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Fragile X mental retardation protein (FMRP) is highly enriched in neurons and binds to approximately 4%
of mRNAs in mammalian brain. Its loss is a hallmark of fragile X syndrome (FXS), the most common form
of mental retardation. In this review we discuss the mutation in the fragile X mental retardation-1 gene
(FMR1), that leads to FXS, the role FMRP plays in neuronal cells, experiments from our own laboratory
that demonstrate reductions of FMRP in additional psychiatric disorders (autism, schizophrenia, bipolar
disorder, and major depressive disorder), and potential therapies to ameliorate the loss of FMRP.

This article is part of a Special Issue entitled ‘Trends in Neuropharmacology: InMemory of Erminio Costa’.
� 2010 Elsevier Ltd. All rights reserved.
1. Fragile X syndrome and the fragile X mental
retardation gene

Fragile X syndrome (FXS), is the most common inherited form of
mental retardation which affects approximately 1:4500 males and
1:9000 females (Huber, 2006). Subjects with FXS display learning
difficulties, delayed language acquisition, impairment of fine motor
skills, and behavioral deficits reminiscent of autism including
repetitive behavior, decreased attention, and poor eye contact
(Hagerman, 1996). Seizures are another common feature of FXS,
affecting approximately 20% of patients (Partington, 1984). More
than 80% of males with FXS also display macroorchidism (Bardoni
et al., 2001). All cases of FXS are the result of an abnormality of
the fragile X mental retardation-1 gene.

The fragile X mental retardation-1 (FMR1) gene is located to the
X chromosome and mutations in this gene are almost entirely
responsible for the development of FXS. The gene was first identi-
fied in 1991 (Verkerk et al., 1991). FXS is caused by an expansion of
a CGG repeat in the 50 untranslated portion of the gene. In the
normal form of the gene there are anywhere from 5 to 55 CGG
repeats (Fu et al.,1991). Individualswith between 56 and 200 repeat
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premutations of the gene, which lack methylation, do not display
obvious clinical symptoms of FXS but are found in FXS families
(Bardoni et al., 2001). However, in individualswith the fullmutation
of over 200 repeats, there is extensive methylation, including the
CpG islands in the gene’s promoter region, resulting in transcrip-
tional silencing of the gene (Pieretti et al., 1991). Expansion from
premutation to the full mutation occurs only during maternal
transmission (Oostra and Willemsen, 2009). These individuals do
not produce the gene product, fragile X mental retardation protein
(FMRP) and display the clinical symptoms of FXS.

Carriers of the premutation are at risk for developing a separate
disorder called Fragile X-associated tremor/ataxia syndrome
(FXTAS). FXTAS is a progressive neurodegenerative disorder char-
acterized by action tremor and ataxia. Advanced or severe cases
also display cognitive decline (Hagerman and Hagerman, 2007).
More than one third of premutation carriers over age 50 display
symptoms of FXTAS, and by age 70 more than 50% of male carriers
show FXTAS (Jacquemont et al., 2004).

2. Fragile X mental retardation protein

FMRP is an RNA binding protein that is highly expressed in
neurons (Devys et al., 1993) and glial cells (Pacey and Doering, 2007)
and functions primarily as a regulator of translation. FMRP contains
both nuclear localization and export domains allowing it to move
between the nucleus and the cytoplasm (Eberhart et al., 1996; Sittler
et al., 1996). However, in neurons, the vast majority of FMRP is
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Fig. 1. Reduction of FMRP is subjects with autism (A), and subjects with bipolar
disorder, major depression, and schizophrenia (B) vs. controls. A: Expression of FMRP,
b-actin, and neuronal specific enolase (NSE) in cerebellar vermis from subjects with
autism (A) and control subjects (C). B: Expression of FMRP and b-actin in lateral
cerebellum of subjects with bipolar disorder, major depression, and schizophrenia. Part
A reprinted from Anatomical Record (In press, 2011), Fatemi, S.H., Folsom, T.D.,
Kneeland, R.E., Liesch, S.B., Metabotropic glutamate receptor 5 upregulation in children
with autism is associated with underexpression of both Fragile X mental retardation
protein and GABAA receptor beta 3 in adults with autism, Figs. 1 and 2 Copyright
(2010), with permission from John Wiley and Sons. Part B reprinted from Schizo-
phrenia Research, 124(1e3):246e247, Fatemi, S.H., Kneeland, R.E., Liesch, S.B., Folsom,
T.D., Fragile X mental retardation protein levels are decreased in major psychiatric
disorders, page 247, Fig. 1, Copyright (2010), with permission from Elsevier.
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localized to the cytoplasm with primary sublocalization to the
dendrites, spines, and soma (Bakker et al., 2000; Weiler et al., 1997).
FMRP associates, in an mRNA dependent manner, with large poly-
ribosome complexes (Ceman et al.,1999; Feng et al.,1997;Willemsen
et al.,1996) and smallermRNA ribonucleoprotein complexes (mRNP),
and dendritic “RNA granules” which are complexes of ribosomes,
RNA binding proteins, and RNAs. The RNA granules travel on
microtubules to the dendrites and are believed to be translationally
arrested (Antar et al., 2005; Kanai et al., 2004). Antar et al. (2004)
demonstrated that mGluR5 activation increased the presence of
FMRP to dendrites of cultured hippocampal neurons, and this
increasewas not due to increased synthesis ofmRNA. A further study
(Antar et al., 2005) showed that FMRP-associated RNA granules also
increased in the dendrites in response to glutamatergic signaling and
that this increase was reduced if microtubule dynamics were
disrupted.

FMRP has been shown to bind approximately 4% of mRNA
expressed in mammalian brain including its own message (Bassell
and Warren, 2008). Specific mRNA targets of FMRP or other
components of the RNP include myelin basic protein (MBP);
microtubule-associated protein 1B (MAP1B), calcium/calmodulin
protein kinase II alpha (CAMK2A), activity-regulated cytoskeletal-
associated protein (ARC), ras related C3 botulinum toxin substrate 1
(RAC1), AMAP receptor subunits GluR1 and GluR2, and SAP90/PSD-
95-associated protein 4 (SAPAP4) (Brown et al., 1998,2000, 2001;
Castets et al., 2005; Hou et al., 2006; Muddashetty et al., 2007;
Zalfa et al., 2003). At the dendrites, FMRP may have a primary
function as a transcriptional repressor. In the dendrites of Fmr1
knockout (KO) mice, there is increased protein synthesis for
a number of proteins including PSD-95, Arc, and GluR1 (Hou et al.,
2006; Muddashetty et al., 2007; Zalfa et al., 2007).

Microarray experiments also have identified genes that display
altered expression in the absence of FMRP. In a study using lym-
phoblastoid cell lines from males with Fragile X syndrome there
were 90 genes that showed significantly altered expression of at
least 1.5 fold (Bittel et al., 2007). Quantitative real time polymerase
chain reaction (qRT-PCR) confirmed altered expression of a number
of genes including MAP1B, gamma-aminobutyric acid receptor
subunit delta (GABRd), and unc-13 homolog B (UNC13B) (Bittel et al.,
2007). UNC13B is a presynaptic protein that interactswith syntaxin 1
and 2 to promote priming of synaptic vesicles (Betz et al., 1997;
Richmond et al., 2001). MAP1B codes for a precursor protein that
undergoes proteolytic cleavage to form the MAP1B heavy chain and
L1 light chains (Hammarback et al., 1991). As microtubule assembly
is an important step in neurogenesis, impairment of MAP1B
expression may affect normal brain development and neuronal
plasticity. The GABRd subunit, combines with other GABAA receptor
subunits to form a ligand-gated chloride channel (Windpassinger
et al., 2002). Interestingly, GABRd mRNA has also been shown to
be downregulated in hippocampus and neocortex of Fmr1 KO mice
(Gantois et al., 2006). Other GABAA receptor subunits have been
shown to display reduced expression in animal models of FXS
including GABRa1, GABRa4, GABRb1, GABRb2, GABRg1, and GABRg2
(D’Hulst et al., 2006; El Idrissi et al., 2005). As GABA is the main
inhibitory neurotransmitter in brain, disruption of GABA signaling
could possibly explain seizures that are often comorbid with FXS.

3. FMRP is reduced in brains of subjects with autism

Aspreviouslymentioned, there are behavioral deficits in common
between subjectswith autismand subjectswith FXS.Moreover, up to
30% of subjects with FXS are comorbid for autism while 2e3% of
subjects with autism display comorbid FXS (Kau et al., 2004;
Hagerman et al., 2005). Our laboratory was interested in investi-
gating whether subjects with autism also displayed reductions in
FMRP. We examined FMRP protein expression in two brain regions:
cerebellar vermis and superior frontal cortex [Brodmann’s Area 9
(BA9)], two regions that show extensive pathology in subjects with
autism (Bauman and Kemper, 1994,2005). For all experiments, FMRP
was normalized against both neuronal specific enolase (NSE) and b-
actin in order to ensure that the observed changes were specific for
FMRP. In cerebellar vermis of adult subjects with autism, there was
a significant reduction in levels of FMRP when compared with
matched controls (Fig. 1A; Fatemi et al., in press). In contrast there
was no significant difference in FMRP levels in vermis between
children with autism and matched child controls (Fig. 1A; Fatemi
et al., in press). In BA9 of adults, there was also a significant reduc-
tion in FMRP protein expression (Fatemi, unpublished observations).
Aswith cerebellar vermis, therewasno change in FMRPexpression in
BA9 of children with autism (Fatemi, unpublished results).

In addition to FMRP, we also investigated protein levels of
metabotropic glutamate receptor 5 (mGluR5) and gamma-amino-
butyric acid (GABA) A receptor, beta 3 (GABRb3) in both vermis and
BA9. Activation of group 1 metabotropic glutamate receptors
(includingmGluR5) result in increased synthesis of synaptic proteins
(Weiler andGreenough,1993). In the absence of FMRP, processes that
depend upon protein synthesis such as epileptiform discharges
(Chuang et al., 2005) and improper regulation of long term depres-
sion (Hou et al., 2006) are enhanced, suggesting that protein
synthesis resulting frommGluR-stimulation is inhibited by FMRP. In
animal models of FXS, inhibitors of mGluR5 have been shown to
rescue several FXSphenotypes (deVrij et al., 2008; Yan et al., 2005) as
does reduction in mGluR5 expression (Dölen et al., 2007). However,
expression of mGluR5 does not appear to be altered in Fmr1 KOmice
(Price et al., 2007; Zhang and Alger, 2010). A recent study found that
there was no change in mGluR1, mGluR5, or endocannabinoid
receptor expression in hippocampi of Fmr1 KOmicewhen compared
with wild type (Zhang and Alger, 2010). Price et al. (2007) also found



Fig. 2. The effects of reduced FMRP in major mental disorders. Evidence from animal
studies suggests that a reduction in FMRP leads to a reduction in a number of GABAA

receptor subunits. This reduction could potentially lead to altered GABAergic trans-
mission and GABA/glutamate balance in the brain potentially explaining increased
seizure and cognitive disturbances of subjects with FXS and other psychiatric disor-
ders. FMRP normally acts as an inhibitor of protein synthesis resulting from mGluR5
activation. In the absence of FMRP there is increased protein synthesis. The increased
protein synthesis results in increased internalization of AMPA receptors ultimately
leading to long term depression. Moreover, increased protein synthesis may be
responsible for altered morphology of dendrites, epileptiform activity, and lack of
synaptic pruning in autism (A) or altered GABA transmission and subsequent deficits in
cognition in schizophrenia, bipolar disorder and major depression (B).
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that in spinal cord of Fmr1 KO mice there was no difference in
mGluR5 expression compared with wild type. These studies suggest
that mGluR5 activation may be independent of FMRP action, at least
in Fmr1 KO mice.

GABAA receptors are also known to be targets of FMRP as animal
models for FXS have shown reduction in multiple GABAA receptor
subunits (Fig. 2; D’Hulst et al., 2006; El Idrissi et al., 2005; Gantois
et al., 2006). mGluR5 was measured as a dimer (224 kDa) and total
protein (dimer plus 112 kDa monomer). In vermis of children with
autism there was a significant increase in mGluR5 dimer and total
mGluR5 proteinwhen compared with healthy controls (Fatemi et al.,
in press). Similarly, in BA9, we also observed significant increases in
mGluR5 dimer and total mGluR5 in children with autism (Fatemi,
unpublished results). Interestingly, in vermis of childrenwith autism
there was an increase in the ratio of dimerized mGluR5 to total
mGluR5 (Fatemi et al., in press) There were no significant differences
inmGluR5protein inBA9andvermis of adultswith autismvs. control
subjects. Finally, in vermis, but not BA9, we observed a significant
reduction in protein for GABRb3 when compared with controls
(Fatemi et al., in press). These results persuaded us to look for
potential involvement of FMRP in other psychiatric disorders. Thus,
we pursued measuring levels of FMRP in three other disorders:
schizophrenia, bipolar disorder, and major depressive disorder.
4. FMRP is reduced in lateral cerebellum in subjects with
schizophrenia and mood disorders

Studies examining the FMR1 gene and a possible association
with schizophrenia have found that mutations in the FMR1 gene do
not seem to confer a greater risk for the development of schizo-
phrenia (Ashworth et al., 1996; Jnsson et al., 1995). However, a small
number of case reports have identified individuals who display
psychosis also have FMR1 mutations (Ashworth et al., 1996; Jnsson
et al., 1995; Khin et al., 1998). Thus far, there have been no findings
showing an association between FMR1 and either bipolar disorder
or major depressive disorder (MDD).

Our laboratory studied protein levels of FMRP in lateral cerebella
of subjects with schizophrenia, bipolar disorder, and MDD, and
healthy controls from the Stanley Neuropathology Consortium. As
with our studies with subjects with autism, all FMRP measure-
ments were normalized against b-actin. Analysis of variance
(ANOVA) showed a significant difference between the four means
(Fatemi et al., 2010). Individual comparisons were subsequently
made and we observed significant reductions in FMRP in subjects
with schizophrenia, bipolar disorder, and MDD when compared
with controls (Fig. 1B; Fatemi et al., 2010). These changes were
specific for FMRP as there were no significant differences in
expression of b-actin (Fig. 1B). Moreover, analysis of confounding
variables found that none of them had an impact on FMRP
expression (Fatemi et al., 2010).

5. Implications for involvement of FMRP in
psychiatric disease

Our laboratory found reductions in FMRP in autism, schizo-
phrenia, bipolar disorder, and MDD. These results are significant
as they are the first to demonstrate that FMRP is reduced in
brains of subjects that have not been diagnosed with FXS.
Cognitive deficits are common to members of these four diag-
nostic groups and GABAergic dysfunction is likely to contribute to
these deficits. Fmr1 knockout mice and Drosophila display
reduced expression of GABAA receptors (D’Hulst et al., 2006; El
Idrissi et al., 2005; Gantois et al., 2006). Reduced FMRP expres-
sion in subjects with autism, bipolar disorder, schizophrenia and
MDD could potentially explain the observed reductions of GABAA
and GABAB receptor expression in postmortem brain studies
performed by our laboratory (Fatemi et al., 2009a,b, 2010,
unpublished observations). GABAergic dysfunction in these four
disorders has been demonstrated in postmortem studies by
altered expression mRNA and protein of glutamic acid decarbox-
ylase 65 and 67 kDa (GAD65/67) (Akbarian et al., 1995; Fatemi
et al., 2002, 2005; Guidotti et al., 2000; Yip et al., 2007, 2008),
and GABAA and GABAB receptors (Blatt, 2005; Duncan et al., 2010;
Fatemi et al., 2009a,b, 2010, unpublished observations; Oblak
et al., 2010, in press; Ghose et al., 2011). Presence of seizure
disorder in subjects with autism (as well as those with FXS) may
also contribute to cognitive dysfunction. However, aside from
individuals in our population sample diagnosed with autism, none
of the subjects diagnosed with bipolar disorder, schizophrenia, or
major depression were comorbid for seizure disorder.

Glutamatergic signaling is also affected by loss of FMRP.
Stimulation of group 1 metabotropic glutamate receptors
(mGluR) results in signaling cascades post-synaptically, causing
increased protein synthesis (Weiler and Greenough, 1993, 1999).
In contrast, there is evidence that FMRP acts as a negative
regulator of protein synthesis (Dölen et al., 2007). Multiple
phenomena observed in Fmr1 KO mice including long term
depression, increased density of long, thin dendritic spines, and
epileptiform activity are dependent on both mGluR activity and
protein synthesis (Dölen and Bear, 2008). It has been hypothe-
sized that reduction in FMRP expression leads to unregulated
protein synthesis induced by group 1 mGluRs, which in turn is
responsible for the multiple physical and cognitive pathologies of
FXS (Fig. 2; Bear et al., 2004; Dölen and Bear, 2008).



Table 1
Summary of agents that are capable of ameliorating effects of unchecked mGluR5 signaling.

Agent Mode of action Animal Effect Reference

MPEP mGluR5 inhibitor Mouse Correction of PPI de Vrij et al., 2008
Reduction of dendritic protrusions de Vrij et al., 2008
Repression of seizures Westmark et al., 2009
Rescue of open field behavior
Rescue of repetitive self-grooming behavior

Yan et al., 2005
Silverman et al., 2010

Lithium Mood stabilizer Mouse Rescue of open field behavior Yuskaitis et al., 2010
Human Corrected behavioral deficits in

subjects with FXS
Berry-Kravis et al., 2008

Fenobam mGluR5 inhibitor Human Correction of PPI Berry-Kravis et al., 2009
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The reduced expression of FMRP may also have consequences
for synaptic plasticity. A consistent feature in both subjects with
FXS and Fmr1 KOmice is the presence of dendrites with abundance
of long, thin spines which suggest an immature morphology (Fig. 2;
Grossman et al., 2006; Irwin et al., 2002; Meredith et al., 2007).
Interestingly, Vanderklish and Edelman (2002) found that stimu-
lation of group 1mGluRs of cultured hippocampal neurons resulted
in increased length of dendritic spines, further supporting the role
of glutamatergic signaling in the pathology of FXS. The increased
number of long, thin dendritic spines could potentially result in an
abnormally large number of synapses. The large number of
synapses may result in cognitive impairments associated with FXS
as well as autism. Animal models have provided evidence that
FMRPmay play a role in synaptic pruning (Fig. 2; Pfeiffer and Huber,
2007; Tessier and Broadie, 2008). Tessier and Broadie (2008) found
that Drosophila FMRP (dFMRP) is required for axonal pruning of the
mushroom body, the primary learning and memory region of
Drosophila brain. Similarly, Pfeiffer and Huber (2007) found that
overexpression of FMRP in neurons cultured from Fmr1 KO mice
resulted in a reduction of synapse number.
6. Potential avenues for treatment

In support of the mGluR theory of FXS, animal experiments have
shown that structural and behavioral deficits associated with FXS
and presence of seizure can be ameliorated or rescued through the
use of lithium and the mGluR5 antagonist MPEP (2-methyl-6-
(phenylethynyl)-pyridine) or by reducing levels of mGluR5 (de Vrij
et al., 2008; Dölen et al., 2007;Westmark et al., 2009; Yan et al.,
2005; Yuskaitis et al., 2010). de Vrij et al. (2008) found that treat-
ment with MPEP rescued prepulse inhibition (PPI) of the acoustic
startle response in Fmr1 KO mice and reduced the number of
dendritic protrusions from cultured hippocampal neurons. MPEP
has also been shown to repress seizures in Fmr1KOmice (Westmark
et al., 2009; Yan et al., 2005). Additionally Yan et al. (2005) found
that treatmentwithMPEP reduced center field behavior in the open
field test, demonstrating that MPEP could also affect behavioral
phenotypes. Dölen et al. (2007) generated Fmr1 KO mice that
express 50% as much mGluR5 and found that a number of pheno-
types associatedwith FXSwhich are common to Fmr1 KOmicewere
rescued including a reduction in density of dendritic spines of
pyramidal cells from the visual cortex and reduced presence of
audiogenic seizures. Interestingly, the reduction in mGluR5 also
resulted in reduced protein synthesis in the hippocampus (Dölen
et al., 2007). Finally, chronic treatment with lithium has been
shown to rescue behaviors that are altered in Fmr1 KO mice
including openfield behavior and passive avoidance (Yuskaitis et al.,
2010). These results, taken together, suggest that drugs that affect
mGluR5 signaling may serve as potential therapies for treatment of
FXS. Recently, MPEP has been shown to reduce repetitive self-
grooming in a mouse model of autism (Silverman et al., 2010).
A recent study has shown that treatment with lithium resulted
in behavioral improvements in subjects with FXS including
improved scores on the Aberrant Behavior Checklist-Community
Edition, clinical global improvement scale, and the Vineland
Adaptive Behavior Scale (Berry-Kravis et al., 2008). An open label
pilot study using a single dose of fenobam, a selective, potent
mGluR5 inhibitor (Porter et al., 2005), in adults with FXS found
a 20% improvement over baseline for PPI (Berry-Kravis et al., 2009).
Moreover, no significant adverse effects of fenobam on the study
subjects were identified (Berry-Kravis et al., 2009). Table 1
summarizes the use of chemical agents that remedy the effects of
unchecked mGluR5 signaling. Further studies are required to
determine the efficacy and safety of mGluR inhibitors to correct for
deficits caused by reduction or absence of FMRP in subjects with
major mental disorders.
7. Conclusions

FXS is the most common form of mental retardation which is
caused by an expansion of a CGG repeat in the 50 untranslated
portion of the FMR1 gene. This expansion results in hyper-
methylation of the FMR1 promoter and consequent loss of its
protein product FMRP. Our laboratory has demonstrated for the
first time that reduction in FMRP in brain tissue is not specific to
FXS but occurs in patients with autism, schizophrenia, bipolar
disorder, and major depression. Evidence from animal models
suggests that the loss of FMRP and resultant increase in mGluR
signaling and protein synthesis may be responsible for the
observed pathologies of FXS. The use of mGluR inhibitors may
prove to be a safe, effective way in the treatment of FXS and other
psychiatric disorders impacted by the loss of FMRP.
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