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Abstract

Stress-related psychiatric disorders, includingietyx are complex diseases that have genetic, andoamental
causes. Stressful experiences increase the relépsefrontal amygdala neurotransmitters, a respdimat is relevant to
cognitive, emotional, and behavioral coping. Mormwexposure to stress elicits anxiety-like behagiod dendritic
remodeling in the amygdala. Members of the miR-&aify have been suggested to regulate synaptitigitgsand
neurotransmission processes, which mediate stedeted disorders. Using mice that harbored targaébetions of all
3 members of the miR-34-family (miR-34-TKO), we mated acute stress-induced basolateral amygddla)(B
GABAergic and medial prefrontal cortex (mpFC) amngie outflow by intracerebral in vivo microdialysisoreover,
we also examined fear conditioning/extinction, sérenduced anxiety, and dendritic remodeling in Bheé\ of stress-
exposed TKO mice.

We found that TKO mice showed resilience to stirdsiced anxiety and facilitation in fear extinctigkccordingly, no
significant increase was evident in aminergic mnefal or amygdala GABA release, and no significaciite stress-
induced amygdalar dendritic remodeling was obseivdtKO mice. Differential GRM7, 5-HT2C, and CRFR1 mRNA
expression was noted in the mpFC and BLA betwee® Bkdd WT mice.Our data demonstrate that the miR-34 has a
critical function in regulating the behavioral andurochemical response to acute stress and ininglstress-related

amygdala neuroplasticity.

Keywords: miR-34; Stress; Prefrontal Cortex; Amylgd&nxiety.
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1.1 Introduction

All stress-related psychiatric disorders, includamxiety, are complex diseases involving geneticl @anvironmental
causes.

MicroRNAs (miRs), a class of small, noncoding RNAesgulate gene expression at the post-transcritievel and
have been shown to play a crucial role in many elgioiogical processes and in regulating stressoresp (Issler and
Chen, 2015; Malan-Mdiller et al., 2013; O'connoakt 2012; Schouten et al., 2013). In particularman and animal
studies indicate that members of the miR-34 faroflymiRs are involved in several psychopathologjaaénotypes
(Bavamian et al., 2015; Dias et al., 2014a; Dicksbal., 2013; Haramati et al., 2011; Parsons.e2808; Zhou et al.,
2009). Three miR-34 precursors are produced fromthanscriptional units; the human miR-34a is tcaibed from

chromosome 1, miR-34b and miR-34c precursors ateatscribed from a region on chromosome 11. MiRk84 also
been proposed to be a target for the actions ofdmsibilizers and antidepressants (Bavamian e2@L5; Bocchio-
Chiavetto et al., 2013; Liu et al., 2014; Zhou &t 2009) and to modulate the dendritic remodelinglerlying

neuroplasticity (Agostini et al., 2011; Bavamiarakt 2015).

Accumulating evidence also implicates miR-34 in Hiess response, particularly in the manifestatibbehaviors
relevant to fear, anxiety as well as fear memonsotidation (Dias et al., 2014a; Haramati et @11 D).

A corpus of data implicates dysfunctions of th&raé circuit connecting the prefrontal cortex amdygdala in the
pathophysiology of fear and anxiety-like disorderduced by stress exposure (Arikav and Moroun, 2003mes,

2008; Shin and Liberzon, 2010). Exposure to stimgisces increased neurotransmitters release irtitttigit which is

considered relevant for cognitive, emotional antaworal responses (Andolina et al., 2013, 2014checi et al.,
2007) and the increase, stress-induced, of prefrardtecholamine release is considered a relevesyponse for
cognitive, emotional and behavioral coping (Di Segjral., 2015; Finlay et al., 1995; Pascucci et2007; Ventura et
al.,, 2013). It has also been demonstrated thatexgimtransmission in the medial prefrontal corteypFC), through
regulation of subcortical structures such as amiggdanodulates the stress response (Andolina eR@l3, 2014;
Pascucci et al., 2007). A wide projection from mpB®asolateral Amygdala (BLA) has been descrikiékhfik et al.,

2005). We have previously shown that mpFC serotpaeneurotransmission modulates the amygdalar respoo

stress in mice, and this could be via effects orB@4ergic inhibitory neurons in the basolateral ahgi; (BLA)

(Andolina et al., 2013, 2014). These BLA internewwdnave a critical influence on behavior, emotibypalnd stress-
induced dendritic plasticity (Andolina et al., 202914; Rodriguez-Manzanares et al., 2005). Preveark has also

shown that stress can induce hypertrophy of BL&romls (Maroun et al., 2013; Mitra et al., 2005; Raal., 2012).



72 Here, we directly evaluated the role of miR-34 lie tnpFC-BLA stress response by using mice carrgingrgeted
73 deletion of all three members of the miR-34 fan{il)KO). First, we tested the hypothesis that miRr3ddulates the
74  behavioral response to stress exposure. Since G&gi- neurotransmission within the BLA plays aicat role in
75 regulating stress response and the prefrontal eeeagic input into this region regulates amygdatkBA-ergic
76 neurotransmission (Andolina et al., 2013; 2014),ewaluate, byn vivo intracerebral microdialysis, the BLA GABA-
77 ergic outflow and mpFC aminergic outflow in Contexld TKO mice subjected to acute restraint stiesghermore,
78 because numerous genes associated with stresseamdpsaychiatric disorders, including metabotropiatamate
79 receptor 7 (GRM7) (Zhou et al., 2009), synaptotagi{Sytl) (Agostini et al., 2011), Serotonin 2Cagtor (5-HT2C),
80 and corticotropin-releasing factor receptofdRFR1) (Dias et al., 2014a; Haramati et al., 2049 putative or
81 validated miR-34 targets, we also evaluate thectffef acute stress on mRNA expression of theseggenthe mpFC
82 and BLA of WT and TKO mice.
83 Finally, because stress-induced anxiety behaviertiegen related, in animal models, to hypertrophBlofA neurons
84 (Mitra et al., 2005; Moroun et al., 2013; Rao et 2012), in the last experiment we also assesdrilienremodeling in
85 the BLA of TKO and WT mice exposed to acute stress.
86
87 2.1 Materialsand Methods
88 2.1.1Animals
89 MiR-34 knockout (TKO) mice were generated as déstri(Concepcion et al., 2012). WT and TKO male raged 8-
90 9 weeks, were used for the experiments. All expenit® were conducted in accordance with Italianonati laws
91 (D.Lgs no. 116/1992) governing the use of animatgdésearch.
92
93 2.1.2 Stress Protocols
94  The restraint apparatus has been described (CadiPaglisi-Allegra, 1991). In the behavioral expsnts, mice were
95 restrained for 30 min to induce anxiety-like belwaybased on previous studies (Haramati et al.128&acneil et al.
96 1997). In the microdialysis experiments, WT and TKW@e were restrained for 2 hours to evaluate ithe-tlependent
97 changes induced by stress exposure in prefrontialeagic release and BLA GABAergic outflow.
98
99 2.1.3Elevated PlusMaze, Dark-Light Test, and Open Field Test

100 Based on previous studies (Haramati et al., 20&$st| et al., 2009), 24 hours after exposure utesstress (restraint-

101 30 minutes), mice were tested individually in agéénsession of the elevated plus maze (EPM), dghk-test (DLT),
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or open field (OF) test. The EPM apparatus comgréseentral section (5x5 cm); 2 opposing open gir5s5 cm), and
2 opposing closed arms (15x5x15 cm), and the Wigjke that was cast across the arena was 30 lug.pEincentage of
time spent in the open arms [(time in open/opesead) x100], the percentage of entries in the opems 4(open
entries/open closed) x100], and the distance tea\vigl the apparatus were recorded for 5 min. Th& Bparatus was
a rectangular box divided by a partition into 2 iemwments: a dark compartment (35x20x30 cm; whgkt! <30 lux)
and a brightly illuminated compartment (35x20x3G; evhite light: 80-110 lux). The compartments weeoaitected by
a small passage at the bottom center of the martifihe latency to entry into the dark compartmérg, number of
visits to the lighted compartment, the percentafeirne spent and the distance covered in the axerkghted
compartment were recorded for 15 min.

The open field (OF) apparatus consisted of a @rcBlexiglas box (60 cm in diameter and 30 cm ightg. The center
region (30x30 cm) was defined as the central aaad,the white light that shone throughout the aneaa 30 lux.
Latency to the first exit from the center, the nembf visits to the center, the percentage of tapent in the center,

and the distance traveled in the apparatus weogded for 5 min.

2.1.4 Fear conditioning and extinction

The fear conditioning and extinction procedure wadormed as described by Izquierdo et al., 200®rief, to train in
fear conditioning (Panlab, HARVARD APPARATUS), miegre placed in the conditioned chamber (25 x 25 xm,
with black and transparent walls and a metal daadrf cleaned with a 79.5% water/19.5% ethanol/&¥%dn extract
solution), and after a 120-s acclimation perio@ytheceived 3 pairings (with 60-120-s variable rip#gring intervals)
of a conditioned stimulus (CS, 30 s, 80 dB, 3 kldme) and unconditioned stimulus (US, 2s, 0.6 mAamtied
footshock), in which US was delivered in the last @ presentation of the CS. After a 120-s no-shirs consolidation
period (following the final CS-US pairing), the raigvere returned to their home cage.

Twenty-four hours after training, extinction leargiwas assessed. Mice were placed in a novel doitexsparent
cylinder in black/white-checkered walls and a sdfigxiglas white floor, cleaned with a 50% v/v etblasolution).
After an initial 120-s acclimation period, the miaere presented with the CS 40 times, each la8ting and separated
by a 5-s no-stimulus interval. Twenty-four hourelathe mice were returned to the original tragnéfiamber for 5 min
to assess contextual fear memory. Freezing (evaluas the complete absence of voluntary movemertgpt for
respiratory movements) was scored every 5 s bylmerger who was blinded to the experimental coofitiand
converted to percentage [(freezing observatiorad/tdiservations) x 100]. Freezing during extinctizas averaged into

8-trial blocks for statistical analysis.
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2.1.51Invivo Microdialysis

Animals were anesthetized with chloral hydrate (#%f)kg), mounted in a stereotaxic frame (David Kigtruments,
Tujunga, CA, USA) that was equipped with a mousapéet, and implanted with a microdialysis probehe mpFC
and BLA using a dual-proka vivo microdialysis procedure (Di Segni et al., 2015¢rtical concentric dialysis probes
were prepared with AN69 fibers (Hospal Dasco, Boldtaly), according to the method of Di Chiara (Thiara et al.,
1993). The total length of the probe was 3 mm {dial membrane length 2 mm, o.d. 0.24 mm) for th&@pand 5.5
mm (dialysis membrane length 1 mm, o.d. 0.24 mm}He BLA. Microdialysis experiments were performéihours
after surgery. The coordinates from the bregma §wmesl according to the atlas of Franklin and Paxift@anklin and
Paxinos, 1997)] were: mpFC: 2.5 AP, 0.6 L and BLA16 AP, -3,55 L. The day before use, the memizranere
tested to verify in vitro norepinephrine (NE), dapae (DA), 5-HT, and GABA recovery.

The microdialysis probe was connected to a CMA/fpOthp (Carnegie Medicine, Stockholm, Sweden) throRgk20
tubing and an ultralow-torque dual-channel ligwdvel (Model 375/D/22QM, Instech Laboratories, InBlymouth
Meeting, PA, USA) to allow free movement.

Artificial cerebrospinal fluid (CSF) was pumpeddhgh the dialysis probe at a constant flow rat@ efL/min. The
mean concentration of the 3 samples, collected idiebely before treatment (<10% variation), was taks the basal
concentration. Twenty microliters of dialysate séanwas analyzed by HPLC with regard to 5-HT, NEd &WA as
described (Andolina et al., 2013014; Ventura et al., 2013). GABA concentrationsgha dialysates were determined
as described (Andolina et al., 202814; Rea et al., 2005). The detection limit of éissay was 4.2 and 0.1 pg per 20

ul (signal-to-noise ratio 2) for GABA and amined- DA, NE), respectively.

2.1.6 Probe placement
At the end of the experiments, the mice were kilbgddecapitation. Brains were postfixed in 4% pamaaldehyde,
and correct probe placement was assessed by uispalction of the probe tracks on Nissl- staineial sections (40

p1m). Only mice with correctly placed probes in BleA and mpFC were considered.

2.1.7 Plasmatic Corticosterone
WT and TKO animals were randomly assigned to “Basal‘'stress” conditions; in the former conditiomice were
extracted from their home cages and sacrificed idhately, whereas in the latter, mice were sacrificemediately

after the end of an acute stressful experiencéréiag that lasted 30 or 120 min.
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Trunk blood samples were collected after decapitadind immediately centrifuged. After blood cenigition (20 min,
4°C, 16,000 rpm), serum samples were stored atC-80ftil the assays were conducted. Corticosteremeld were

measured using commercial ELISA kits (EIA kit As€2gsign) in duplicate.

2.1.8RT-qPCR

Sixty minutes after the end of restraint-induceésst (30 min) (Haramati et.a011), the brain was removed, and the
expression of miR-34 (a,c), CRFR1, GRM7, 5-HT2Q] &yt1 mRNA was measured by RT-qgPCR (Concepciat, et
2012). RNA was extracted from punches of the mpR@ BLA from WT and TKO mice using Trizol (Invitrogg
Punches were obtained from brain slices (coror@i®es) that were not thicker than 300 um. Stamkteel tubes (1.0-
mm inside diameter) were used. The coordinates wezasured according to the atlas of Franklin anxin®a
(Franklin and Paxinos, 1997). qPCR was performedgugrimers and probes from Applied Biosystems adiog to
the manufacturer’s instructions. Sno-135 and GAPR¢te used to normalize miR-34 (a,c) and CRFR1, GRBA7

HT2C, and Sytl mRNA levels.

2.1.9 Morphological analysis

Twenty-four hours following exposure to acute "réestraint, 30 minutes), the brains of all groopsnice [WT

unstressed (US), WT stressed (AS), TKO US, and RS) were impregnated with a standard Golgi-Cox soiuas

described (Andolina et al., 2011). Coronal sectid@®® um) were sliced on a vibratome, mounted datigézed slides,
stained according to the the Gibb and Kolb metlaod, covered with Eukitt (Kindler GmbH & Co., Genmya (Gibb

and Kolb, 1998). Measurements were made on imptednaeurons under low magnification (20X/0.4 nuwcedri
aperture). The analysis of the BLA was restricegytramidal-like neurons that lay between -1.34 @&@6 mm from
the bregma [measured according to the the atlabrafiklin and Paxinos (Franklin and Paxinos, 199Gglgi-

impregnated neurons were selected according terieriproposed by Vyas et al. (Vyas et al., 2082)average of 5-6
neurons were analyzed for each mouse and weremdydelected from both hemispheres. A total of h8drons were
identified and included in the statistical analysAs experimenter who was blinded to the experimlegroups
performed the morphological analyses. Dendriticgtenand number of branch points were analyzed uSibg
reconstructions of the selected neurons on a Newidh image analysis system (mbf, Bioscience) wes connected
to an Olympus BX53 microscope (100X/1.25 numermaérture). Using the same NeurolLucida system (1DQX/
numerical aperture, Olympus BX53), all protrusioinggspective of their morphological characteristiovere counted

on each dendritic branch order as spines if thagvedirect contact with the dendritic shaft.
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2.2 Statistics

Statistical analyses for the elevated plus mazedtrk-light and open field tests, corticosteraneels (30, 120 min),
mRNA expression, and morphological data (spine ithlensumber of branch points, and dendritic lengigre
performed by two-way ANOVA (genotype, 2 levels: WTKO; treatment, 2 levels: stressed, unstressea).tle
microdialysis experiments, statistical analysesewperformed on raw data (concentration of pg/2Q RYr the
microdialysis and fear conditioning/extinction expgents data were analyzed by repeated-measures ANOVA Iith
between factor (genotype, 2 levels: WT, TKO) andithin factor [microdialysis: time, seven levels: 2D, 40, 60, 80,
100, and 120 min; fear conditioning/extinction: éimoints (fear conditioning: 3 levels; fear extiont 8 levels]. For
the microdialysis (including basal extracellulardés of 5-HT, NE, and DA in the mpFC and basalaoétlular GABA
levels in the BLA) and fear conditioning/extinctiemperiments, simple effects were assessed by ayeAMOVA for
each time pointThe effects of restraint (30 min) on the expressbmiR-34 (a,c) were analyzed in the mpFC and
BLA of unstressed and stressed WT mice by studéitést.

For all experiments, individual between-group congmns were performed, when appropriate, by post test

(Duncan’s multiple-range test).

3.1 Resaults

3.1.1 Elevated plus maze, dark-light test, and open field test

We hypothesized that miR-34 modulates the behaviesponse to stress. To test this hypothesis, xamimed the
function of miR-34 in stress-induced anxiety by @uistering 3 behavioral tests (EPM, DLT, and OFhtiR-34 TKO
and WT mice.

Concerning EPM results, two-way ANOVA revealed a significant genotype (p=0.49) effect, and a sigaifit
treatment (F(1,28)=4.58; p<0.05) effect and genatypreatment interaction (F(1,28) = 4.99; p<0@ih regard to the
percentage of time spent in the open arms (Fighje 1

Two-way ANOVA revealed no significant genotype (p4D or treatment (p=0.75) effect and genotypeeatment
interaction (p=0.15) concerning the percentagentrfies in the open arms (Figure 1B). Finally, tiffiees of genotype
(p=0.08) and treatment (p=0.96) and the genotypeatment interaction (p=0.82) were not significéot the total
distance covered (cm) over the EPM apparatus (Eij@).

By Duncan'’s test, we notedsignificant decrease in the percentage of time tsjpethe open arms in stressed versus

unstressed WT mice (df=7.53; p<0.05), whereas amtexposure had no significant effect in TKO mige=0.9)
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(Figure 1A). Although the percentage of time sparthe open arms in the EPM levels was low, sevgmalips have
reported similar levels in mice (i.e. Abbas et 2015; Matsuo et al., 2009; Mozhui et al., 201Qjjifisura et al., 2008).
For DLT experiment, two-way ANOVA, revealed a ngrsficant effect of genotype (p=0.08) or treatm@mt0.78)

and a significant genotype x treatment interaciei,25) = 8.54; p<0.01) regarding the latencyntryeinto the dark
compartment (Figure 2A).

Regarding the number of visits to the lighted cortipant, two-way ANOVA revealed no significant geyyme (p=0.1)

or treatment (p=0.15) effect and a significant dgpe x treatment interaction (F(1,25)=4.75; p<0.08yure 2B).

No significant genotype (p=0.05) or treatment (j88).effect or genotype x treatment interaction (B3) was

observed concerning the percentage of time speheitighted compartment (Figure 2C). The genot{&,25)=8.08;
p<0.01) and treatment (F(1,25)=6.02; p<0.05) effewtre significant but the genotype x treatmerdration was not
(p=0.13) for the distance (cm) that was coveretthénlight compartment (Figure 2D).

Duncan's test showed that the acute restraint @icio significant decrease of the latency (p=0(Figure 2A) but
significantly decreased the number of visits (d¥37.p<0.05) (Figure 2B) and the distance coverdéd4(@5; p<0.05)
(Figure 2D) in the lighted compartment in stres¥¢dl compared with unstressed WT mice. No significaffitct of

restraint exposure was evident in TKO mice, exdeptatency, for which stressed TKO mice showediramreased
levels versus unstressed TKO mice (Figure 2A).

In the DLT, the effect of genotype (WT, TKO) wast mignificant except for the distance in lightednpartment,
wherein unstressed WT mice had significantly higlkeeels compared with unstressed TKO mice (df=818<®.05)

(Figure 2D). Concerning the OF, two-way ANOVA, raled a significant genotype effect (F(1,24)=9; 840, no

significant treatment effect (p=0.67), and a sigaifit genotype x treatment interaction (F(1,24)246p<0.01) for the
latency to exit from the center (Figure 3A).

Two-way ANOVA revealed a no significant genotypdeef (p=0.14), a significant treatment effect (2é)=12.54;

p<0.01), and a no significant genotype x treatnietdraction (p=0.61) for the number of visits te tbenter (Figure
3B). The genotype (p=0.51) and treatment effect® (6) and the genotype x treatment interactiord (p2) were not
significant with regard to the percentage of timpert in the center was evident. However, a redngdtidime spent in
the center in stressed versus unstressed WT, aaffewd in TKO mice was evident (Figure 3C). Regagdhe traveled
distance (cm) in the apparatus, two-way ANOVA rdéedaa no significant genotype (p=0.19) and treatnaffects

(p=0.15) and the genotype x treatment interactim®(89) was not significant (Figure 3D).

Duncan's test showed that, acute restraint expgmaduced a significant decrease of the latency(@9; p<0.05)

(Figure 3A) and the number of visits to the cer(@f=7.73; p<0.05) (Figure 3B) in stressed WT conepawith
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unstressed WT mice.

No significant effect of restraint exposure wasdewit in TKO mice, except for latency (df=1.83; @3%). (Figure 3A)
and the number of visits to the center (df=5.78).p8) (Figure 3B), for which stressed TKO mice skdvincreased
and decreased values, respectively, versus urstkrds€O mice. The effect of genotype (WT, TKO) was significant

for latency (p=0.56) (Figure 3A).

3.1.2 Fear Conditioning and Extinction

Because dysfunction of the prefrontal cortex-amjaydaeural circuit is associated with alterations the fear

response—a process that is dysregulated in ceatadiiety disorders—we also evaluated the effect®i®f-34 lack on

fear conditioning/extinction.

Two-way ANOVA revealed no significant genotype eff¢p=0.15), a significant time effect (F(3,56)=28, p<0.01)

and no significant genotype x time interaction (j24) for freezing during the fear conditioning phablo significant
genotype effect (p=0.16) and a significant timesefff(F(7,98)=11.82; p<0.01) as well as significgahotype x time
interaction (F(7,98)=2.95; P<0.01) were evidenteetn TKO and WT mice for freezing during the extime phase
(Figure 4). One-way ANOVA for each time point shalmbat although freezing progressively decreasdabth WT

and TKO mice over the extinction trial blocks, Wice showed significantly higher freezing than TK@enon the

fifth (F(1,14)=6.04; p<0.05) and seventh (F(1,14Y4] p<0.05) extinction trial blocks and a sigrafit trend on the
second (p=0.07), third (p=0.1) and eighth (p=0>t)netion trial blocks (Figure 4). One-way ANOVAfdreezing in

the contextual fear memory test carried out 24érafktinction procedure shows no significant deéfese between WT

and TKO mice (p=0.43).

3.1.3Invivo Microdialysis

Because GABAergic transmission in the BLA has #@aal function in regulating stress responses awhbse we have
demonstrated that prefrontal serotoninergic trassimn governs amygdalar GABAergic transmission, evaluate
BLA GABAergic and mpFC aminergic outflow in TKO aMiT mice subjected to acute restraint stress byivo
intracerebral microdialysis. Two-way ANOVA, revedla no significant genotype (p=0.8) or time (p=0.2Bect but a
significant genotype x time interaction (F(6,102).32; P<0.05) for prefrontal 5-HT (Figure 5A). Redjag NE, two-
way ANOVA revealed a no significant genotype eff¢pt0.69) but time effect (F(6,96)=11.51; p<0.0hdahe
genotype x time interaction (F(6,96) =2.60; P<0.0&)re significant (Figure 5B). The amygdalar GABAalysis

revealed a no significant genotype effect (p=0.39%ignificant time effect (F(6,96)=1.87; p<0.0&hd a significant



282 genotype x time interaction (F(6,96) =2.91; p<0.(=pure 5D) for release induced by restraint expesConsistent
283 with previous reports, restraint stress induceijaificant time-dependent increase in prefront&édb-NE, and DA and
284 GABA release in WT mice compared with basal le@lsdolina et al., 2013, 2014; Ventura et al., 2018)contrast,
285 prefrontal 5-HT and amygdala GABA release in TKOnaals were unchanged versus basal values (Figur®)5A
286 Concerning NE outflow, TKO animals showed signifittg greater release compared with basal valueg anthe first
287 time point (20 min) (Figure 5 B).

288 Finally, no significant genotype effect (p=0.2)significant time effect (F(6,78)=3.25; p<0.01), amdo significant the
289 genotype x time interaction (p=0.45) were evidentprefrontal DA release (Figure 5C). Prefrontdld; NE, and DA
290 levels and BLA GABA basal levels were similar beémeWT and TKO mice (5-HT: WT= 0.73+0.05, TKO=
291 0.84+0.08; NE: WT= 0.77+0.06, TKO= 1.02+0.09; DAT®#0.29+0.07, TKO= 0.39+0.07; GABA: WT= 39.3+5.31,
292 TKO=47.07+9.83).

293

294 3.1.4 Plasmatic Corticosterone

295 Peripheral corticosterone (CORT) levels were evellian baseline and after 30 and 120 minutes ob&xe to stress
296 inthe WT and TKO groups to assess common peripbess responses.

297 Two-way ANOVA revealed significant genotype (F(1),3616.46; p<0.01) and treatment F(2,36) = 31.400/@1)

298 effect but their interaction was not significapt0.31) (Figure 6). Duncan test, revealed that Tat@nals had

299 significant higher levels of corticosterone undasd (unstressed) conditions versus WT animal22@if=21; p<0.05)
300 (Figure 6).

301 The WT and TKO groups showed a significant ris€E@RT levels after 30 min [WT unstressed (US) vs. $#f€ssed
302 (AS) (30 min): df=290.64; p<0.05; TKO US vs. TKO AR min): df =373.27, p<0.05] and 120 min [WT US WT
303 AS (120): df=681.69, p<0.05; TKO US vs. TKO AS (Ir&ih): df =792.14; p<0.05] of restraint comparedhihe

304 respective unstressed groups (Figure 6).

305

306 3.1.5RT-gPCR

307 To verify the increase in stress-induced miR-34)(axpression, we performed RT-qPCR in stresseduastressed
308 WT mice. Also, the mRNA levels of GRM7, Sytl, 5-HT2and CRFR1 were measured in the mpFC and BLA of
309 unstressed and stressed WT and TKO mice.

310 Student’s t test for the mpFC and BLA, revealedgaificant increase expression of miR-34a in theF@pt=2.22,

311 df=0.451 p<0.05) (Figure 7A), as did miR-34c in BieA (t=3.4, df=2.14 p<0.01) (Figure 7B) of streds&/T versus
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unstressed WT. miR-34a levels in the BLA (p=0.1@y¢re 7A) and miR-34c in the mpFC (p=0.98) werehanged
between stressed and unstressed WT mice (FigureThB)absolute and relative levels of miR-34a aifd-8#c in the
mpFC and BLA of unstressed and stressed WT and mid@ are reported in Supplementary Table 1.

Concerning mRNA levels, two-way ANOVA revealed agrdficant effect of genotype on mpFC 5-HT2C
(F(1,12)=30.31; p<0.01) and BLA CRFR1 levels (F8)#4.92; p<0.05) and a nearly significant effect mpFC
GRM7 (p=0.08). There was no significant effect cdatment (mpFC= CRFR1: p=0.92; GRM7: p=0.72; SYT1:
p=0.66; 5-HT2C: p=0.56. BLA= CRFR1: p=0.33; GRM&EQ/5; SYT: p=0.28; 5-HT2C: p=0.46) or the genotype
treatment interaction for the mRNA levels (mpFC=FER.: p= 0.34; GRM7: p= 0.23; SYT1: p= 0.63; 5-HT3%&
0.51. BLA= CRFR1: p= 0.14; GRM7: p=0.52; SYT: p=9,&%-HT2C: p=0.62) (Figure 8). Duncan’s test, shdwe
significantly higher mRNA levels of 5-HT2C (df=0.26p<0.05) in the mpFC of unstressed WT compareith wi
unstressed TKO mice. Moreover, stressed WT micedmgficantly higher levels of 5-HT2C mRNA in mpR@an
stressed TKO animals (df=0.238; p<0.05) (Figure.gRggarding the BLA, Duncan’s test showed signiftbahigher
levels of MRNA CRFRL1 in stressed WT versus stik3$€0 mice (df=0.278; p<0.05) (Figure 8B).

3.1.6 Morphological analysis

Because stress-induced anxiety has been linkegptertiophy of BLA neurons in animal models, we dedi to

examine dendritic remodeling induced by strestiénBLA neurons of TKO and WT mice. Two-way ANOVA,
revealed a significant genotype (F(1,100)=5.26;.p5pand treatment (F(1,100)=21.79; p<0.01) effext genotype x
treatment interaction (F(1,100) = 20.27; p<0.0lthwegard to the density of dendritic spines (Fég@A, D).

Concerning the number of branch points, two-way AMQevealed no significant genotype effect (p=0.ahjJl a
significant treatment effect (F(1,100) = 7.91; @34).and genotype x treatment interaction (F(1,E®.31; p<0.01)
(Figure 9B, E). Two-way ANOVA revealed no signifitagenotype (p=0.32) and treatment (p=0.13) effantsa
significant genotype x treatment interaction (FOD)L1= 11.77; p<0.01) for dendritic length (Figur€9E). Single
comparisons between groups showed that whereasintstxposure induced a significant increase limarphological
parameters [numbers of dendritic spines (df=1.6®,05) (Figure 9A), number of branch points (df-%.p<0.05)
(Figure 9B), and dendritic length (df=355.49; p<g).(Figure 9C)] in the BLA neurons of stressed Witanersus
unstressed WT, the effect of stress was no sigmifibetween stressed and unstressed TKO mice fgefsiendritic
spines (p=0.9) (Figure 9A), number the of brancimisq(p=0.27) (Figure 9B), and dendritic length @@k3) (Figure

9C)]. Moreover, between unstressed groups, there significantly more branch points (df=2.32; p<).th TKO

versus WT mice (Figure 9 B) and no significanteli#fnce in density of dendritic spines (p=0.13) (Fég9A) or

dendritic length (p=0.12) (Figure 9C).
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4.1 Discussion

We have found that mice that lack miR-34 (TKO misepw a strong reduction in behavioral, morpholagiand
neurochemical responses to acute stress compatkedhei WT group, suggesting a sort of resiliencéht aversive
effects of stress.

Overall, stress induced anxiety-like behaviors elm@nges in morphology of BLA neurons in WT mice lihe impact
of stressful experiences was mitigated in TKO. T mice also showed facilitation of extinction fememory,
supporting our interpretation that absence of miRe@nfers a phenotype that is resilient to stress.

Under unstressed conditions, WT and TKO mice hanilai profiles in anxiety-like behavior and locorapfactivity, as
measured by the EPM, DLT, and OF. The sole diffegebhetween unstressed WT and TKO mice concerned the
distance covered in the lighted compartment indakk-light test. Although unstressed TKO mice shdwereduction
in distance moved versus WT mice, this parameter wraffected by exposure to stress. Because ttendéstraveled
in the dark compartment can not be evaluated irDdlr apparatus, the distance measured in the dghtpartment is
merely a partial index of general locomotor activitowever, the overall comparison between WT aK@®Tmice in
all behavioral tests (EPM, DLT, OF) suggests thmals differences in basal locomotion and anxiety anlikely to
explain the robust differences between WT and THEr stress.

Stress significantly altered anxiety-like behavimtWT mice, as evaluated by the DLT, EPM, and ORhdugh the
percentage of time spent in the open arms in thid ERels was low, several groups have reportedlaitevels in
mice (i.e. Abbas et al., 2015; Matsuo et al., 2008zhui et al., 2010; Tsujimura et al., 2008). tmtrast, there was no
significant effect on anxiety-like behavioral paeters in stressed versus unstressed TKO animatgpefor the
latency, wherein stressed TKO mice increased tme tio exit from aversive zone versus unstressed THiCe
(indicating reduced anxiety-like behavior) and fiomber of visits to the center in the OF, wher¢iassed TKO mice
made fewer visits versus unstressed TKO mice. Alghothe last result could suggest a weak effecstiss on
anxiety-like behavior in TKO mice, all of the anjigelated parameters observed in the EPM, DLT,@Rdests make
difficult to supports this interpretation. Note thathough elevated plus maze, dark-light box apdnefield tests all
assess anxiety-like behaviors, they do that inediffy way, exploring different aspects of the sghenotype. This
could explain the not totally overlapping resultstaoned (in this and other studies) using differankiety-based
behavioral tests.

Concerning DLT, whereas stress decreased the jatenenter in the dark compartment, the numberisifsy and the

distance traveled in the light compartment in WTenionly latency to enter the dark compartment sigeificantly in
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stressed TKO mice compared with unstressed aniimnalisating a strongly reduced effect of stresanmmals that lack
miR-34. Also, no significant effect of stress oe thercentage of time spent in the light compartmeag observed in
WT or TKO mice. This result could be explained bg genetic background or the type of stress. Giimftj data have
been reported depending on stress exposure prdf@acale vs repeated) and genetic background (Bétedt., 2014;
Chotiwat and Harris et al., 2006; Delgado-Mora®312; lhne et al., 2012; Mozhui et al., 2010). Gstesit with the
DLT results, the EPM data showed a significantcfté stress on the percentage of time spent imple® arms only in
WT mice. Finally concerning OF results, while amdase of the latency to exit from the center,duced number of
visits as well as the time spent in the centerrduthe open field test were evident in stressed abfipared with
unstressed animals, stress only reduced the nuofibésits to the center in TKO mice and signifidgrincreased the
latency to exit from the center, the latter suggegsa reduced impact of stress in TKO compared forvice.

Stress exposure induces anxiety disorders throlaffomate mechanisms that are related to neuratigitgsin brain
regions that are involved in emotionality. Sevestldies have reported that neurons into the BLA #ra highly
sensitive to stress and anxiety-inducing stimuldengo significant remodeling on exposure to stréssther, acute
stress increases anxiety and induces dendriticrirgpdy in the BLA (Grillon et al., 2007; Haramat al., 2011;
Maroun et al., 2013; Mitra et al., 2005; Rao et20.12). Our data clearly indicate selective eHaiftstress exposure on
morphology only in WT mice, paralleling the behasiaresults.

No significant difference was observed in morphaabparameters in the BLA of unstressed WT and TgtGups,
except for a slight increase in branch node nunibghe TKO group versus WT mice. However, this efffavas
unrelated to changes in basal anxiety-like behawamsistent with these data, the inhibition of F8#R expression
increases the number of branch nodes in cortiaaloms (Agostini et al., 2011) and is unrelatedlterations in basal
anxiety-like behavior in unstressed mice (Diaslet2014a). In the stressed groups, the numbereafidtic spines,
dendritic length, and number of dendritic nodeséased significantly in the BLA neurons of WT aalmcompared
with unstressed WT mice, but there was no sigmiticzffect on these morphological parameters inss&e versus
unstressed TKO animals.

Our data on increased anxiety-like behavior andpmological alterations in the BLA of stressed WTceniare
consistent with other evidence (Grillon et al., 208aramati et al., 2011; Maroun et al., 2013; Mgt al., 2005; Rao et
al., 2012). However, they contrast other studieat thave reported delayed—or a lack of—behavioradl an
morphological modifications (Mitra et al., 2005)dadendritic retraction in the right hemisphere (Mar et al., 2013)
on exposure to stress. Several factors can expiasndiscrepancy. In fact, stress-induced modiiices of BLA

dendritic neurons are “sensitive” to the type andation of stress (Maroun et al., 2013; Mitra et 2005; Vyas et al.,
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2006), the animal's age (Padival et al., 2015), dnedstrain (Mozhui et al., 2010). Notably, theutesin TKO mice
conflict with a previous work that showed that leinally mediated overexpression of miR34c in tlentgal amygdala
(CeA) induces anxiolytic behavior after challengtaamati et al., 2011). This discrepancy might tiebaited to the
site of manipulation and disparate compensatoryhaugisms. Whereas Haramati and colleagues overesqutasiR-
34c in the central amygdala, we studied the effeftstress on the BLA, and it has been suggestat dtriess
differentially affects different areas of the amgtgd(central vs basolateral amygdala) (Andolinalgt2013; Quirk et
al., 2003). Moreover, because we used miR-34 TKe€erfinstead of lentivirally mediated overexpressidmiR34),
compensatory mechanisms that are related to dawelapand that affect our results can not be rulgd o

Several miRs have been shown to modulate synalatstigity under various stress conditions in selvbrain areas
(Malan-Mdiller et al., 2013; Schouten et al., 20E8)d miRs levels have been reported to be alterpdtients who are
affected by depression and anxiety and in pre@imeodels using psychological stress (Issler anenC2015; Malan-
Muller et al., 2013; O'connor et al., 2012; Schaut¢ al., 2013). Clinical studies have reportedrsirdownregulation
in peripheral levels of miRs-34c¢ due to antidepaassreatment in depressed patients (Bocchio-Cti@met al., 2013)
and have suggested dysregulation of miR-34a inph#hogenesis of bipolar disorder (Bavamian et 2015).
Accordingly, preclinical studies have reported tlthé antidepressant effects of 7-CTKA (an NMDA roe
antagonist) are mediated by alterations in miR-B4&ls (Liu et al., 2014) and that mood stabilizdosvnregulate
hippocampal expression of miR-34a (Zhou et al.,.20Moreover, stressful challenges also alter nkBression in
various brain structures (Issler and Chen, 2015aMmliiller et al., 2013; O'connor et al., 2012; Qaen et al., 2013).
We found that acute stress increases miR-34c esipresn the BLA of WT mice, whereas, consistenthwitther
reports (Dias et al., 2014a), no significant ineeean miR-34a was evident. Notably, one of the migmets of miR-34
is corticotrophin-releasing factor receptor 1 (CRFRIRNA (Dias et al., 2014a; Haramati et al., 20IMhe BLA
expresses high levels of CRFR1, and the CRF systeuding CRFR1, is involved in amygdalar synagtiasticity
and anxiety-like behavior. The decrease in anXigg/behavior is associated with low levels of CRFRRNA in the
BLA of adult mice (Sztainberg et al., 2010), andRER agonist (BLA infusion) and antagonist treatnmantease and
reduce BLA neuronal plasticity and anxiety-like beior, respectively (Rainnie et al., 2004; Sandiakt 2008).
Accordingly, we found that TKO mice showed a deseeim stress-induced BLA CRFR1 mRNA, anxiety-likdhavior,
and dendritic remodeling in BLA neurons comparethWiV/'T mice. Thus, it is possible to hypothesizd théR-34c in
the BLA, acting through CRFR1 mRNA, promote neuasfit stress-induced alterations, mediating theetynike
behavior in WT mice. Further experiments are ingpess in our laboratory to test this hypothesis.

An alternative hypothesis concerning corticoster@vels has to be considered. Elevated levels dfcosterone that
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432 precedeacute stress prevent the stress effects on BLApsinaonnectivity and anxiety-like behavior (Raoadt,
433 2012). Consistent with this evidence, we found fH€O mice, which do not increase anxiety-like bebawr BLA
434 spine density following restraint-induced stresad igher corticosterone levels under basal (usstid conditions
435 versus WT mice. Although unstressed TKO mice haghdr blood corticosterone levels than unstress&datimals,
436 blood corticosterone levels were higher in bothugsoof stressed mice (WT, TKO) at 30 and 120 mimgared with
437 the respective unstressed graups

438 Concerning the neurochemical response induced diyaiet stress, a time-dependent increase in 5B, and NE
439 output in the mpFC and in GABA in the BLA of WT maievas observed, consistent with previous reponsl@ina et
440 al., 2013, 2014; Di Segni et al., 2015; Venturalgt2013). However, TKO mice showed only a sigifit increase in
441 prefrontal DA in response to restraint exposure mmdignificant increase in 5-HT or NE outflow metmpFC as well
442 as in GABA in the BLA. Prefrontal NE release wasitar between WT and TKO mice at the first timergg20 min).
443 The increased prefrontal NE at this time point ddug needed to redirect attention toward partibuknousing events
444 (Chandler et al., 2014; Sara and Bouret, 2012; Mangt al., 2013) to process salient or potentiddipgerous stimuli.
445 The prefrontal cortex and amygdala are key strestim the stress response and in anxiety behaMiaimes, 2008;
446 Sara and Bouret, 2012; Shin and Liberzon, 2010)sStinduced alterations in GABAergic transmissionthe
447 amygdala are an important pathophysiological meisharthat underlies anxiety and stress disordersebieer, the
448 mpFC is a critical regulator of BLA activity (Andoh et al., 2013, 2014, Likhtik et al., 2005). Tp#eC is involved in
449 the integration and subsequent regulation of stiswdriven responses in the amygdala, via glutamiateprojections
450 to a neuronal population in the amygdala (Likhttkagé, 2005; Quirk et al., 2003). Changes in pnetab aminergic
451 neurotransmission modify the function of specifiefpontal cellular networks (Del Arco and Mora, 200and,
452 consequently, the function of subcortical structuiacluding the BLA (Andolina et al., 2013, 201Bysfunctions in
453  such regulation are involved in stress-related lpsgathologies (Akirav and Maroun, 2007; Holmes,&00

454 Our results point to a modulatory function for n8R-on mpFC 5-HT and NE and BLA GABAergic transnossunder
455 stress, consistent with recent studies that haggesied specific functions for various miRs in fating brain
456 neurotransmitters activity (Baundy et al., 2018|dset al., 2014; Launay et al., 2011). MiR-34ulates the expression
457 of proteins that are involved in neurotransmittergesses, having a key function in stress-relaigatders. Differential
458 expression of mpFC 5-HT2C and GRM7 mRNA was evidentinstressed TKO mice versus unstressed WT mice,
459 although the difference in GRM7 was not significa®RM7 and 5-HT2C regulate neurotransmission in the
460 mammalian CNS. For instance, it has been repohatselective GRM7 agonists produce modifications-HT and

461 NE function (Pelkey et al., 2007; Sukoff Rizzo &t 2011), and 5-HT2C receptors mediate the reledse-HT in
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response to acute stress and anxiety (Liu et @D72Mongeau et al., 2010). Thus, miR-34 could ntate prefrontal
5-HT and NE release by differentially regulatingefoontal 5-HT2C and GRM7 in stressed WT and TKO #ngs
governing amygdalar GABAergic release (Andolina adt, 2013, 2014). Our results implicate miR-34 in the
development and expression of stress-induced ppgthologic phenotypes, such as anxiety-like belavio

Although stress is one of the most important risktdrs of several psychiatric disorders, interifdiial differences
exist to stress response underlie the vulnerabdityresilience to negative stress effects. The @igisms of the
resilience to stress effects involve the complearjplay between genetic, and environmental fadteesler et al., 2009;
Russo et al., 2009). Our data, consistent withnmesidies indicating an important function of nifRresponse to stress
effects (Dias et al., 2014b; Issler et al., 20B8)pngly suggest that the lack of miR-34 rendersenmore resistant to

behavioral aversive stress effects.
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L egends

Figure 1. Effects of stress exposure (30 min of restradnt)A) the percentage of time spent in the opersaiB) the
percentage of entries in the open arms, (C) theeled distance in the apparatus in elevated plasenn WT (WT
Unstressed (US) n=8; WT stressed (WT AS) n=8) ak@® TTKO US n=8; TKO AS n=8) mice. Data are exprelsas

mean =SE. *P < 0.05.

Figure 2. Effects of stress exposure (30 min of restraint{Anthe latency to entry in the dark compartméBi), the

number of visits in the lighted compartment, (G ffercentage of time spent in the lighted compartraaed (D) the
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distance covered in the lighted compartment indduek/light test in WT (WT Unstressed (US) n=7; Wifessed (WT

AS) n=7) and TKO (TKO US n=7; TKO AS n=8) mice. tBare expressed as mean +SE. *P < 0.05.

Figure 3. Effects of stress exposure (30 min of restraint(Anthe latency to exit from the center, (B) thember of
visit in the center, (C) the percentage of timenspe the center and (D) the traveled distancehandpparatus in WT
(WT Unstressed (US) n=6; WT stressed (WT AS) n=1j &KO (TKO US n=7; TKO AS n=8) mice. Data are

expressed as mean +SE. *P < 0.05.

Figure. 4 Effects of the genotype (WT, n=8; TKO, n=8) on feamory extinction following contextual and cuedrfe

conditioning training. Data are expressed as mé&dh af percent freezing. *P < 0.05.

Figure 5. Effects of stress exposure (120 min. of restyaamt (A) Serotonin (5-HT), (B) Norepinephrine (NEE)
Dopamine (DA) outflow in the medial prefrontal axt(mpFC) and (D) GABA outflow in the Basolaterainggdala
(BLA) of WT (NE, n=9; DA, n=8; 5-HT, n=7; GABA, n3%and TKO (NE, n=9; DA, n=7; 5-HT, n=12; GABA, n=9)
mice. Results are expressed as percent changes (883 from basal values. Statistical analyses \peréormed on
raw data. § P<0.05 in comparison with the corredpa time point of miR-34s TKO group. *P< 0.05 rinobasal

values.

Figure 6. CORT levels in basal condition and after 30 dd bdln of acute restraint stress exposure in WT (We$al,
n=8; WT stressed (AS) 30 min., n=8; WT AS 120 minx6) and TKO mice (TKO basal, n=8; TKO stresse&)A30

min., n=7; TKO AS 120 min., n=6 mice). Data areregsed as mean +SE. *P < 0.05. § P<0.05 from bakads.

Figure 7. Effects of stress exposure (30 min. of restraom)(A) miR-34a and (B) miR-34c expression in thedial
prefrontal cortex (mpFC) and Basolateral Amygd&aA) of WT (WT Unstressed (US), mpFC miR-34a, na®pFC
miR-34c, n=8; BLA miR-34a, n=8; BLA miR-34c, n=8)y/T stressed (AS), mpFC miR-34a, n=8; mpFC miR-34c,

n=6; BLA miR-34a, n=9; BLA miR-34c, n=9)) mice. Raare expressed as mean +SE. *P < 0.05.

Figure 8. Effect of the stress exposure (30 min of restraamt)genes mRNA expression in the (A) medial prafbn
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cortex (mpFC) and (B) Basolateral amygdala (BLAWT (WT Unstressed (US), mpFC n=4, BLA n=4; WTested
(AS), mpFC n=4, BLA n=5) and TKO (TKO US, mpFC4H3BLA n=4; TKO AS, mpFC n=4, BLA n=4) mice. Data

are expressed as mean +SE. *P < 0.05.

Figure 9. Effect of the stress exposure (30 min of restyan (A) spines density, (B) numbers of branchnpmiand
(C) dendritic length in the Basolateral Amygdald 8 of WT (WT Unstressed (US), n=5/neurons=26; Wiessed
(AS), n=5/neurons=26) and TKO (TKO Unstressed (WSh/neurons=25; TKO stressed (AS), n=5/neuronsyize.
(D) High-power photomicrographs of the represeméatiiendritic segment in the BLA of WT and TKO micg&)
Representative camera lucida drawing the neurolgTofind miR-34 TKO mice. Data are expressed as m&an

*P < .05.
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Highlights(for review)

- Mice lacking miR-34 no show neurochemical, behavioral and morphological response to stress

- Potential role of miR-34 in modulating prefrontal-amygdala response to stress

- Mice model of resilience to stress effects

- Potential role of miR-34 in modulating the stress-induced anxiety



