in the absence of
reinforcement can also lead to extinction. Thus, the same experi-
ence (non-reinforced exposure to a learned cue) can result in two
distinct behavioral outcomes: (1) stabilization of the conditioned
response through the process of reconsolidation or (2) reduction in
the conditioned response through the process of extinction. Recent
studies have suggested that brief and/or weak exposures to
a conditioned cue lead to reconsolidation whereas more prolonged
or repeated retrieval events, or weaker conditioning, results in
extinction (Pedreira and Maldonado, 2003; Eisenberg et al., 2003;
Suzuki et al.,, 2004; Power et al., 2006; Tronson et al., 2006).
Therefore, deficits in performance following manipulations at the
time of retrieval could be interpreted either as a blockade of
reconsolidation or a facilitation of extinction. However, when these
same manipulations produce no observable changes in the rate of
extinction with a more prolonged retrieval event, it is more likely
that altered reconsolidation has occurred (Tronson et al., 2006).
Further, demonstrations of memory enhancements following
manipulations at the time of retrieval are less easily explained by an
altered extinction account. Regardless of the psychological mech-
anisms it is important that both short-term and long-term conse-
quences of post-retrieval manipulations be examined. Alterations
in reconsolidation or extinction that produce only transient
mnemonic effects are less likely to be relevant to the very long-
lasting role that drug-associated cues play in craving and relapse.

5. Treatment strategies

Cue-exposure therapy has been tested and used as an adjunct to
pharmacological and cognitive-behavioral therapies in human
addicts (O’Brien et al., 1990) and is based on extinction of drug-
paired cues in a setting other than that where drugs have been

taken (e.g., rehabilitation facility). Unfortunately, extinguishing
these cue memories has not proven efficacious in reducing relapse
in either humans (Conklin and Tiffany, 2002) or rats (Crombag and
Shaham, 2002), illuminating the need for alternative strategies or
extinction ‘supplements’ (behavioral and/or pharmacological). The
lack of effectiveness of extinction therapies to treat addiction is
likely due to the highly context-dependent nature of extinction.
When extinction of the drug-associated cue occurs in the treatment
facility the conditioned responses to the cue (e.g., increased heart
rate; craving) may be reduced, but it is unlikely that these effects
will transfer to the drug-taking environment. In animal models,
extensive extinction training in a non-drug-taking context of both
the instrumental response and either a discriminative stimulus
(SD) or discrete cue (CS+) associated with drug, does not signifi-
cantly reduce renewal of drug-seeking (Kearns and Weiss, 2007;
Crombag and Shaham, 2002; Crombag et al., 2002). Cue exposure in
the drug-taking environment is less practical, but may be more
efficacious than extinction in a rehabilitation facility. There is one
report of cue exposure in an immersive virtual reality environment,
which was more effective in eliciting conditioned responses than
traditional slides or videos, and may therefore be a more effective
way of achieving effective cue extinction within a rehabilitation
setting (Kuntze et al., 2001).

Another strategy for reducing the motivational impact of drug
cues is to disrupt reconsolidation of drug cue memories. Recently,
disruption of fear memory reconsolidation has received much
attention, both in pre-clinical and clinical research, as a means of
treating anxiety disorders such as post-traumatic stress disorder
(PTSD) and phobias (McCleery and Harvey, 2004; Debiec and
LeDoux, 2006; Tronson and Taylor, 2007). Patients with PTSD often
have extreme symptoms of anxiety when exposed to stimuli that
remind them of the traumatic experience. When these stimuli are
presented to patients in the clinical setting to induce fear, the
reconsolidation process can be inhibited by glucocorticoid expo-
sure or by propranolol. Glucocorticoid treated PTSD and phobic
patients have reported reduced severity of fear and anxiety in
response to these stimuli when encountered in the outside envi-
ronment (de Quervain, 2008; de Quervain and Margraf, 2008), and
propranolol-treated subjects have decreased physiological fear
responses when later asked to recall the traumatic event (Brunet
etal., 2008). In the Brunet et al. (2008) study, propranolol was given
after reactivation of the traumatic memory suggesting that recon-
solidation processes were specifically targeted; however, the
glucocorticoids were given prior to and during memory reac-
tivation, making it difficult to interpret the exact mechanism by
which the fear memory was disrupted. Nevertheless, disruption of
reconsolidation of a cue-related memory appears to be a feasible
clinical treatment strategy. However, the mechanisms by which
cue-drug memories are reconsolidated still need to be elucidated
and this treatment strategy remains to be explicitly tested in
human drug addicts. Pharmacological manipulations can be used to
alter the behavioral impact of drug-paired cues by either enhancing
the extinction of these cues (Quirk and Mueller, 2008) or disrupting
the reconsolidation of the cues following their retrieval/‘reac-
tivation’ (Nader et al., 2000). Understanding the neural and
behavioral mechanisms involved in extinction and reconsolidation
of drug-associated cues is likely to have important implications for
the treatment of addiction. Further, a combined approach that
inhibits reconsolidation and enhances extinction of cue-drug
memories could be utilized. The context-specificity of extinction
might allow for extinction to be enhanced in one context while
reconsolidation is disrupted in another context to produce a greater
reduction in the motivational properties of the cues to produce
relapse. However, if disrupting reconsolidation effectively “erases”
the cue-drug memory (which has not been proven), it may not be
necessary to use a combined approach.
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6. Mechanisms of cue extinction

Several studies in the aversive and appetitive conditioning
literatures have identified key processes involved in extinction. Pre-
extinction session manipulations have most commonly been used
but do not distinguish between effects on the acquisition versus the
consolidation of extinction, which is believed to last for several
hours while molecular/cellular processes stabilize the long-term
extinction memory. While pre-extinction manipulations may be
just as or even more beneficial than post-extinction manipulations
due to the enhancement of both acquisition and consolidation of
the extinction memory, the specific memory process involved
cannot be determined. In addition, pre-extinction session infusions
are more likely to result in state-dependent learning effects. In
contrast, post-session manipulations do not interfere with acqui-
sition of extinction, only produce state-dependent learning outside
of the extinction learning context, and can be used to more
precisely investigate consolidation processes that strengthen or
stabilize extinction memories.

There is strong evidence from the elegant work of Quirk and
colleagues that the infralimbic region of the medial PFC is specifi-
cally involved in the consolidation of fear extinction. For example,
high frequency bursting of neurons in infralimbic cortex, requiring
NMDA-mediated glutamatergic neurotransmission and PKA-
signaling, occurs shortly after extinction and predicts subsequent
retrieval of extinction (Burgos-Robles et al.,, 2007). Importantly,
extinction consolidation can be strengthened by either electrical
stimulation of infralimbic cortex (Milad and Quirk, 2002; Vidal-
Gonzalez et al., 2006) or potentiation of AMPA glutamate receptors
within this region (Zushida et al., 2007). There have been very few
studies examining the role of infralimbic PFC on extinction of
appetitive or drug cues, but a report by Koya et al. (in press)
demonstrated that inactivation of the ventral (but not dorsal)
medial PFC reduced cue-induced reinstatement of lever pressing
after 30 days of abstinence from cocaine self-administration, which
could be interpreted as enhanced acquisition of cue extinction
learning. Therefore, the ventral medial PFC may regulate both
aversive and drug-associated extinction memories, though possibly
in different ways. The potential roles of other prefrontal cortical
regions in the acquisition and maintenance of extinction memories
have yet to be determined. The infralimbic cortex likely mediates
extinction of conditioned memories through connections to the
amygdala, which is the known output structure for the expression
of conditioned fear (Muller et al., 1997; Wilensky et al., 2006) and is
required for cue-induced reinstatement of cocaine-seeking
behavior (Meil and See, 1997; McLaughlin and See, 2003). Indeed,
Berretta and colleagues (2005) found that activation of the infra-
limbic cortex resulted in increased expression of Fos protein (an
indicator of increased neuronal activity) in the intercalated neurons
of the amygdala. These results provide a mechanism by which
activity of the infralimbic cortex could increase glutamatergic input
to the intercalated neurons of the amygdala that then send
a GABAergic projection to the CeA, resulting in reduced fear
expression. While this mechanism may not apply to drug cue-
induced behavior, one study has shown that renewal of cocaine-
seeking after extinction in an alternate context is associated with
increased Fos expression in both the infralimbic cortex and the
basolateral amygdala (Hamlin et al., 2008). Therefore, extinction of
both aversive and appetitive memories may involve infralimbic
cortex-mediated inhibition of amygdalar control of behavior.

7. Mechanisms of drug cue extinction
In contrast to the substantial literature on the neurobiological

mechanisms of fear extinction, there are few reports on the
extinction of reward-related memories. Schroeder and Packard

(2003, 2004) found that extinction of an amphetamine conditioned
place preference (CPP) could be enhanced by immediate post-
extinction administration of glucose or the muscarinic acetylcho-
line receptor agonist oxotremorine. The effect was observed when
these compounds were administered systemically or directly into
the basolateral amygdala (BLA). When the same compounds were
administered 2 h after the extinction session, there was no effect,
suggesting a selective enhancement of extinction memory consol-
idation. Likewise, post-session administration of b-cycloserine
(DCS), a partial NMDA agonist, either systemically or in the BLA,
facilitated extinction of a cocaine-CPP (Botreau et al., 2006).

Two recent reports by See and colleagues suggest that similar
amygdala-dependent learning mechanisms may be important for
the extinction of discrete drug-paired cue memories (Fuchs et al.,
2006; Feltenstein and See, 2007). In these paradigms the animals
first self-administered cocaine in the absence of a cue and then
received Pavlovian cue-drug pairings in the absence of instru-
mental responding and the cue’s ability to support responding on
the drug-associated lever was assessed in an extinction test (no
cocaine delivered). Post-test infusions of the sodium channel
blocker tetrodotoxin (TTX) or the NMDA antagonist AP-5 into the
BLA inhibited the expression of extinction on subsequent days of
testing (Fuchs et al., 2006; Feltenstein and See, 2007). While these
studies suggest that modulation of extinction consolidation is
feasible after cue-drug learning, the passive and discrete (single
session) cue-drug pairings, given after repeated self-administration
does not recapitulate the repeated cue-drug pairings and drug-
taking behavior in addicts. Further, since these manipulations of
extinction consolidation were given in the self-administration
context they are not easily applicable to clinical interventions.
Additionally, a study by Koya et al. (in press) suggests that increased
activity of the ventral PFC impairs combined cue and instrumental
extinction on the first day of extinction 1 day following cocaine self-
administration, while inhibiting this region has no effect, but 30
days after cocaine self-administration inhibition of the ventral PFC
reduces responding for the cocaine-paired cue on the first day of
extinction, suggesting dynamic regulation of this region after
chronic cocaine exposure (see also discussion below).

Given the paucity of studies aimed at facilitating extinction of
cue-drug memories, there is a critical need to determine whether
the extinction of responding for a cue associated with self-admin-
istered drugs involves the same neural mechanisms as extinction
for an experimenter-administered drug. It is also important to
determine if facilitation of extinction consolidation using post-
session memory enhancers can inhibit spontaneous recovery after
periods of abstinence or renewal if extinction takes place in
a context other than the self-administration context (e.g., in
arehabilitation facility). To date, studies on facilitation of extinction
memories have primarily focused on manipulations specifically
within contexts/environments where the original memories were
formed. However, extinction of both fear and drug-associated
memories is highly context-specific (Bouton and Bolles, 1979;
Parker et al., 2006; Kearns and Weiss, 2007) - such that extinction
does not generalize to contexts other than that where extinction
occurred. Consequently, extinction memories generated in a treat-
ment setting are unlikely to generalize to other environments (i.e.,
drug-taking contexts) and this likely contributes to the limited
success of extinction-based therapies (Drummond, 2000; Bouton,
2002; Kalivas et al., 2006).

Attempts to enhance the generalization of extinction memory to
other contexts are highly desirable since extinguishing cue-drug
memories in the original drug-associated environment is not
clinically feasible (Kearns and Weiss, 2007). The hippocampus is
involved in contextual modulation of retrieval/expression of
extinction (Corcoran and Maren, 2001, 2004; Hobin et al., 2006),
but it is not yet known if manipulations of hippocampal activity
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during the acquisition of extinction could later reduce the context-
specificity of extinction expression. Alternatively, pharmacological
enhancement of extinction consolidation using systemic or infra-
limbic cortex manipulations may alone increase the context
generalization of cue extinction by increasing the strength of the
extinction memory, thus, producing a greater inhibition of activity
in brain regions that promote cue-motivated behavior. Unfortu-
nately, systemic administration of DCS (the NMDAR partial agonist
known to facilitate extinction) did not produce context general-
ization of extinction for a fear-induced conditioned suppression of
lever pressing (Woods and Bouton, 2006). However, no one has
examined the ability of pharmacological or brain specific manipu-
lations to enhance the context generalization of extinction for
a drug-paired cue. Finally, generalization of cue extinction may be
facilitated by conducting extinction in multiple, distinct contexts as
has been demonstrated for alcohol associated cues in rats
(Chaudhri et al, 2008) and for fear responses in humans
(Vansteenwegen et al., 2007). Manipulations shown to enhance the
context generalization of cue extinction would be of tremendous
value in augmenting extinction therapies, and we believe that more
basic and clinical studies should address this issue.

Finally, it is possible that chronic exposure to drugs of abuse
results in neuroplasticity in the PFC, BLA, and/or other brain regions
that make drug-associated cues resistant to extinction. Notably,
Weiss and colleagues (2001) reported that renewal of cocaine-
seeking behavior induced by a cocaine-paired cue did not diminish
even after 34 days of intermittent, repeated testing when extinc-
tion would be expected to occur. Therefore, the persistence of
manipulations that enhance extinction of drug cue memories to
promote abstinence should also be determined.

8. Mechanisms of instrumental extinction

There have been a few studies examining the mechanisms of
extinction of the instrumental response that, prior to extinction,
produced an infusion of drug. Extinction of the instrumental
response required to obtain drug is different from extinction of the
drug-paired cue memory, but may share similar neurobiological
mechanisms and may be important to understand for the
prevention of relapse. Similar to studies on the expression of
extinction for conditioned fear, inhibition of infralimbic PFC rein-
states responding on the active lever for cocaine after instrumental
extinction and during a test of spontaneous recovery (Peters et al.,
2008a,b), suggesting that this brain region is important for retrieval
of learned extinction memories. However, inactivation of the
infralimbic PFC reduces instrumental responding for a cocaine-
paired cue on day 1 of extinction after extended abstinence (Koya
et al., in press). This apparent opposite result from the Peters et al.
(2008a,b) studies may be due to the presence of discrete cues
during the extinction learning in the Koya et al. study, or because
the infralimbic manipulation was conducted prior to the initial
acquisition of extinction and not prior to a test of the expression of
previously learned extinction as was done in the Peters et al.
studies. Therefore, the infralimbic PFC may play a more compli-
cated role in drug-seeking behavior depending on the time elapsed
since the last cocaine exposure and during the acquisition versus
expression of extinction. In addition, two recent studies suggest
that inactivation of the nucleus accumbens shell increases instru-
mental responding after extinction (Fuchs et al., in press; Peters
et al., 2008a), and the Fuchs et al. study suggests that inactivation of
the nucleus accumbens core may have the same effect. Moreover,
simultaneous unilateral inactivation of both the infralimbic PFC
and the nucleus accumbens shell reinstates instrumental
responding, suggesting that these two brain regions act as part of
a neural circuit necessary for the expression of instrumental
extinction (Peters et al., 2008b).

Notably, extinction training has been reported to reverse
cocaine-induced decreases in the expression of the GluR1 and
GIuR2/3 subunits of AMPA glutamate receptors in the nucleus
accumbens shell. In addition, viral over-expression of GluR1 and
GluR2 in the nucleus accumbens enhances extinction of cocaine
self-administration (Sutton et al., 2003; Self and Choi, 2004).
However, over-expression of these AMPA receptor subunits did not
alter extinction of responding on a sucrose-paired lever, suggesting
that cocaine exposure may produce neuroadaptations that result in
altered extinction learning circuitry (Sutton et al., 2003). Moreover,
N-acetyl cysteine has been reported to modulate glutamatergic
neurotransmission in the nucleus accumbens and to reduce
extinction responding on a lever previously paired with heroin self-
administration (Zhou and Kalivas, 2008). Therefore, an increased
understanding of how drugs of abuse alter learning and memory
processes for reward-associated stimuli will be advantageous for
determining mechanisms to facilitate extinction for the treatment
of addiction.

9. Mechanisms of drug cue reconsolidation

While understanding the mnemonic mechanisms of extinction
has been an area of intensive neuropsychiatric research, within the
past several years there has been an increased focus on investiga-
tions of amygdala-dependent reconsolidation processes (Tronson
and Taylor, 2007). Studies have yielded important findings showing
that reconsolidation, like consolidation, depends upon de novo
protein synthesis (e.g., Nader et al., 2000; Dudai, 2004; Alberini,
2005) and several other parallel signaling mechanisms (Kida et al.,
2002; Bozon et al., 2003). Likewise, we have recently shown that
reconsolidation of fear memory requires amygdalar PKA activation
and, interestingly, that a fear memory can be facilitated by direct
activation of PKA immediately after the fear retrieval event (Tron-
son et al.,, 2006).

The fear reconsolidation literature suggests that disruption of
reconsolidation of cue-drug memories might be a powerful method
for intervention in addiction. In addition, reconsolidation processes
are context-independent, likely increasing the applicability and
utility of manipulations of reconsolidation processes to the clinical
setting. Several recently published studies have demonstrated
a role for reconsolidation in the maintenance of drug-paired cue
memories. In a series of elegant studies, Lee and Everitt demon-
strated that after extended cocaine self-administration, cue-
induced reinstatement of cocaine-seeking, cue-maintained
cocaine-seeking under a second-order schedule of reinforcement,
and the acquisition of a new response with drug-associated
conditioned reinforcers (e.g., Lee et al., 2005, 2006) could all be
disrupted by knockdown of the immediate-early gene Zif268 at the
time of cue retrieval. These novel, and pioneering, studies suggest
that amygdala-dependent cue-drug memories can be disrupted by
a single reactivation-dependent infusion of Zif268 antisense oligo-
deoxynucleotides and that the disruption is long-lasting (27 days).
The expression of Zif268 is also known to be up-regulated in the
BLA following re-exposure to discrete cues associated with either
footshock (Hall et al., 2001a) or self-administered cocaine (Thomas
et al, 2003). While these studies identify a role for genes regulated
by Zif268 in cue-drug memory reconsolidation (Lee et al., 2004)
little is known with regards to other potential molecular and
behavioral mechanisms under which persistent modulation of drug
memories can be achieved. However, a recent report suggests that
systemic propanolol could disrupt the ability of both cocaine- and
food-paired cues to act as conditioned reinforcers in rats (Milton
et al,, 2008). In addition, propanolol has been shown to block
reconsolidation of both cocaine and morphine CPP (Bernardi et al.,
2006; Robinson and Franklin, 2007). Together these studies suggest
that adrenergic signaling is important for reconsolidation of
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appetitive memories, much like that which has been shown for fear
reconsolidation (Debiec and LeDoux, 2006). Importantly, we have
recently shown that, similar to fear reconsolidation, drug-paired
cue reconsolidation depends upon amygdalar PKA activity
following retrieval (Sanchez et al., 2008). This observation is
particularly intriguing given that the persistent up-regulation of
PKA activity following chronic cocaine exposure (see below) may
result in a progressive strengthening of cue-drug memories
through such memory reconsolidation processes. One possible
caveat of manipulations of reconsolidation processes for the
treatment of addiction is the possibility that inhibiting reconsoli-
dation could effectively result in memory erasure. While studies to
date using conditioned fear and cue-drug associations have not
shown a complete loss of behavior induced by fear or drug-asso-
ciated cues after manipulating reconsolidation, it is possible that
a “maximal” inhibition of reconsolidation could ultimately result in
memory erasure. Indeed, inhibition of the protein kinase C (PKC)
isoform PKMzeta has been shown to persistently reduce the
expression of a long-term memory (Shema et al., 2007). While
a complete erasure of memory may not be ideal in the clinical
treatment setting, manipulations that profoundly weaken cue-drug
associations could be efficacious in reducing craving and relapse
induced by drug-associated cues.

In addition, several other signaling molecules have been impli-
cated in the reconsolidation of memories of contextual drug asso-
ciations using the CPP paradigm. Matrix metalloproteinases (Brown
et al.,, 2007), muscarinic acetylcholine and NMDA receptors (Kelley
et al., 2007; Sadler et al., 2007; Sakurai et al., 2007; Zhai et al,,
2008), neuronal nitric oxide synthase (Itzhak and Anderson, 2007),
and calcium/calmodulin-dependent protein kinase II (CaMKII;
Sakurai et al., 2007) have all been shown to modulate the recon-
solidation of CPP memories as inhibition of all of these proteins
reduces the expression of CPP. In some instances, the drug of abuse
must be administered when the animal is placed into the condi-
tioned context to see an effect of a particular protein on reconso-
lidation processes (e.g., matrix metalloproteinases), suggesting that
reconsolidation of contextual associations with a drug may involve
distinct processes depending on whether the individual is under
the influence of that drug.

The majority of research on drug memory reconsolidation
processes has been conducted using CPP (as described above), and
several important plasticity-regulated molecules have been iden-
tified that regulate drug-cue/context reconsolidation processes. For
example, cocaine-CPP has been shown to activate extracellular
regulated protein kinase (ERK) activity in the nucleus accumbens
core, and inhibition of ERK in the core after reactivation inhibits
subsequent expression of CPP for up to 14 days (Miller and
Marshall, 2005). Likewise, systemic inhibition of ERK or protein
synthesis after cocaine or morphine CPP reactivation is sufficient to
reduce subsequent expression of CPP (Valjent et al., 2006). While
CPP is a useful paradigm to study mechanisms of cocaine rein-
forcement and have highlighted a role for reconsolidation in the
maintenance of appetitive memories, the relatively short (and
passive) context/cue associations do not mimic the habitual nature
of drug-seeking and -taking behaviors that, arguably, can be ach-
ieved only with drug self-administration procedures. Therefore, we
believe that repeated drug self-administration procedures are best
suited to study behavioral and pharmacological therapies aimed at
reducing the impact of environmental cues on drug relapse.

10. Neuroadaptations in PKA/ERK/CREB associated with drug
exposure and reward-associated learning

Drug-paired cue memories may be especially pervasive, and
potentially resistant to extinction, due to pathological neurobio-
logical changes resulting from long-term exposure to the drug

itself. We have speculated that persistent, drug-induced neuro-
adaptations may predispose these cue memories to undergo
reconsolidation, as opposed to extinction, following retrieval. This
may further exacerbate the development and persistence of
maladaptive drug-associated memories and their ability to
precipitate craving and drug-taking (Tronson and Taylor, 2007).
Indeed, many of the neuroadaptive changes that occur within the
cortico-limbic-striatal network are essential for the acquisition and
expression of cue- or context-associated memories, including PKA,
ERK, CREB and BDNF.

Among the strongest evidence for neurobiological alterations in
systems associated with reward-related learning and memory
comes from a series of reports showing that chronic psychosti-
mulant exposure increases activity of the dopamine-regulated
cAMP/protein kinase A (PKA) pathway in cortico-limbic-striatal
circuits (Nestler, 2004). Although these neuroadaptations and their
consequences have been best characterized in striatal regions such
as the nucleus accumbens (Terwilliger et al., 1991; Self et al., 1998;
Sutton et al., 2000; Beninger et al., 2003; Lu et al., 2003; Lynch and
Taylor, 2005; Mattson et al., 2005; Lynch et al., 2007), similar
alterations occur within the amygdala (Terwilliger et al., 1991;
Pollandt et al., 2006). We have demonstrated that inhibition of
amygdala PKA activity impairs the acquisition of appetitive stim-
ulus-reward learning (Jentsch et al., 2002) and reconsolidation of
a cocaine-associated cue (Sanchez et al., 2008). Moreover, stimu-
lation of PKA within the amygdala facilitates stimulus-reward
learning and, indeed, mimics the facilitation of stimulus-reward
learning reported after prior chronic cocaine, amphetamine or
nicotine exposure in rodents (Harmer and Phillips, 1998; Taylor and
Jentsch, 2001; Olausson et al., 2003). Additionally, stimulation of
PKA in the BLA augments the reconsolidation of a fear-associated
stimulus (Tronson et al., 2006), and also using aversive condi-
tioning, blockade of PKA activity in the amygdala results in
enhancements in extinction learning (Koh and Bernstein, 2003).
Together, these observations indicate that enhanced amygdalar
PKA activity following chronic drug exposure can augment the
formation and strength of stimulus-reward associations such as
those formed between cues and the reinforcing effects of drugs.
This could occur by both consolidation and reconsolidation mech-
anisms and, possibly, reductions in extinction. Such information
now needs to be confirmed in drug self-administration paradigms
and should be integrated into efforts to develop behavioral thera-
pies to combat cue-induced craving and relapse in human addicts.

The cellular effects of cocaine-induced enhancement of PKA
activity are likely to involve an increased activity of ERK and the
downstream transcription factor CREB. Accordingly, chronic
cocaine exposure has been repeatedly shown to increase CREB
phosphorylation or activity (Konradi et al., 1994; Shaw-Lutchman
et al,, 2003; Mattson et al., 2005; Brenhouse et al., 2007). However,
Mattson and colleagues (2005) determined that the cocaine-
induced increase in CREB phosphorylation in the nucleus accum-
bens is mediated through augmented activity of ERK rather than
PKA, as the increase was blocked by an ERK inhibitor, but not the
PKA antagonist Rp-cAMPS. Whether the same signaling pathway is
also responsible for the increased CREB phosphorylation observed
in the amygdala remains to be determined. However, it is clear that
the activation of CREB in the nucleus accumbens and amygdala may
have opposing effects on drug-motivated behavior as accumbens
CREB has repeatedly been found to reduce behavior and learning
associated with psychostimulant exposure (Carlezon et al., 1998;
Walters and Blendy, 2001). CREB is, however, required for the
rewarding properties of nicotine (Walters et al., 2005), suggesting
an important role of this transcription in other brain regions such as
amygdala.

Both ERK and CREB-regulated gene transcription is essential for
virtually all forms of memory consolidation (Kida et al., 2002; Lonze
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and Ginty, 2002; Sweatt, 2004; Carlezon et al., 2005; Josselyn and
Nguyen, 2005), including amygdala-dependent forms of memory
(Lamprecht et al., 1997; Schafe et al., 2000; Thiels and Klann, 2001;
Josselyn et al., 2001, 2004; Jasnow et al., 2005; Paul et al., 2007).
Even short-term drug-induced increases in PKA/ERK signaling
events could contribute to the ability of stimuli to acquire enhanced
conditioned reinforcing properties and altered extinction learning.
The role for ERK and CREB in reward-related learning and condi-
tioned reinforcement remains to be precisely defined. This work is
currently underway, and has initially been focused on the nucleus
accumbens. These studies have demonstrated that ERK activity in
the nucleus accumbens is required for the conditioned reinforcing
effects of food-associated stimuli in drug-naive animals (Shiflett
et al, 2008) and is also sufficient to block reconsolidation of
a cocaine-associated memory in the CPP model (Miller and
Marshall, 2005). Furthermore, nucleus accumbens infusion of
BDNF, a growth factor known to activate ERK/CREB through stim-
ulation of TrkB receptors, potentiates responding for a conditioned
reinforcer, and this effect is augmented by cocaine administration
(Horger et al., 1999). Few studies have, however, identified a direct
link between persistent drug-induced neuroadaptive changes and
altered processing of reward-related stimuli. One exception is the
association between a time-dependent increase in the reinforcing
effects of cocaine cues (i.e., incubation) and increases in ERK
activity in the CeA and an increase in BDNF within mesolimbic
dopamine areas (Grimm et al., 2003; Lu et al., 2005a,b). In these
ways, drug-induced increases in PKA/ERK/CREB/BDNF activity
within the amygdala and associated circuitry could directly
contribute to the fundamental aspects of addiction involving
behaviors maintained by drug-associated cues and incentive
aspects of motivation (Jentsch and Taylor, 1999).

11. Summary

In conclusion, NIDA researchers have identified an array of
drug-induced neuroadaptations that may underlie changes in
learning and memory processes that result in enhanced control of
behavior by reward-associated stimuli. Given the ability of cues
to elicit craving and relapse after long periods of abstinence it is
critical to identify treatments that can reduce the motivational
properties of drug-associated cues. To date, there has been
interest in manipulations that block initial acquisition or extinc-
tion of drug-paired cue memories, yet few studies have attemp-
ted to facilitate extinction and/or disrupt reconsolidation. Here,
with the support of current literature, we have proposed that
a combined approach involving both enhanced consolidation of
extinction and disrupted reconsolidation of drug-paired cue
memories could be used as a novel and potentially powerful
treatment strategy to reduce cue-induced relapse. Manipulations
with mnemonic agents given together with non-reinforced cue-
exposure therapies may be used to selectively alter these
processes. We have proposed that facilitated extinction of
cocaine-associated cues can be achieved with systemic pharma-
cological manipulations or by behavioral therapies aimed at
increasing the contextual generalization of extinction memories.
A number of currently used pharmacological agents that may be
used to reduce the strength of drug cue memories have been
identified, including the systemic (e.g., MKS801, propanolol) or
amygdalar (e.g., PKA inhibitors) manipulations known to disrupt
memory reconsolidation of drug cues. We found that amygdala
infusions of PKA inhibitors after reactivation of cocaine-paired
cues can reduce cue reinstatement and conditioned reinforce-
ment (Sanchez et al., 2008), consistent with previous reports that
cocaine-seeking behavior can be reduced by disrupting reconso-
lidation of cue-drug memories. Importantly, our disruption of
reconsolidation had immediate effects and can be given in an

environment other than the drug self-administration context —
features that are highly advantageous from a treatment
perspective. The impact and persistence of these manipulations
on newly acquired or older cue memories are being investigated
as are the potential for reducing the context-dependency of cue
extinction. We have had some preliminary success (Torregrossa
et al, 2008). In addition, a combined approach to enhance
consolidation of extinction and disrupt reconsolidation to reduce
the motivational impact of cocaine-associated stimuli on behavior
might be the most advantageous and clinically applicable strategy
to achieve a robust and persistent suppression of relapse
behaviors. NIDA funded research clearly can, and will, identify
precise neurobiological mechanisms involved in drug-paired cue
memories that are relevant to relapse in order to develop new
behavioral and pharmacological strategies amenable for clinical
use.

12. Where do we go from here?

The neuroadaptations induced by drug exposures reviewed
above might also be viewed as targets that can be exploited to
promote abstinence, rather than the consequence of an addict
succumbing to relapse. Much recent research has focused on the
transition to addiction, both in behavioral and neurobiological
terms. Pre-existing propensities towards impulsive behavior and/or
poor inhibitory (self) control may be required for the shift from
casual to compulsive, chronically relapsing drug-seeking and -
taking behavior and must be considered a critical avenue for future
research on addiction (see recent report by Belin et al., 2008).
Nonetheless, it is known that drugs also can inflict devastating
alterations in adaptive behavior dependent on prefrontal cortical
circuits that normally serve to regulate limbic-striatal functions.
The hypothesized conversion from impulsive to compulsive (Everitt
and Robbins, 2005; Jentsch and Taylor, 1999) behavior can be
exploited in reverse. Indeed, might extinction processes be more
resistant and/or context-dependent in people with predisposing
hypofunction of prefrontal cortical circuits mediating inhibitory
control? These factors might be associated with sensation-seeking
and polymorphisms in genes regulating dopaminergic function
(such as COMT). To date, few studies have examined the role for
prefrontal subregions in the regulation of cue-associated memo-
ries. Could enhancements in reconsolidation of drug-paired cues
also be more pervasive after drug exposures due to a shift in the
balance between prefrontal executive control and subcortical
stimulus-driven behavior? Are the strong and persistent drug-
associated memories that contribute to the phenomenon of drug
“incubation”, which involve glutamatergic AMPA receptor traf-
ficking (Conrad et al., 2008), be dependent on enhanced reconso-
lidation and/or reduced extinction? Finally, as in other fields, we
should look at a role for resiliency rather than just vulnerability
factors in the balance between extinction and reconsolidation
processes. A fundamental paradigm shift would therefore be to
focus, as we have argued, on behavioral and pharmacological
methods that could enhance prefrontal control processes. In other
words, is the transition to addiction actually constrained or pre-
vented by flexible prefrontal executive control processes. With the
essential behavioral and neurobiological advances of the past 35
years sponsored by NIDA'’s research program, leadership, portfolio
and new investigators we are prepared to continue the battle
against addiction.
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