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Alzheimer’s disease (AD) is the most prevalent form of dementia in the elderly. Alterations capable of
causing brain circuitry dysfunctions in AD may take several years to develop. Oligomeric amyloid-beta
peptide (AB) plays a complex role in the molecular events that lead to progressive loss of function and
eventually to neurodegeneration in this devastating disease. Moreover, N-methyl-p-aspartate (NMDA)
receptors (NMDARs) activation has been recently implicated in AD-related synaptic dysfunction. Thus, in
this review we focus on glutamatergic neurotransmission impairment and the changes in NMDAR
regulation in AD, following the description on the role and location of NMDARs at pre- and post-synaptic
sites under physiological conditions. In addition, considering that there is currently no effective ways to
cure AD or stop its progression, we further discuss the relevance of NMDARs antagonists to prevent AD
symptomatology. This review posits additional information on the role played by Ap in AD and the
importance of targeting the tripartite glutamatergic synapse in early asymptomatic and possible
reversible stages of the disease through preventive and/or disease-modifying therapeutic strategies.

This article is part of a Special Issue entitled ‘Neurodegenerative Disorders’.

© 2013 Published by Elsevier Ltd.

1. Introduction

Alzheimer’s disease (AD) is the most common form of dementia
and the most prevalent neurodegenerative disease in the elderly
population, affecting almost 40 million people worldwide. AD
progression has been associated with a gradual damage in function
and structure in the hippocampus and neocortex, the vulnerable
brain areas used for memory and cognition. AD is characterized by
synaptic loss, abnormal amyloid-beta peptide (A) processing of AR
precursor protein (APP) and hyperphosphorylation of tau, a
microtubule associated protein. High levels of intracellular AR and
the accumulation of the secreted form are believed to be central
causative factors for AD (reviewed by Ferreira et al., 2010). Tau was
shown to interact with APP both in vitro and in vivo (Barbato et al.,
2005) and APq—42 aggregates promote in vitro tau aggregation in a
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dose-dependent manner (Rank et al., 2002), suggesting a direct link
between senile plaques and neurofibrillary tangles in AD.

AD has been associated with an impairment of cholinergic ter-
minals, which appear largely vulnerable, followed by glutamatergic
terminal dysfunction and finally by the lesion of the somewhat
more resilient GABAergic terminals (Bell and Claudio, 2006). The
fact that glutamate is the principal excitatory neurotransmitter in
the brain areas mainly affected in AD is in accordance with the
impairment in glutamate neurotransmission that occurs in this
disease. Thus, the ionotropic glutamate receptor subtype N-methyl-
p-aspartate (NMDA) (described in Section 3) has been implicated in
memory function and is believed to be involved in AD progression.
In fact, recent findings posit that Ap induces an increase in cytosolic
calcium levels that may underlie mitochondrial calcium dysho-
meostasis and ultimately damage the neurons, namely by acti-
vating NMDA receptors (NMDARs) (reviewed by Ferreira et al.,
2010).

2. Synaptic dysfunction in AD
In its most incipient clinical form, early symptoms of AD like

confusion and loss of episodic and working memory can be
postulated to be due to network disconnections produced by
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oligomeric forms of A (reviewed by Selkoe, 2002). Concordantly,
synaptic dysfunction was observed in Tg2576 mice presenting early
increased AP levels (Calkins et al., 2011; Tamagnini et al., 2012).

Synapses are the fundamental units of information transfer and
storage in the brain, composed of pre- and postsynaptic compart-
ments. Synapse transmission, or neurotransmission, consists in the
release of neurotransmitters, which in turn bind and activate re-
ceptors located at postsynaptic or presynaptic sites. The role of glial
cells has been also recognized, giving rise to the concept of a
tripartite synapse organization (Fig. 1). In fact, astrocytes may
respond to neuronal activity through an elevation of internal Ca®*
concentration, which further leads to the release of neurotrans-
mitters able to cause feedback regulation of neuronal activity and
synaptic efficacy (Araque et al., 1999). Thus, neurotransmission
implicates functional pre- and post-synaptic sites, as well as
operational astrocytes.

Functional synapses require active mitochondria, which are
mainly involved in the generation of energy (ATP and NAD™),
regulation of cell signaling and calcium homeostasis. It was re-
ported that synaptic mitochondria are more susceptible to Ca®*
overload than nonsynaptic mitochondria (Brown et al., 2006).
Accordingly, Du et al. (2010) identified differences in synaptic
versus nonsynaptic mitochondrial properties and function of
mitochondrial populations isolated from AD transgenic mice brain
overexpressing the human mutant form of APP and AP (Du et al,,
2010). In this study, synaptic mitochondria from young trans-
genic mice showed an increase in AP accumulation, increased

Presynaptic terminal

Postsynaptic terminal

i

‘GIuN1

. ROCC
. GIuN2A ’ EAATs

Glun2s N Ag

D-serine

® (glycine

mitochondrial permeability transition, a decline in both respira-
tory function and activity of cytochrome c oxidase, as well as
increased mitochondrial oxidative stress. In AD patients, oxidative
stress markers were demonstrated to correlate with Mini-Mental
Status Examination scores; importantly, oxidative stress was
more localized to the synapses, with levels increasing in a disease-
dependent manner (Ansari and Scheff, 2010). However, recent
findings showed that intrinsic bioenergetic capacities, including
respiration, calcium handling, and transmembrane potentials were
maintained in presynaptic nerve terminals isolated from different
symptomatic AD mouse models (]J20, Tg2576, and APP/PS), when
compared with age-matched controls (Choi et al., 2012).

2.1. A at presynaptic level and glial cells

Recent studies link the defects in function of presynaptic bou-
tons associated with presynaptic protein dysfunction to the etiol-
ogy of several neurodevelopment and neurodegenerative diseases,
including AD (reviewed by Waites and Garner, 2011). On the other
hand, AB may exert a physiological function at the presynaptic
terminal, as the peptide may be essential for neurotransmitter
release (Puzzo et al., 2011). Nevertheless, a brief exposure to a very
low concentration of AP resulted in impairment of long term
potentiation (LTP) produced by presynaptic defects (Russell et al.,
2012). Morphological and biochemical synaptic changes associ-
ated with aging may contribute to exacerbate the damaging effects
of A, particularly at presynaptic level (Quiroz-Baez et al., 2013),

ll VSCC @ Glutamate Ca?*

D-serine transporter

® glycine transporter

Fig. 1. Tripartite glutamatergic synapse — a target for AB. Upon presynaptic neuron stimulation achieved by Ca2+ entry through voltage-sensitive calcium channels or by pre-
synaptic or perisynaptic receptor-operated calcium channels (e.g. namely NMDARs), released glutamate can activate NMDARs localized in the postsynaptic membrane (synaptic
stimulation) leading to Ca>* entry through the NMDARs and the propagation of the action potential. Glutamate can then be taken up by surrounding astrocytes through EAAT1/2 or
by the presynaptic terminal through EAAT2/5, and then stored into vesicles (reviewed by Corlew et al., 2008), precluding excitotoxicity. In conditions of excessive glutamate release
or impairment of clearance, namely due to the presence of Af, bulk extracellular glutamate concentration increases, leading to extrasynaptic NMDARs activation. The differential

activation (synaptic versus extrasynaptic) can also be modulated by glycine released from neurons and/or astrocytes (Muller et al., 2013) or p-serine released by astrocytes (Kang Q2

et al, 2013). Note that both glycine and p-serine can also be taken up by the presynaptic terminal or astrocytes by their respective transporters. The figure shows potential

intracellular and extracellular targets for A.
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suggesting that AB oligomers can cause presynaptic dysfunction.
According to these authors, synaptic terminals obtained from aged
rats were shown to be more sensitive to AP toxicity, evidencing an
age-related decline in mitochondrial activity, reduced antioxidant
contents and increased oxidative stress markers in both resting and
depolarized conditions. In addition, ultrastructural changes
including increased mitochondrial size and a significant reduction
of synaptic vesicles contents were also observed in presynaptic
nerve endings from rat hippocampus exposed to AP at different
ages (Quiroz-Baez et al., 2013).

AP was also shown to inhibit presynaptic P/Q Ca®* channels,
suppressing spontaneous synaptic activity (Mezler et al., 2012;
Nimmrich et al.,, 2008), along with the activation of presynaptic
a7-nicotinic acetylcholine (ACh) receptors (Dougherty et al., 2003).
More recently, AP was reported to directly modulate recombinant
P/Q-type and also N-type Ca** channels in HEK293 cells and
blockade of presynaptic Ca®* channels reversed Ap-induced func-
tional deficits in synaptic transmission (Hermann et al., 2013).
Moreover, synthetic AR peptide species were also shown to
potentiate K™-induced glutamate release from normal rodent hip-
pocampus (Kabogo et al., 2010).

Deleterious effects of AP oligomers were shown to be present
on multiple steps of synaptic vesicle trafficking (Park et al., 2013).
Synaptic vesicle pool is composed by recycling and resting pools,
the former including a readily-releasable pool and reserve pool;
indeed, the size of the recycling pool and its regeneration kinetics
are important factors for the efficacy of synaptic function.
Endogenous A peptides appear to have a crucial role in activity-
dependent regulation of synaptic vesicle release, pointing out for
the primary pathological events that lead to compensatory syn-
apse loss in AD (Abramov et al., 2009). Accordingly, acute treat-
ment of cultured rat hippocampal neurons with A oligomers was
very recently shown to reduce the recycling pool, increase the
resting pool of synaptic vesicles, decrease vesicle endocytosis and
regeneration, and to increase the release probability of the
readily-releasable pool, while its recovery was shown to be
delayed, leading to a weaken synaptic transmission (Park et al.,
2013). Interestingly, these effects were dependent on A, since
they were prevented by an antibody against AB. Moreover,
reduction of the pool size was prevented by calpain or CDK5 in-
hibitors, while the defects in endocytosis were averted following
overexpression of phosphatidylinositol-4-phosphate-5-kinase
type I-y, indicating that these two downstream pathways are
involved in AP oligomers-induced presynaptic dysfunction (Park
et al, 2013). In addition, it was also demonstrated that AB
reduced the magnitude of exocytosis and that the remaining
synaptic vesicles displayed a much slower speed of endocytosis,
thus inhibiting presynaptic function (Parodi et al., 2010). By using
electron microscopy, these authors also reported that Ap-treated
neurons displayed reduced number of synaptic vesicles, especially
those near the presynaptic active zones and a reduction in several
presynaptic proteins (Parodi et al., 2010). Accordingly, presynaptic
proteins such as SNAP-25, synaptophysin, and synaptotagmin
were reduced in brains of patients with AD (Reddy et al., 2005)
and in the hippocampus of Tg2576 mice 1 month after injection of
AB into the third ventricle (Chauhan and Siegel, 2002). Recent
findings by Russell et al. (2012) evidenced a time-dependent
interaction of AP with synaptophysin in presynaptic terminals of
hippocampal neurons. Furthermore, AR disrupted the complex
formed by synaptophysin and another vesicle associated protein,
VAMP?2, increasing the amount of primed vesicles and exocytosis;
electrophysiology recordings in hippocampal brain slices
confirmed that AP affects baseline neurotransmission (Russell
et al., 2012). Additionally, AR oligomers can alter dynamin-1, a
neuron-specific GTPase that pinches off synaptic vesicles,

allowing them to re-enter the synaptic vesicle pool (Kelly et al.,
2005; Kelly and Ferreira, 2006).

In the synaptic cleft, clearance of glutamate occurs by glutamate
transporters localized in both presynaptic terminals and also in
astrocytes (Fig. 1), precluding in this way the deleterious effects
exerted by glutamate, namely excitotoxicity. A can disrupt astro-
cytic calcium signaling and gliotransmitter release, which are vital
processes for astrocyte-neuron communication (reviewed by
Vincent et al., 2010). The sporadic form of AD seems also to be due
to dysfunctional glutamate clearance. In this context ABi_42 can
downregulate the astrocytic glutamate uptake capacity (Matos
et al.,, 2008), promoting glutamate receptor activation (Fig. 1).
More recently, these authors demonstrated that AR decreased
GLAST and GLT-I expression in astrocytes from wild type, but not
from A(2A)R (adenosine 2A receptor) knockout mice, known to
modulate astrocytic glutamate uptake. This impact of AP on
glutamate transporters and uptake was also confirmed in an ex vivo
astrocyte preparation (gliosomes) from rats intra-
cerebroventricularly injected with ABj.42 (Matos et al., 2012).

Upon exposure to A, astrocytes and microglia become activated,
extending their hypertrophic processes to physically separate the
neurons from A fibrils, thus playing a neuroprotective role. Despite
some controversy, there are also evidences that astrocytes can bind
and take up AP in processes involving different internalization
pathways, including scavenger receptors (reviewed by Mohamed
and Posse de, 2011), suggesting a role in A accumulation and
clearance. Accordingly, it was previously shown that microglia fa-
cilitates the conversion of soluble and oligomeric AP to the fibrillar
form within invaginations in the surface of the plasma membrane;
this highlights the potential benefit of blocking the initial intracel-
lular accumulation of AB in neurons and astrocytes, and of inhibiting
microglia-mediated assembly of fibrillar AB, which is particularly
resistant to degradation in AD brain (Nagele et al., 2004). In a very
recent study, temporal cortex of AD patients showed a high number
of GFAP™" astrocytes and MHC2" microglia, compared with non-
demented subjects; however, similar numbers of total astrocytes
and microglia were observed and remained constant over the clin-
ical course of the disease, suggesting that phenotypic change of
existing glial cells, rather than a marked proliferation of glial pre-
cursors, accounts for by the majority of glial responses observed in
the AD brain (Serrano-Pozo et al., 2013).

3. NMDA receptors
3.1. GIuN2A and GIuN2B expression and regulation

NMDARs are cationic channels gated by the neurotransmitter
glutamate, having critical roles in excitatory synaptic transmission,
plasticity as well as in excitotoxicity in the central nervous system
(CNS). NMDAR subunits are encoded by three families of genes
coding for GIuN1, GIuN2 and GluN3 subunits (Cull-Candy et al.,
2001). Functional NMDARs are heterotetramers composed of two
glycine or p-serine-binding GIuN1 subunits and two glutamate-
binding GIuN2 (GIuN2A-D) subunits or, in some cases, glycine-
binding GIuN3 (GIuN3A/B) subunits (Kohr, 2006). Activation of
NMDARs leads to cytosolic free intracellular calcium (Ca?*;) in-
crease (MacDermott et al., 1986) required for LTP and long-term
depression (LTD) (Muller et al., 2009; Fetterolf and Foster, 2011)
and, more generally, for synaptic plasticity (MacDonald et al., 2006;
Lau et al., 2009). The most widely expressed NMDARs contain the
obligatory subunit GluN1 plus either GIuN2B or GIuN2A or a
mixture of the two; therefore, in next sections we will focus on
these two subunits.

All NMDARs subunits share a common membrane topology,
consisting of three transmembrane segments and a re-entrant
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Fig. 2. NMDARs anchorage to the synaptic membrane. NMDARs are indirectly linked to
actin cytoskeleton through PSD-95, guanylate kinase-associated protein (GKAP), Shank
and cortactin proteins. Reelin, involved in synaptic plasticity, links to its receptors
ApoER?2 or VLDLR and activates Dab1. ApoER2 associates with PSD- 95, thus coupling
the reelin signaling complex to the NMDAR. Activation of Dab1 leads not only to Src
activation, but also to glomerular-actin (G-actin) polymerization into filamentous-actin
(F-actin).

pore-loop. Despite structural similarities, there are pharmacolog-
ical differences between NMDAR subunits. Endogenous Mg?* and
MK-801 are channel blockers and D-APV is a competitive antago-
nist that inhibits NMDARs non-selectively, whereas the GIuN2A
subunit is antagonized by the competitive antagonist NVP-
AAMO77, which was further demonstrated to have a better selec-
tivity for the GluN2D subunit; the GIuN2B subunit is also selectively
blocked by the non-competitive antagonists ifenprodil and Ro 25-
6981, among others (reviewed by Ogden and Traynelis, 2011).
Recently, TCN201 was described as a potent GIuN2A antagonist but
dependent on the GIuN1 co-agonist concentration (Edman et al.,
2012).

Expression of different NMDAR subunits differs along different
brain areas and during development. GluN1 mRNA expression
represents 67—88% of the total subunit gene expression in the brain
(Goebel and Poosch, 1999). In the rat fetal brain, GluN1 as well as
GluN2A subunits are mildly expressed in restricted areas such as
the temporal region of the cerebral cortex and the hippocampus,
and become widely expressed throughout the whole brain in ne-
onates (Takai et al., 2003). On the other hand, GIuN2B subunit,
which is mildly expressed in hippocampus and temporal cortex in
fetal brain, becomes hardly expressed in the neonatal brain after 7
days of life, being absent from the brain stem (Takai et al., 2003). In
humans, GIuNT1 levels are low in embryonic prefrontal cortex and
increases after birth (Henson et al., 2008), remaining constant with
age in whole brain (Law et al, 2003). Moreover, expression of
GluN2B mRNA is higher in the neonate than in older brains,
whereas GIuN2A mRNA remains constant after birth, leading to an
age-related increase in GIuN2A/2B transcript ratio (Law et al.,
2003). It is believed that the pre- and postnatal progressive
changes in subunit expression could contribute to the variation in
NMDARs-mediated synaptic plasticity during development. Inter-
estingly, GIuN2B subunit levels are reduced in old mouse frontal

cortex, suggesting alterations in memory processes during aging
(Kuehl-Kovarik et al., 2000).

Regulation of NMDARs function is a complex process involving
numerous proteins in the cell, particularly a variety of protein ki-
nases. Phosphorylation of GluN2B Tyr1472 enhances NMDARs ac-
tivity by increasing its number at the synaptic membrane (Goebel
et al., 2005; Goebel-Goody et al., 2009). Tyrosine kinase Src, as
well as Fyn kinase, are involved in the upregulation of GluN2B-
containing NMDARs at the surface of the plasma membrane by
phosphorylation of Tyr1472 (Sinai et al., 2010; Xu et al., 2006)
(Fig. 2). On the contrary, the tyrosine phosphatase striatal enriched
protein (STEPg1) leads to decrease of GIuN1/GIuN2B receptor
complexes from the neuronal surface by dephosphorylating the
Tyr1472 residue (Kurup et al,, 2010). In the same way, GluN2B
phosphorylation of Ser1480 by casein kinase 2 (CK2) disrupts the
interaction of GIuN2B with the scaffold protein postsynaptic den-
sity 95 (PSD-95) and synaptic-associated protein 102 (SAP102), two
proteins involved in the anchorage of NMDAR to the synaptic
membrane, and decreases its surface expression in neurons (Chung
et al., 2004). On the other hand, decreased synaptic GIuN2B leads to
an increase in synaptic GIuN2A expression (Sanz-Clemente et al.,
2010). Moreover, other post-translational modifications have been
implicated in synaptic NMDAR activity regulation; e.g. S-nitro-
sylation of NMDARs leads to a decrease in channel opening,
modulating NMDARs activity (Lipton et al., 1998; Kim et al., 1999).

Importantly, there are other types of NMDAR regulation not
involving post-translational modifications. The calcium-dependent
protease calpain downregulates NMDARs function through degra-
dation of GIuN2A and GluN2B subunits (Wu et al., 2005). The Wnt
pathway can also be involved in the regulation of NMDARs function
in later stages of development; in fact, Wnt ligands are necessary to
maintain basal levels of NMDARs synaptic transmission and Wnt5
specifically up-regulates synaptic NMDAR currents in rat hippo-
campal slices (Cerpa et al, 2011). More recently, it has been
demonstrated that the glutamate metabotropic receptor mGIuR7
reduces the association of NMDARs with PSD-95, and the conse-
quent surface level of NMDARs, in an actin-dependent manner (Gu
et al,, 2012). Evidences for cytoskeletal and plasma membrane
involvement in NMDARs regulation are numerous and affect
NMDAR presence at the synapse. The membrane phospholipid
phosphatidylinositol bisphosphate (PIP;) is important for the
maintenance of NMDARs at the cell surface (Mandal and Yan,
2009). Blocking PIP; reduces NMDAR-mediated currents, whereas
application of PIP, enhances these currents (Mandal and Yan,
2009). Moreover, cofilin, an actin depolymerizing factor which
links actin and PIP, is required for NMDARs regulation, suggesting
that a decrease in PIP, leads to cofilin release and actin depoly-
merization, which in turn promotes NMDARs internalization
(Mandal and Yan, 2009). Active myosin light chain kinase enhances
NMDARs-mediated whole-cell and synaptic currents, increasing
actin-myosin contractility, which leads to increased membrane
tension on NMDARs or to altered physical relationships between
NMDAR anchored proteins, such as PSD-95 (Kornau et al., 1995) and
cytoskeleton (Lei et al., 2001). PSD-95 is linked indirectly to cor-
tactin, a protein that promotes actin polymerization, by a succes-
sion of linker proteins (Fig. 2). Thus, NMDARs are indirectly linked
to actin cytoskeleton indicating that cytoskeleton alterations may
affect NMDARs surface availability. Indeed, binding of reelin, a
secreted glycoprotein involved in synaptic plasticity, to its receptors
ApoER2 (apolipoprotein E receptor 2) or VLDLR (very low density
lipoprotein receptor) triggers Dab1 phosphorylation and activation,
which further leads to actin polymerization (Suetsugu et al., 2004)
(Fig. 2). Moreover, Dab1 activation induces Src phosphorylation
(Ballif et al., 2003; Bock and Herz, 2003) and increases NMDARs
activity (Chen et al., 2005) (Fig. 2). Therefore, reelin inhibition was
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shown to decrease GIuN2B subunit availability at the synapse (Groc
et al.,, 2007).

3.2. Synaptic and extrasynaptic localization and activation of
NMDARs

NMDARs subunits differ not only in temporal expression, as
described above, but also in cellular localization. In fact, NMDARs
can be synaptic or extrasynaptic (Fig. 1). Synaptic NMDARs
composition changes quickly after synapse formation. Thus, syn-
apses containing predominantly GluN1/GluN2B represent imma-
ture sites, whereas mature sites are more predominantly composed
by NMDARs composed of GluN1/GluN2A subunits (Tovar and
Westbrook, 1999; Lopez de and Sah, 2003). Moreover, extra-
synaptic NMDARs are usually concentrated at points of contact
containing adhesion factors with adjacent processes such as axons,
axon terminals or glia (Petralia et al., 2010) and are largely
composed by GluN1/GIuN2B heteromers (Tovar and Westbrook,
1999; Petralia, 2012) (Fig. 1). Functionally, synaptic and extra-
synaptic NMDARs are gated by different co-agonists (Papouin et al.,
2012), respectively, p-serine released by astrocytes (Kang et al.,
2013) and glycine released by both astrocytes and neurons
(Holopainen and Kontro, 1989), as observed in both the hippo-
campus and in cerebellar granule cell cultures (Fig. 1). Papouin and
colleagues demonstrated that the availability of the co-agonists
matches the preferential affinity of each subunit for its own co-
agonist and that glycine and p-serine inhibit NMDAR surface traf-
ficking in a subunit-dependent manner, influencing also NMDARs
subcellular localization in the hippocampus (Papouin et al., 2012).
Moreover, as described before in this review, phosphorylation of
GIuN2B at Tyr1472 enhances NMDARs activity, increasing its
number at the synaptic membrane (Goebel et al., 2005; Goebel-
Goody et al., 2009), whereas phosphorylation of Tyr1336 is asso-
ciated with enrichment of extrasynaptic NMDARs (Goebel-Goody
et al., 2009).

It was initially believed that only synaptic NMDARs were
implicated in the synaptic transmission process; however, there is
growing evidence regarding the involvement of extrasynaptic
NMDARs in the transmission of information from the presynaptic
terminal. Harris and colleagues demonstrated that short stimula-
tions with low frequencies on CA1 hippocampal slice pyramidal
neurons engaged extrasynaptic NMDARs, while higher frequencies
engaged both synaptic and extrasynaptic NMDARs receptors, sug-
gesting that extrasynaptic receptors participate in physiological
synaptic transmission (Harris and Pettit, 2008). On the other hand,
it seems that LTP is mediated only by synaptic NMDARs, whereas
LTD requires both synaptic and extrasynaptic receptors (Papouin
et al,, 2012).

Importantly, NMDARs location influences its coupling to pro-
death or pro-survival. The extracellular signal-regulated kinases
(ERK), which promote a signaling cascade important for neuronal
plasticity and survival, are regulated, in part, through NMDARs
activation. Thus, the synaptic pool of NMDARs activates ERK, pro-
moting cell survival (Ilvanov et al.,, 2006; Leveille et al., 2008),
whereas the extrasynaptic pool of NMDARs triggers mitochondrial
membrane potential breakdown, as well as cell body and dendritic
damage (Leveille et al., 2008), inducing a signaling pathway that
inactivates ERK (Ivanov et al., 2006). Interestingly, the simultaneous
activation of synaptic and extrasynaptic NMDARs induces ERK
activation, weaker than those mediated by synaptic NMDARs alone
(Ivanov et al., 2006). Moreover, activation of synaptic NMDARs also
leads to activation of the cAMP response element binding protein
(CREB), a transcription factor also related to cell survival pathways
(Kaufman et al., 2012; Zhou and Sheng, 2013) and brain-derived
neurotrophic factor (BDNF) gene expression (Hardingham et al.,

2002), whereas activation of extrasynaptic NMDARs activated a
general and dominant CREB shut-off pathway (Kaufman et al.,
2012; Hardingham et al., 2002); this effect could be prevented by
the use of memantine (Kaufman et al., 2012), commonly used as AD
treatment, and which preferentially blocks extrasynaptic NMDARs
at therapeutic concentration (Leveille et al., 2008; Xia et al., 2010).
These data suggest that extrasynaptic NMDARs activation contrib-
utes to excitotoxicity. Conversely, other authors showed that acti-
vation of extrasynaptic NMDARs alone did not trigger cell death,
but activation of both extrasynaptic and synaptic NMDARs induced
cell death program, being this excitotoxic effect dependent on the
magnitude and duration of co-activation (reviewed by Zhou and
Sheng, 2013). A recent study further suggested that NMDA-
induced neurotoxicity is mediated only by synaptic NMDARs
(Papouin et al., 2012). However, since NMDA is not an endogenous
NMDAR agonist, this result can be discussed regarding to its rele-
vance for similar in vivo conditions. By implicating synaptic
NMDARs in excitotoxicity and evidencing the involvement of
extrasynaptic NMDARs in synaptic transmission, this study calls
into question whether cell survival or cell death depend on the
activation of synaptic or extrasynaptic receptors or may rather
depend upon NMDARs composition at the membrane surface and
the interaction with selective proteins.

4. NMDA receptors in AD

4.1. NMDARs-related postsynaptic dysfunction in AD: influence of
AR peptide

Overactivation of NMDARs was initially hypothesized to occur at
early stages of AD; indeed, recent reports indicate that activation of
NMDARs by AB accumulation may occur at early stages of the dis-
ease (reviewed by Parameshwaran et al., 2008), and that A olig-
omeric species evoke an immediately Ca**; rise through activation
of GIuN2B-containing NMDARs in cultured cortical neurons
(Ferreira et al., 2012), although the mechanisms by which AP causes
synaptic deficits involving NMDARs remains to be clarified. Despite
this, memantine, an uncompetitive open channel blocker of
NMDARSs, has been mostly prescribed as a memory-preserving drug
for moderate- to late-stage AD patients (Reisberg et al., 2003) (see
detailed effects of memantine in section 5).

The mRNA and protein levels of NMDAR subunits have been
largely studied in different models of AD and in AD brains. A first
study in transgenic mice expressing the C-terminal of APP
demonstrated that NMDAR protein levels were unchanged
compared to control mice (Sandhu et al., 1993). Conversely, recent
studies showed that presenilins knock-out leads to an early in-
crease in GluN2A subunit expression at postsynaptic densities with
a concomitant reduction at non-synaptic sites before synaptic loss
(Aoki et al., 2009). In in vitro studies, the effect of AP on NMDARs
has been also demonstrated. Ronicke et al. (2011) demonstrated
that early neuronal dysfunction induced by AP is mediated by an
activation of GIuN2B subunits in primary neuronal cultures and
hippocampal slices from rat and mouse. Moreover, treatment of rat
organotypic slices containing pyramidal neurons with A oligomers
decreased dendritic spine density and reduced NMDAR-mediated
Ca®* influx (Shankar et al, 2007). In humans, Jacob and col-
leagues reported a downregulation of GluN1 subunit in brains of
AD patients in various stages of the disease (Jacob et al., 2007).
GluN1 mRNA levels were significantly lower in AD, compared with
control brains (Hynd et al., 2001) and the GluN1 isoform containing
an N-terminal splice cassette appeared drastically decreased in the
disease, suggesting that this isoform may increase cell vulnerability
in AD (Hynd et al., 2004b). Moreover, levels of GluN2B mRNA and
protein, as well as GIuN2A levels were decreased in susceptible
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regions of postmortem human AD brain, such as the hippocampus
and the cortex (Hynd et al., 2004a; Bi and Sze, 2002; Mishizen-
Eberz et al., 2004). In comparison to AD susceptible brain areas,
there were no alterations in NMDARs subunit expression in cere-
bellum of AD patients (Bi and Sze, 2002). Conversely, other studies
evidenced that mRNA levels of GluN1 (Bi and Sze, 2002) and
GIuN2A subunits (Mishizen-Eberz et al., 2004) were unchanged in
AD patient’s brains.

Additionally to a decrease in mRNA levels, the decrease in
GluN2B and GluN2A subunits could be due also to a decrease in
reelin levels, a protein that mediates NMDAR activity, and which is
depleted in AD brains (Herring et al., 2012). On the other hand, the
decrease in NMDAR subunits may also be due to an increase in
STEPg1, which contributes to the endocytosis of GluN1/GluN2B and
GluN1/GIuN2A receptors (Snyder et al., 2005; Kurup et al., 2010).
Reducing STEPg; activity by genetic manipulations in different AD
mice models reversed cognitive and cellular impairment (Zhang
et al,, 2010), supporting a fundamental role for NMDARs activa-
tion in AD. Importantly, co-expression of mutated APP and NMDAR
subunits in embryonic kidney cells decreased receptor internali-
zation and thus increased surface levels of GluN1/GIuN2B and
GIuN1/GluN2A, linked to enhanced NMDARs currents (Cousins
et al.,, 2009). NMDARs, more particularly those containing GIluN2B
subunits, appear in numerous studies as mediators of AB-induced
neurotoxicity. Indeed, Ap oligomers induce Ca®*; dysregulation and
neuronal death through activation of NMDARs (Alberdi et al., 2010)
and inhibit LTP (Chen et al., 2000; reviewed by Rowan et al., 2003;
Li et al, 2011). Also, we previously demonstrated that GIuN2B
subunit activation is involved in Ap-induced Ca®**; homeostasis
deregulation (Ferreira et al., 2012). In this work we also showed
that GIuN2A-NMDARs antagonism potentiates Ca?*; rise induced
by a high concentration of AB, suggesting that GluN2A and GluN2B
subunits have opposite roles in regulating Ca®*; homeostasis.
Moreover, AR modulated NMDA-induced responses and vice versa,
indeed, pre-exposure to Ap decreased NMDA-evoked Ca?*; rise and
pre-exposure to NMDA decreased Af response. In addition, simul-
taneous exposure to Ap plus NMDA synergistically increased Ca®*;
levels, an effect mediated by GIuN2B-containing NMDARs (Ferreira
et al., 2012). Previously, we also demonstrated that Ap induced ER
stress and NADPH oxidase-mediated superoxide production, which
was prevented by ifenprodil, suggesting an important role of
NMDAR GIuN2B subunits (Costa et al., 2012). Moreover, we showed
that Ap induced DNA fragmentation and microtubule depolymer-
ization, as well as neurite retraction in a NMDAR-dependent
manner, particularly through GluN2B-containing NMDARs (Mota
et al, 2012). Interestingly, in primary neuronal cultures, over-
expression of human tau caused cell death, which was prevented
by treatment with ifenprodil, a GluN2B selective antagonist, sug-
gesting that GIuN2B subunit also mediates tau-induced neurotox-
icity (Amadoro et al., 2006). Importantly, using antibodies against
the N-terminal component of GIuN1 or GIuN2B subunits, our data
supports that AP oligomers are able to bind NMDARs extracellularly
(Costa et al., 2012). On the other hand, NMDARs activation (Lesne
et al, 2005), and more particularly extrasynaptic activation
(Bordji et al., 2010), triggers increased production and secretion of
AP, which is preceded by a shift from APP695 to Kunitz protease
inhibitory domain (KPI) containing APPs, isoforms exhibiting a high
amyloidogenic potential, followed by a shift from a-secretase to f3-
secretase-mediated APP processing, largely suggesting a circuit in
which AP facilitates NMDARs activation, which in turn promotes A
production.

It has been suggested that enhancement of GIuN2A activity and/
or the reduction of GluN2B activity may be used in order to halt the
early AB-mediated synaptic dysfunction (Liu et al., 2010). Taking
into account the importance of ERK for cell survival (described

previously in this review), a negative regulation by extrasynaptic
NMDARs, mainly composed of GIuN2B subunits (Tovar and
Westbrook, 1999; Petralia, 2012), may be one of the early
signaling events determining brain injury in AD (Ivanov et al,
2006). Moreover, in a recent work oligomeric Af caused selective
loss of synaptic GIuN2B responses, promoting a switch in subunit
composition from GluN2B to GIuN2A, a process normally observed
during development (Kessels et al., 2013). Since GIuN2A subunits
have been implicated in protective pathways, whereas GIuN2B
subunits appear to increase neuronal vulnerability (Liu et al., 2007),
the early increase in GIuN2A and decrease in GIuN2B subunit-
composed NMDARs activity may be an attempt to reduce AB-
induced neuronal dysfunction.

4.2. NMDARs in the presynapse and astrocytes — influence in AD?

NMDARs are mainly located at postsynaptic densities of excit-
atory synapses; however, their localization on presynaptic axon
terminals and astrocytes has been evaluated in the past two de-
cades. Thus, we may hypothesize that changes in receptor
composition and/or activation also take place in synaptic sites
during AD progression, although there is scarce information
regarding this topic.

Several evidences suggest a role for presynaptic NMDAR
localization in reshaping synaptic transmission by regulating
presynaptic glutamate release (for review see Corlew et al., 2008;
Huang et al., 2011). Very recently, the presence of GluN1, -2B, -3B
and -2D, but not GluN-2A or -2C, was established at presynaptic
sites in nerve terminal membranes and in mossy fiber axons by
using postembedding electron microscopy immunogold cyto-
chemistry (Berg et al., 2013). The presynaptic localization of
NMDARSs is in accordance with the idea that these receptors can
act as autoreceptors (reviewed by Duguid, 2013). The first sug-
gestion for the autoreceptor role of NMDARs appeared in 1991,
when Martin and colleagues showed that NMDAR antagonists
reduced K™-evoked glutamate release form CA1 hippocampal
neurons (Martin et al., 1991). Moreover, in rat striatum, it has been
suggested that activation of NMDAR by endogenous glutamate
enhances glutamate release, evidencing that this regulation is, in
part, linked to presynaptic NMDARs activation (Bustos et al., 1992).
In addition, blockade of NMDARs in rat entorhinal cortex reduced
the frequency but not the amplitude of glutamate-mediated
spontaneous excitatory postsynaptic currents, which persisted
even when postsynaptic NMDARs were blocked (Berretta and
Jones, 1996), once again suggesting that presynaptic NMDARs
may act as autoreceptors.

Presynaptic NMDARs can be involved in synaptic plasticity such
as certain types of LTP (Berg et al., 2013) and also in timing-
dependent LTD in the visual cortex (Sjostrom et al., 2003). In the
rat spinal cord, presynaptic NMDARs inhibited glutamate release
from primary sensory neurons (Bardoni et al., 2004), suggesting a
positive or a negative control of presynaptic glutamate release
exerted by presynaptic NMDARs activation. Importantly, during
cortical development, the loss of presynaptic NMDARs function was
shown to correlate with depletion of presynaptic receptors,
contributing to a switch between pre- and postsynaptic NMDARs
(Corlew et al., 2007). Accordingly to these authors, presynaptic
receptors are involved in LTD induction during development,
whereas in older mice LTD induction requires the activation of
postsynaptic receptors (Corlew et al., 2007), pointing out for a dy-
namic localization of NMDARs at the synapse during development.
Despite the general limited information on presynaptic NMDARSs,
data suggest that autoreceptor regulation of synaptic transmission
is one of the key factors determining information processing in the
CNS.
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In a study performed by Bell et al. (2007), the density of gluta-
matergic presynaptic boutons and the abundance of dystrophic
neurites were quantified in midfrontal gyrus brain tissue from
subjects with no cognitive impairment, mild cognitive impairment,
or mild- to severe-stage AD. These authors concluded that subjects
with mild cognitive impairment displayed a paradoxical elevation
in glutamatergic presynaptic bouton density, similar to that
observed in the cholinergic system, which then depletes and drops
with disease progression (Bell et al., 2007). These results pointed
out that dystrophic neurite generation and reduced presynaptic
bouton densities detrimentally influence neurotransmission and
cognitive function in later stages of AD.

Astroglial NMDARs, shown to be present in the cortex and the
spinal cord, are characterized by weak Mg?* block and moderate
Ca** permeability (reviewed by Parpura et al., 2012). Moreover,
there are evidences for Ca**-dependent glutamate release from
astrocytes in response to the Ca®" jonophore used as a secreta-
gogue. In addition, Ca®* ionophore-stimulated astrocytes can also
release p-serine, a co-agonist of the glycine-binding site of the
NMDAR (reviewed by Parpura et al., 2012). Evidence for the exis-
tence of functional NMDAR expression in human primary astro-
cytes was also described by Lee et al. (2010). These authors showed
that all seven currently known NMDAR subunits (Glu-N1, -2A, -2B,
-2C, -2D, -3A and -3B) are expressed in astrocytes, although at
different levels; notably, astrocytic glutamatergic system has been
also implicated in several neuropathological conditions, including
in AD (Lee et al., 2010).

5. NMDAR:s as targets for therapeutic intervention in AD

The several studies reviewed above demonstrate the impor-
tance of NMDARs in AD progression. Furthermore, NMDARs acti-
vation, particularly extrasynaptic NMDARs (Bordji et al., 2010),
promote neuronal Af secretion (Lesne et al., 2005). Thus, the use of
treatments targeting NMDARs seem to be a promising therapeutic
option to counteract AD progression.

NMDARs are fundamental for normal synaptic function, which
implicates that a full inhibition of these receptors triggers impor-
tant secondary effects; thus, to reduce the possibility of side effects,
the maximum dose tolerated may be not therapeutically effective
(reviewed by Hardingham and Bading, 2010). Many compounds can
target and block NMDARs, namely MK-801 (reviewed by Woodruff
et al., 1987), 1-benzyl-1,2,3,4-tetrahydro-B-carboline, which acts
inside the ion channel as the MK-801 (Espinoza-Moraga et al.,
2012), and huperzine A, which acts as a non-competitive inhibi-
tor interacting at the polyamine binding site (Zhang and Hu, 2001).
However, as referred before, considering the involvement of
NMDARs in synaptic function, a complete blockade of NMDARs is
associated with important secondary effects, such as severe
memory impairment. Selective antagonism of NMDARs subunits
involved in excitotoxic events, using low concentrations of a
pharmacological compound, appears to be a good strategy in order
to avoid secondary effects; moreover, the refinement of a drug able
to selectively inhibit pathologically activated NMDARs, without
interfering with normal receptor activation, represents an impor-
tant challenge for AD therapy (reviewed by Lipton, 2004; Lipton,
2007).

Memantine is an open channel blocker with low affinity, which
preferentially antagonizes NMDARs excessively activated; more-
over, due to its relatively fast off-rate memantine does not sub-
stantially accumulate in the channel to interfere with synaptic
transmission (reviewed by Lipton, 2004). Several in vitro and in vivo
studies evidenced the neuroprotective effect of memantine on A
toxic actions (reviewed in Danysz and Parsons, 2012). Thus, inter
alia, in mature hippocampal neurons memantine was shown to

prevent oligomeric AB-induced oxidative stress (De Felice et al.,
2007) as well as the disruption of axonal transport trafficking
(Decker et al., 2010), DNA fragmentation, microtubule deregulation
and neurite retraction (Mota et al., 2012). Interestingly, memantine
leads to a significant decrease in secreted APP and A peptide levels
in human neuroblastoma cells (Ray et al.,, 2010) and in cortical
levels of ABj—42 in APP/PS1 transgenic mice after 8 days of treat-
ment (Alley et al., 2010), suggesting a role for memantine in the
regulation of APP processing. In vivo, memantine protects against
neuronal degeneration induced by APi_49 intracranial injections
(Miguel-Hidalgo et al., 2002) and prevents cognitive impairment in
the same animals (Miguel-Hidalgo et al., 2012). Moreover, in 3xTg-
AD mice, memantine improved cognition and reduced levels of
both insoluble AP and hyperphosphorylated tau (Martinez-Coria
et al., 2010).

Memantine has been widely prescribed to provide symptomatic
relief and enhance life quality in AD. In clinical trials, memantine
has shown significant general benefits such as in aspects of lan-
guage, memory, praxis, functional communication and in activities
of daily living for AD patients (Wilkinson, 2012; Hellweg et al.,
2012), even if studies revealed that it did not improve excessive
agitation (Fox et al., 2012) or total brain or hippocampal atrophy
after one year treatment (Wilkinson et al., 2012). Importantly,
memantine has shown to be well tolerated and the mechanism of
action allows it to be safer than other non-selective NMDAR an-
tagonists (Farlow et al., 2008). Interestingly, extrasynaptic NMDARs
have been largely associated with NMDARs excitotoxicity in AD
(Hardingham and Bading, 2010). In this respect, memantine was
associated to a preferential blockade of extrasynaptic currents
mediated by NMDARs, rather than synaptic currents in the same
neuron (Xia et al., 2010), preferentially antagonizing overactivated
receptors, which may explain the fact that memantine is well
tolerated. Very recently, it was demonstrated that the use of a high
dose of memantine (28 mg/day, almost three times the normal
dose) is efficacious and still well tolerated and safe (Grossberg et al.,
2013). However, memantine seems to increase the risk for som-
nolence, weight gain, confusion, hypertension, nervous system
disorders and falling (reviewed by Yang et al., 2013). Interestingly,
Kotermanski and Johnson (2009) reported that Mg?*, an endoge-
nous blocker that binds near to the memantine binding site at
physiological concentrations, decreases memantine inhibition of
GIluN2A- and GluN2B-containing receptors, while it has no effect on
memantine inhibition of GIuN2C- and GluN2D-containing re-
ceptors (Kotermanski and Johnson, 2009), suggesting that the hy-
pothesized mechanism of action for memantine should be
reviewed in order to reconsider the role of GIuN2C/D subunits.
However, taking into account that in the brain areas mainly affected
in AD NMDARs are mainly composed by GluN2A and GIuN2B
subunits, this last observation may not be so relevant for the action
of this compound in AD. Neramexane, an uncompetitive antagonist
of NMDARs, has shown to be as efficient as memantine in
enhancing long-term spatial memory in adult rats, but at lower
doses (Zoladz et al., 2006), suggesting that this antagonist may
represent an interesting alternative to memantine. Furthermore,
taking into account the fact that extrasynaptic NMDARs have been
associated with excitotoxicity in AD (Hardingham and Bading,
2010) and that extrasynaptic NMDARs are mainly composed by
GluN2B-containing NMDARs (Tovar and Westbrook, 1999; Petralia,
2012), the use of a selective GIuN2B subunit antagonists might be
an interesting strategy to prevent synaptic dysfunction in AD. We
previously demonstrated that ifenprodil, a GIuN2B antagonist,
prevented AB-induced ER stress and hippocampal dysfunction
(Costa et al., 2012) and AB-induced microtubule deregulation (Mota
et al., 2012), as well as Ap-induced Ca®* rise (Ferreira et al., 2012)
in vitro. Furthermore, in primary neuronal cell culture and
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Fig. 3. AB-mediated targets acting at the glutamatergic synapse in AD — influence of
NMDAR antagonists. AP directly interacts with NMDARs, increasing intracellular Ca®*,
which underlies ER and oxidative stress; NMDARs are also linked to microtubule
depolymerization, contributing for decreased axonal transport and neurite retraction
and eventually DNA fragmentation, a feature of apoptosis. Moreover, A appears to
mediate NMDAR subunit endocytosis, and evokes dynamin degradation through
NMDAR activation. These processes lead to impairment in synaptic transmission and
decreased LTP, which contribute to cognitive deterioration. Importantly, selective
GIuN2B subunit antagonists (e.g. ifenprodil and Ro 25-6981) and memantine have
been shown to ameliorate AD-related cognitive deficits.

hippocampal slices from rat and mouse, ifenprodil and Ro 25-6981,
another GluN2B antagonist, prevented LTP impairment, baseline
synaptic transmission reduction, neuronal spontaneous network
activity decrease and retraction of synaptic contacts induced by AB
oligomers (Ronicke et al., 2011). Moreover, in rats co-injected with
AP and ifenprodil prevented AB-mediated inhibition of plasticity
(Hu et al., 2009). Selective GluN2B antagonists were also demon-
strated to be efficient at low doses by restoring AP oligomers-
induced LTP impairment (Li et al., 2011; Rammes et al., 2011).
These results suggest that preferentially targeting GIuN2B subunit
of NMDARs may be another way to prevent AD progression.
However, there is a lack of clinical confirmation concerning the
selective inhibition of GIuN2B as a pharmacological therapy in AD.
Interestingly, Rammes et al. (2011) also demonstrated that antag-
onism of metabotropic glutamate receptor 5 (mGIluR5), which are
mechanistically coupled to postsynaptic NMDARs, with low con-
centration of allosteric antagonist (MPEP, 2-methyl-6-(phenyl-
ethynyl)-pyridine) prevent AP oligomers-induced LTP impairment
(Rammes et al., 2011), evidencing that the glutamatergic system
may be considered as a target for the development of AD drugs.
Fig. 3 shows the influence of NMDAR antagonists, namely selective
GluN2B subunit antagonists and memantine, on rescuing Af-
mediated pathophysiology by targeting the glutamatergic synapse
and ultimately ameliorating AD cognitive deterioration.

In clinic, the concomitant use of memantine or their analogs
together with drugs inhibiting ACh-esterases is frequent and seems
to present positive results (reviewed in Parsons et al., 2013). Thus,
when patients receiving only ACh-esterase inhibitors are compared
with patients receiving the same treatment plus memantine, the
ability for independence, a factor that reflects cognitive capacity, is
increased (Lopez et al., 2009). Regarding the effect of donepezil, one

of the ACh-esterase inhibitors commonly used in the treatment of
AD patients, Howard and colleagues have recently demonstrated
that there are no evidences that the treatment of AD patients with
both donepezil and memantine is beneficial compared with one of
the drugs alone in late AD stages (Howard et al., 2012). However,
this observation contrasts with the study by Tariot et al. (2004) and
with a more recent one by Atri et al. (2013). Indeed, in moderate
and severe AD patients the co-treatment significantly increased
cognition, function and global status when compared to donepezil-
treated patients and reduced rates of marked clinical worsening
(Atri et al., 2013), and also improved measures of activities of daily
living and behavior (Tariot et al., 2004). Moreover, the concomitant
use of memantine plus donepezil is most efficient to reduce
agitation than donepezil alone (Kano et al., 2013). Interestingly,
galantamine, an ACh-esterase inhibitor used for AD treatment, not
only potentiated nicotinic ACh receptors activity, but also improved
NMDARs activity (Zhao et al.,, 2006); thus, concomitant use of
memantine and galantamine prevented galantamine activation of
extrasynaptic NMDARs (Zhao et al., 2006). A recent study has also
demonstrated that memantine protects not only glutamatergic but
also cholinergic septal neurons from AB-induced toxicity (Colom
et al.,, 2013) which may explain, in part, the potentiation of the
effect of ACh-esterase inhibitor by memantine, when used
concomitantly in AD treatment. Importantly, co-administration of
ACh-esterase inhibitors and memantine did not improve patient’s
life expectancy (Lopez et al., 2009).

6. Concluding remarks

Modified activity and regulation of postsynaptic NMDARs linked
to Ca®* dyshomeostasis have been assuming a great importance in
AD pathogenesis. Indeed, changes in NMDARs appear to be
involved in synaptic dysfunction in early stages of AD. In this
perspective, and taking into account the tripartite synapse, both
presynaptic and astrocytic NMDARs may also play a relevant role in
some synapses, although they have been much less studied in the
disease-context, compared to postsynaptic receptors. Moreover,
differential regulation of synaptic and extrasynaptic NMDARs
(namely by the co-agonists p-serine and glycine) and their differ-
ential composition (particularly in GluN2A and GluN2B subunits)
seem to underlie distinct neuronal fates, either inducing cell sur-
vival or cell death. In this regard, interaction of oligomeric A with
extracellular NMDAR subunits (GluN1 and GluN2B) and the influ-
ence of the peptide on intracellular signaling pathways (e.g. reelin
pathway linking Src-mediated activation of NMDAR) and/or with
selective scaffold proteins seem to have a fundamental role in
altering the integrity and function of the synapse in AD. Thus, se-
lective inhibition of NMDARs-mediated excitotoxicity alone (with
memantine or one of its analogs) or concomitantly with improve-
ment of ACh receptor-mediated transmission may help to slow
down the progression of synaptic disruption in AD. Unfortunately,
these therapeutics do not trigger a complete cure or an improve-
ment in life expectancy when applied in late stage AD and thus
implementation of earlier therapeutic strategies targeting NMDARs
and/or the intricate signaling pathways is needed.
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