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In the last decade, the fruit fly Drosophila melanogaster, highly accessible to genetic, behavioral and
molecular analyses, has been introduced as a novel model organism to help decipher the complex
genetic, neurochemical, and neuroanatomical underpinnings of behaviors induced by drugs of abuse.
Here we review these data, focusing specifically on cocaine-related behaviors. Several of cocaine’s most
characteristic properties have been recapitulated in Drosophila. First, cocaine induces motor behaviors in
flies that are remarkably similar to those observed in mammals. Second, repeated cocaine administration
induces behavioral sensitization a form of behavioral plasticity believed to underlie certain aspects of
addiction. Third, a key role for dopaminergic systems in mediating cocaine’s effects has been demon-
strated through both pharmacological and genetic methods. Finally, and most importantly, unbiased
genetic screens, feasible because of the simplicity and scale with which flies can be manipulated in the
laboratory, have identified several novel genes and pathways whose role in cocaine behaviors had not
been anticipated. Many of these genes and pathways have been validated in mammalian models of drug
addiction. We focus in this review on the role of LIM-only proteins in cocaine-induced behaviors.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Cocaine, a naturally occurring plant alkaloid, is the prototype
addictive psychomotor stimulant. It elicits a variety of acute
behavioral changes ranging from mood elevation, disinhibition,
and motor activation at low doses to compulsive stereotypies and
psychosis at higher doses (Gawin, 1991). Long-term cocaine use
generally results in tolerance to many of its subjective effects, an
increased craving towards the drug, and eventually to drug abuse
and addiction. Cocaine’s primary mechanism of action is to bind
and inhibit plasma membrane monoamine transporters, thereby
increasing synaptic monoamine neurotransmitter levels and
potentiating their actions. In mammalian animal models, the acute
response to cocaine is predominantly observed as enhanced loco-
motor activity and stereotypic behaviors. This locomotor-stimulant
effect of cocaine is mediated primarily by an inhibition of the
dopamine transporter (DAT), as mice lacking DAT show enhanced
levels of baseline activity that are insensitive to cocaine
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administration (Giros et al., 1996). Regulation of the rewarding
effects of cocaine are, however, more complex, involving, in addi-
tion to DAT, the serotonin transporter (SERT) (Sora et al., 1998,
2001) as well as many additional genes. How the acute stimulant
effects of cocaine relate to the long-term changes that underlie
addiction is poorly understood. However, emerging evidence
suggests that the mechanisms that regulate the acute stimulant
effects of psychostimulants are also involved in determining their
rewarding properties (Laakso et al., 2002). For example, the loco-
motor activity of mice lacking both DAT and SERT is unaltered by
cocaine administration; these mice also fail to develop conditioned
preference for cocaine, an assay that measures the rewarding
effects of the drug (Sora et al., 2001). Conversely, mice lacking FosB
or overexpressing DfosB, which are highly sensitive to the
psychomotor stimulant effects of cocaine, also show enhanced
place preference for cocaine (Hiroi et al., 1997; Kelz et al., 1999). It is
therefore likely that a mechanistic understanding of the relatively
simple process of acute drug-induced locomotor stimulation may
provide valuable clues about the molecular mechanisms under-
lying drug reward, reinforcement, and addiction.

2. Drosophila as a model

Drosophila, one of the most intensively studied organisms in
biology, has provided crucial insights into developmental and
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cellular processes that are conserved with mammals, including
humans. Flies have a relatively sophisticated nervous system
(approximately 300,000 neurons) and are capable of many complex
behaviors (Hall, 1994, 1998; DeZazzo and Tully, 1995; Sokolowski,
2001). They are easy and inexpensive to rear in the laboratory and
their life cycle is only approximately two weeks. The major
advantage of flies is the simplicity and scale with which they can be
manipulated genetically. A century of fundamental genetic analysis
has led to the generation of a large number of sophisticated genetic
tools (Lindsley, 1992; Rubin and Lewis, 2000), and the last few
decades have witnessed the development of many powerful
molecular genetic techniques that allow germ-line transformation
(Rubin and Spradling, 1982; Spradling and Rubin, 1982), the use of
transposable elements as mutagens (Engels, 1983), homologous
recombination (Rong and Golic, 2000), and double stranded RNA-
mediated gene expression interference (RNAi) (Carthew, 2001;
Kalidas and Smith, 2002). Moreover, an analysis of the Drosophila
euchromatin sequence revealed a high degree of molecular simi-
larity between flies and mammals (Adams et al., 2000; Myers et al.,
2000; Rubin et al., 2000). For example, Drosophila has most – if not
all – major neurotransmitters, molecules involved in synaptic
vesicle release and recycling, receptors and channels for neuro-
transmission, and signal transduction mechanisms involved in
neural function in mammals (Littleton and Ganetzky, 2000; Lloyd
et al., 2000). However, there are several notable differences. For
example, flies use acetylcholine instead of glutamate as the major
excitatory CNS neurotransmitter, and glutamate instead of
acetylcholine at the neuromuscular junction. In addition, flies lack
noradrenaline with octopamine fulfilling its many roles (Roeder,
1999). Importantly, genes implicated directly or indirectly in the
actions of abused drugs are, for the most part, conserved. In addi-
tion to the above-mentioned genetic tools, multiple techniques
exist to alter the function of specific populations of nervous system
cells, thus allowing the definition of the neuroanatomical loci that
regulate behaviors of interest (Brand et al., 1994; Kitamoto, 2001;
Osterwalder et al., 2001; Roman et al., 2001; Stebbins et al., 2001;
Stebbins and Yin, 2001; McGuire et al., 2003, 2004). In recent years,
these powerful tools have been applied to the study of behaviors
induced by drugs of abuse, including alcohol, cocaine, and nicotine,
in Drosophila (Rothenfluh and Heberlein, 2002; Guarnieri and
Heberlein, 2003; Wolf and Heberlein, 2003). As a consequence, the
molecular genetic, neuroanatomical and neurochemical bases for
responses to abused drugs in Drosophila are beginning to be
understood, revealing a large degree of mechanistic conservation
with mammalian systems.

3. Behavioral effects of cocaine administration in Drosophila

McClung and Hirsh (McClung and Hirsh, 1998) first showed that
upon exposure to free-base cocaine, volatilized off a heated
nichrome filament (Fig. 1A), flies show a range of unusual behav-
iors: low doses induce continuous grooming, intermediate doses
lead to circling (Fig. 1C) and other aberrant walking behavior, while
higher doses cause fast and uncontrolled movements (Fig. 1D), and
eventually akinesia and even death. Continuous grooming and
circling, behaviors referred to as stereotypies, are also observed in
rodents upon cocaine administration. In addition to a direct visual
scoring of cocaine-induced behaviors elicited by volatilized free-
base cocaine (McClung and Hirsh, 1998), several additional assays
have been developed to administer cocaine and quantify its effects:
(1) the ‘‘crackometer’’ quantifies the loss of negative geotaxis and
positive phototaxis (two strong innate behaviors in flies) caused by
volatilized cocaine exposure (Bainton et al., 2000), (2) a video-
tracking system (Bainton et al., 2000) (Fig. 1B–D) and the auto-
mated Drosophila Activity Monitoring System (Dimitrijevic et al.,
2004) allow the measurement of speed and patterns of locomotion
induced by exposure to volatilized cocaine and cocaine injection,
(3) a sophisticated ‘‘bottom-counting’’ semi-automated tracking
system allows the high-throughput analysis of affected individuals
(George et al., 2005), and finally, (4) freebase cocaine dissolved in
ethanol can be sprayed onto flies using a graphic arts airbrush
modified to reproducibly control the drug dosage (Lease and Hirsh,
2005). In addition to these stereotyped responses to acute cocaine
exposure, repeated cocaine exposure makes flies increasingly
sensitive to the behavioral effects of the drug (McClung and Hirsh,
1998). This behavioral sensitization takes time to develop (it is
strongest approximately 6 h after the first exposure) and is long
lasting (dissipating approximately 2 days after a single exposure).
Sensitization has been demonstrated by the direct observation
method (McClung and Hirsh, 1998), the Drosophila Activity Moni-
toring System (Dimitrijevic et al., 2004) and the ‘‘bottom-counting’’
system (George et al., 2005). Thus, different routes of cocaine
administration have been shown to induce a series of behaviors in
Drosophila that closely mimic mammalian cocaine-induced
behaviors. In addition, several behavioral assays have been
developed to quantify such behaviors in flies.

4. Role of biogenic amine systems in Drosophila cocaine-
induced behaviors

Flies synthesize the biogenic amines dopamine, octopamine and
tyramine, as well as serotonin and possibly additional trace amines
(Monastirioti, 1999). They also contain proteins involved in the pre-
synaptic machinery needed for their synthesis, release and reup-
take, as well as receptors and signaling pathways that mediate their
pre- and post-synaptic effects (Littleton and Ganetzky, 2000; Lloyd
et al., 2000). Interference with dopamine synthesis with the tyro-
sine hydroxylase (TH) inhibitor 3-iodo-tyrosine leads to reduced
effectiveness of cocaine (Bainton et al., 2000). In addition, the
application of cocaine solution directly to the ventral nerve cord of
decapitated flies induces grooming and aberrant locomotion, an
effect that is blocked by pre-administration of a dopamine D1
receptor antagonist (Torres and Horowitz, 1998). Similar behavioral
effects are seen after direct application of monoamines or dopa-
mine receptor agonists to the ventral nerve cord in decapitated flies
(Yellman et al., 1998). The finding that inhibition of synaptic
transmission in dopaminergic and serotonergic neurons leads to
cocaine hypersensitivity is therefore somewhat surprising (Li et al.,
2000). However, because these neurons are silenced throughout
development, compensatory adaptations, such as hypersensitivity
of the post-synaptic receptors, may be responsible for the increased
cocaine sensitivity. The latter is supported by the finding that direct
application of the dopamine receptor agonist quinpirole to the
ventral nerve cord of these flies induces an enhanced locomotor
response (Li et al., 2000).

Flies (and insects in general) synthesize tyramine from tyrosine
by the action of tyramine decarboxylase (Tdc); tyramine is
converted into octopamine by tyramine-b-hydroxylase (Tbh)
(Monastirioti, 1999). Flies that lack both neural tyramine and
octopamine because of mutation in one of the tyramine decarbox-
ylase-encoding genes, Tdc2, have dramatically reduced basal loco-
motor activity levels and are hypersensitive to an initial dose of
cocaine (Hardie et al., 2007). In contrast, flies that contain no
measurable neural octopamine and an excess of tyramine due to
a null mutation in the tyramine-b-hydroxylase gene exhibit normal
locomotor activity and cocaine responses (Hardie et al., 2007).
Finally, a Drosophila isoform of the vesicular monoamine transporter
VMAT (DVMAT-A) is expressed in both dopaminergic and seroto-
nergic neurons in the adult Drosophila brain. Overexpression of
DVMAT-A in these cells potentiates spontaneous stereotypic
grooming and locomotion, effects that can be reversed by blocking
DVMAT activity, and administration of a dopamine receptor



Fig. 1. Cocaine delivery and cocaine-induced locomotor behaviors in Drosophila. (A) Cartoon of the system used to volatilize free-base cocaine (McClung and Hirsh, 1998). Cocaine
(dissolved in ethanol) is deposited on the nichrome coil and volatilized upon heating the coil. Flies ‘‘inhale’’ the volatilized cocaine and are then transferred to an observation
chamber in which their behavior is filmed and analyzed using specialized software (Wolf et al., 2002). (B–D) Computer-generated traces of the locomotor behavior of a group of five
flies exposed to volatilized free-base cocaine. Each panel corresponds to a 1-min period starting 2 min after the end of the cocaine exposure. (B) Mock exposure, (C) 100 mg cocaine,
and (D) 200 mg cocaine. (Bainton et al., 2000; reprinted with permission.)
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antagonist. In addition, DVMAT-A overexpression decreases the fly’s
sensitivity to cocaine, suggesting that the synaptic machinery
responsible for this behavior may be downregulated by DVMAT-A
overexpression (Chang et al., 2006). Taken together, these results
indicate that dopaminergic (and possibly serotonergic) systems and
the trace-amine tyramine mediate acute cocaine-induced behaviors.
Tyramine has also been implicated in cocaine sensitization
(McClung and Hirsh, 1999), although more recent data from the
Hirsh laboratory indicate that this connection is tenuous (Hardie
et al., 2007). The recent cloning of mammalian G-coupled receptors
that respond specifically to trace amines such as tyramine
(Borowsky et al., 2001; Bunzow et al., 2001; Miller et al., 2005),
suggests that tyramine may act as a neurotransmitter/modulator in
mammals. Interestingly, one of these mammalian receptors can be
directly activated by amphetamine (Bunzow et al., 2001). These
trace-amine receptors may also alter cocaine-induced behaviors
indirectly through modification of monoamine transporter function
(Miller et al., 2005) or through inhibition of dopaminergic neuron
function (Geracitano et al., 2004). It will be interesting to determine
if these receptors are involved in cocaine-related behaviors in
mammals.

5. Novel genes involved in cocaine-induced behaviors
in Drosophila

The data summarized above show that several of cocaine’s most
characteristic properties have been recapitulated in flies. First,
cocaine induces motor behaviors in flies that are remarkably similar
to those observed in mammals (McClung and Hirsh, 1998; Bainton
et al., 2000). Second, repeated cocaine administration induces
behavioral sensitization (McClung and Hirsh, 1998; Dimitrijevic
et al., 2004) a form of behavioral plasticity believed to underlie
certain aspects of addiction (Robinson and Berridge, 1993; Schenk
and Partridge, 1997). Finally, a key role for dopaminergic systems in
mediating cocaine’s effects has been demonstrated through both
pharmacological and genetic methods (Bainton et al., 2000; Li et al.,
2000; Chang et al., 2006). More importantly, Drosophila studies
have identified genes and pathways whose role in cocaine
responsiveness had not been anticipated. For instance, flies with
mutations in the circadian genes period (per), clock, cycle and
doubletime reduce or eliminate behavioral sensitization to cocaine
(Andretic et al., 1999). Subsequently, mice carrying mutations in
one of the mouse per genes, mper1, were found to have defective
cocaine sensitization and conditioned place preference (Abarca
et al., 2002), highlighting a high degree of conservation in specific
gene-behavior relationships between Drosophila and mammals.

In addition, several novel genes regulating cocaine-induced
behavior have been identified by unbiased genetic screens for fly
mutants with abnormal cocaine responses using the ‘‘crack-
ometer’’. The crackometer is a foot-long narrow cylinder into which
naive or drug-treated flies are introduced; naive flies climb quickly
to the top of the column due to their innate propensity for negative
geotaxis and positive phototaxis, while cocaine-treated flies remain
near the bottom of the cylinder. A ‘‘drug effect score’’ (DES) is
calculated based on the fraction of flies that fail to climb, with
a high DES reflecting a strong effect of the drug on climbing
behavior (Bainton et al., 2000). The G-protein-coupled receptors
encoded by the moody gene function in a subtype of glia to regulate
the permeability of the blood–brain barrier (BBB) (Bainton et al.,
2005; Schwabe et al., 2005). The enhanced sensitivity to cocaine
observed in moody mutants does not appear to be due to altered
cocaine accessibility to the nervous system, but, rather, to some
homeostatic effect that a slightly leaky BBB has on nervous system
physiology (Bainton et al., 2005). Consistent with Moody func-
tioning in G-protein signaling, the fly homolog of RGS4, loco,
encoding a regulator/inhibitor of G-protein signaling (Granderath
et al., 1999), was identified as a mutant with decreased cocaine
sensitivity that also shows a defective BBB (Bainton et al., 2005;
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Schwabe et al., 2005). Interestingly, the levels of RGS4 are down-
regulated in the prefrontal cortex and striatum of rodents after
acute and chronic administration of psychostimulants or morphine
(Bishop et al., 2002; Gold et al., 2003; Schwendt et al., 2006, 2007).
However, mice lacking RGS4 show normal responses to opioids
(Grillet et al., 2005); further studies with these mice may uncover
a role for RGS4 in the behavioral effects of psychostimulants.
Finally, in mammals, claudin-5, a cell-adhesion molecule found in
tight junctions of epithelial cells that form the BBB, has been
implicated in normal BBB function (Nitta et al., 2003). Moreover,
the human claudin-5 and RGS4 loci have been associated with
vulnerability to schizophrenia (Chowdari et al., 2002; Sun et al.,
2004). These observations warrant a closer examination of the role
of the BBB, and the molecules that regulate its permeability, in
nervous system function and the etiology of mental illness,
including drug addiction.

white rabbit, encoding a Rho-family GTPase activating protein
(Rho-GAP) was also identified by an unbiased genetic screen for
mutants with reduced cocaine-, nicotine- and ethanol-sensitivity
(Rothenfluh et al., 2006). Small GTPases of the Rho family act as
molecular switches transducing extracellular signals to changes in
the actin cytoskeleton (Etienne-Manneville and Hall, 2002; Meyer
and Feldman, 2002). Their ability – and that of the molecules, such
as Rho-GAPs, that affect their activity – to dynamically regulate the
actin cytoskeleton and, consequently, the reorganization of axonal
and dendritic branches (Bonhoeffer and Yuste, 2002; Luo, 2002)
makes them ideally suited to regulate synaptic plasticity and
behavior. Indeed, defects in these processes have been linked with
certain forms of mental retardation, conditions commonly associ-
ated with abnormalities in dendrite and dendritic spine
morphology. Moreover, several genes implicated in non-syndromic
mental retardation are directly linked to Rho-type GTPase signaling
(Ramakers, 2002; Ropers and Hamel, 2005). Importantly, cocaine
has been shown to affect proper actin dynamics, which in turn has
been postulated to modulate cocaine-induced reinstatement of
drug seeking (Toda et al., 2006).
6. Role of the Drosophila LIM-only gene, dLmo,
in cocaine sensitivity

A genetic screen for Drosophila mutants with altered acute
responses to cocaine identified mutations in the Drosophila LIM-only
gene, dLmo, isolated due to their increased sensitivity to cocaine-
induced loss-of-negative geotaxis in the ‘‘crackometer’’ (Tsai et al.,
2004). The LIM motif, a cysteine-rich zinc-coordinating domain that
Fig. 2. Mechanism of dLmo function. In Drosophila one LMO protein is encoded by the
dLmo locus, and has been studied primarily for its role in the development of the fly
wing, which has led to a model for its function (Milan et al., 1998; Shoresh et al., 1998;
Zeng et al., 1998). dLMO protein inhibits the activity of the LIM–HD transcription factor
Apterous through its interactions with the co-activator Chip (the fly homolog of Clim/
Ldb1/NL1) (Fernandez-Funez et al., 1998; Milan and Cohen, 1999; van Meyel et al.,
1999; Weihe et al., 2001). Binding of Chip to Apterous leads to its dimerization and
activation. dLMO competes for Chip binding; consequently, increased dLMO levels
lead to inhibition of Apterous/LIM–HD function, while reduced dLMO levels cause
increased Apterous/LIM–HD activity.
mediates protein–protein interactions, was originally discovered as
a component of LIM–homeodomain (LIM–HD) transcription factors
(Dawid et al., 1998). LMO proteins are nuclear proteins composed
almost entirely by two tandem LIM domains. The dLMO protein
modulates the function of the LIM–HD factor encoded by the
apterous gene by competing with the binding of Apterous with its
cofactor Chip (Fig. 2) (Milan et al., 1998). Flies carrying loss-of-
function mutations in dLmo display increased sensitivity to the
effects of cocaine, while gain-of-function mutations (in which dLmo
is over-expressed), show the converse effect, a reduced response
to the drug (Tsai et al., 2004). This inverse relationship between
dLmo gene activity and drug responsiveness suggests that dLmo
regulates the expression of genes that might play a direct role in
controlling cocaine responses.

dLmo expression is prominent in several distinct brain regions,
including the antennal lobes and the mushroom bodies, which are
major brain centers involved in olfaction and olfactory condi-
tioning, respectively (Stocker, 1994; Zars, 2000). In addition, dLmo is
expressed prominently in the ventral lateral neurons (LNvs) (Fig. 3),
the major pacemaker cells regulating circadian locomotor rhyth-
micity in flies (Renn et al., 1999). Targeted expression of dLmo in
these different brain regions revealed that the altered cocaine
responses are due to differential dLmo expression in the LNvs (Tsai
et al., 2004). LNvs express the neuropeptide pigment-dispersing
factor (PDF), the primary functional output of the LNvs in the
regulation of circadian rhythms (Renn et al., 1999). Consistent with
a dysfunction of these pacemaker neurons in dLmo mutants, the
mutant flies also show somewhat altered circadian locomotor
rhythms (Tsai et al., 2004), adding to mounting evidence in
Drosophila and mice supporting a role for circadian genes in
cocaine-related behaviors. The finding that cocaine actions are
modulated by neurons critical for normal circadian locomotor
rhythmicity suggests a basis for this overlap.

The observation that dLmo functions in the PDF-expressing LNvs
to regulate cocaine sensitivity, together with the finding that dLmo
mutants show abnormal circadian locomotor rhythms, suggested
that the pathways regulating cocaine sensitivity may be under the
control of the circadian clock. However, experiments aimed to
address this issue disproved this idea. First, cocaine sensitivity is
essentially the same at all times of day, and second, mutations that
eliminate PDF expression show normal cocaine sensitivity (Tsai
et al., 2004). These data imply that the altered cocaine sensitivity of
dLmo flies is not a secondary consequence of their abnormal
circadian rhythms. Moreover, while the regulation of cocaine
sensitivity and circadian behaviors both localize to the pacemaker
neurons, the two behaviors are genetically separable. This appears
to be in contrast to findings with rodents, where several cocaine-
related behaviors show diurnal rhythms that are regulated by clock
genes (Abarca et al., 2002; Uz et al., 2002; Akhisaroglu et al., 2004;
Kurtuncu et al., 2004; Sleipness et al., 2005, 2007).

The cocaine hypersensitivity of dLmo mutants could result from
either the disruption of an LNv output that acts normally to dampen
cocaine sensitivity or from an increase in an output of LNvs that
normally enhances cocaine sensitivity (Fig. 4). These possibilities
were differentiated by testing flies that either lack LNvs (generated
by targeted expression of a cell death gene) and flies in which LNvs
are selectively silenced (generated by targeted expression of
tetanus toxin or a hyperpolarizing potassium channel). These
genetic manipulations cause reduced sensitivity to cocaine, the
opposite effect elicited by loss-of-dLmo function (Tsai et al., 2004),
implying that dLmo acts to inhibit the contribution of LNvs to
cocaine sensitivity (Fig. 4A).

Taken together, these data show that dLmo function in PDF-
expressing LNvs regulates acute sensitivity to volatilized cocaine in
Drosophila. First, loss-of-function mutations in dLmo show
increased cocaine sensitivity, a defect that can be reversed by



Fig. 3. Expression of dLmo in PDF-positive circadian pacemaker cells (LNvs) in Drosophila. (A) Confocal image of an adult brain hemisphere (midline to the right), in which GFP
expression is under the control of dLmo regulatory sequences (Tsai et al., 2004), double-stained with antibodies that recognizes PDF (magenta) and GFP (green). Overlap between
GFP and PDF expression is observed in the LNvs (white box). GFP expression is also seen in the mushroom body (MB) and antennal lobe (AL). (B–D) Higher magnification views of
the LNvs (white box in panel A). (Reprinted from Tsai et al. (2004). PLoS Biol. 2, e408, made available under the terms of the Creative Commons Attribution License 2.5.)
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induced expression of dLmo in the LNvs. Second, gain-of-function
mutations in which dLmo is over-expressed, show reduced cocaine
sensitivity; this resistance is mimicked by overexpression of dLmo
specifically in the LNvs. The role of dLmo in cocaine sensitivity,
although mapped to the circadian pacemaker neurons, is separable
from its role in circadian regulation. Interestingly, expression of
a mouse homolog of dLmo, Lmo4, is highly enriched in the supra-
chiasmatic nucleus (SCN) (AWL, DK, and UH, unpublished obser-
vations), the mammalian central pacemaker. Furthermore,
microarray analysis revealed that in many mouse tissues, Lmo4
Fig. 4. Model for Lnv and dLmo function in Drosophila. dLmo could function by (A)
disrupting an LNv output that acts normally to promote cocaine sensitivity, or (B)
increasing an output of LNvs that normally dampens cocaine sensitivity. In both cases,
loss-of-dLmo would result in enhanced cocaine sensitivity. These possibilities can be
differentiated by testing flies that either lack LNvs (generated by targeted expression of
a cell death gene) or flies in which LNvs are selectively silenced (generated by targeted
expression of tetanus toxin or a hyperpolarizing potassium channel). These genetic
manipulations cause reduced sensitivity to cocaine, the opposite effect elicited by loss-
of-dLmo function (Tsai et al., 2004), implying that dLmo acts to inhibit the contribution
of LNvs to cocaine sensitivity (panel A).
expression varies with circadian time (Panda et al., 2002). These
data suggest an evolutionarily conserved role for LMOs in circadian
systems, a possibility that has not yet been addressed experimen-
tally in rodents. How do LNvs modulate cocaine responses? The
observation that LNv electrical activity and synaptic output
contribute to cocaine-induced behavioral responses raises
Fig. 5. A model for LNv and dLMO regulation of cocaine sensitivity in Drosophila. (A) In
wild type, LNvs modulate locomotor responses via electrical activity and synaptic
transmission. In this model, cocaine would act to directly increase LNv activity. Upon
cocaine administration, synaptic dopamine concentrations would be increased (via
cocaine’s inhibition of the plasma membrane dopamine transporter), and activation of
presumed dopamine receptors on the LNv (dark arrowheads) would stimulate elec-
trical activity and subsequent synaptic output. This activity would then contribute to
the behavioral response of the fly to cocaine. (B) LNv ablations eliminate LNv contri-
bution to the cocaine response, reducing cocaine sensitivity. (C) dLmo loss-of-function
mutants (dLmoLOF), which have increased cocaine sensitivity, would have increased
activity/output during the cocaine response. This increased activity may be
mediated by increases in dopamine receptor content on the LNv. (D) dLmoGOF mutants
would have reduced LNv output and reduced cocaine sensitivity. This could result from
a reduction in dopamine receptor density. (Reprinted from Tsai et al. (2004). PLoS
Biol. 2, e408, made available under the terms of the Creative Commons Attribution
License 2.5.)



Fig. 6. Expression of Lmo4 in the adult mouse brain. (A) Sagittal brain section of an
adult Lmo4Gt/þ mouse stained with X-Gal (blue) to detect b-galactosidase expression
(expressed as a Lmo4-b-galactosidase fusion protein). Intense b-galactosidase
expression is observed in neocortex (Ctx; layers III and V), hippocampus (Hipp; CA3
regions and subiculum), and nucleus accumbens (Acb); low expression is also seen in
the ventral tegmental area (VTA) and some hypothalamic nuclei. Expression in baso-
lateral amygdala and caudate putamen is not seen in this specific sagittal section. (B)
Coronal section showing b-galactosidase expression in the Acb of an Lmo4Gt/þ adult
mouse (AC¼ anterior commissure). (C) Expression of LMO4-b-galactosidase fusion
protein in the VTA of an Lmo4Gt/þ mouse. Brain sections containing VTA were pro-
cessed for b-galactosidase (green) and tyrosine hydroxylase (TH, red) antibody reac-
tivity. Colocalization of LMO4 fusion protein and TH is observed in some (arrow), but
not all (arrowhead) TH-positive dopaminergic neurons.
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a number of possibilities regarding the interaction of cocaine with
these neurons and their output. It is possible, for example, that the
activity of LNvs directly increases upon cocaine administration,
which in turns results in cocaine-induced changes in behavior
(Fig. 5A). In agreement with this possibility is the finding that iso-
lated cultured LNvs respond to either dopamine or acetylcholine,
but not to other neurotransmitters (Wegener et al., 2004), sug-
gesting that LNvs express dopamine receptors and may therefore be
sensitive to the enhanced synaptic dopamine levels produced upon
inhibition of DAT by cocaine in pre-synaptic neurons. However, it is
also possible that other, yet to identified dopamine receptor-
expressing neurons function pre- or post-synaptically to the LNvs
(or in a parallel pathway) to regulate cocaine sensitivity. If dopamine
Fig. 7. Cocaine-sensitivity phenotypes of Lmo4Gt heterozygous mice. (A) Mice heterozyg
compared to wild-type littermates (þ/þ, black bars) upon administration of 5 mg/kg, but not
indicates significant differences between groups (Student’s t-test, P< 0.05, n¼ 6–13). (B) St
receptors are expressed in LNvs, we speculate that their activity
could be directly increased by cocaine administration. When the
LNvs are ablated or silenced (Fig. 5B), one site of cocaine action
would be eliminated, thus reducing cocaine’s effect. How would
dLmo fit into this model? It is possible that in dLmo loss-of-function
mutants, LNv output is boosted, possibly due to increased expres-
sion of dopamine (or other) receptors, leading to enhanced cocaine
sensitivity (Fig. 5C). Conversely, increased dLmo expression in LNvs
would result in reduced receptor content and, consequently, in
dampened cocaine sensitivity (Fig. 5D). LMO-induced changes in
receptor expression are not inconceivable given LMO’s interaction
with LIM–HD proteins. Changes in LIM–HD protein function have
been shown to affect aspects of neuronal subtype identity, including
neurotransmitter and receptor expression profiles. For example,
mutations in the Drosophila LIM–HD gene islet cause a loss-of-
dopamine and serotonin syntheses, while ectopic expression leads
to ectopic expression of TH (Thor and Thomas, 1997). This graded
effect of islet function on dopamine levels and TH expression is
reminiscent of the graded cocaine responses observed in dLmo gain-
and loss-of-function mutants. In addition, expression of a Drosophila
dopamine receptor in larval neurons requires the function of the
LIM–HD gene apterous (Park et al., 2004). The observation that
dopamine receptor expression is also altered in various Caeno-
rhabditis elegans LIM–HD mutants (Tsalik et al., 2003), suggests an
evolutionarily conserved role of LIM–HD proteins and possibly
LMOs in the regulation of neurotransmitter identity and respon-
siveness of specific neurons. Mammalian LMOs interact with
multiple transcription factors, which in turn regulate various
aspects of nervous system development, including the specification
of neural identity (see below) (Hobert and Westphal, 2000; Shir-
asaki and Pfaff, 2002). Thus, LMOs are ideally suited to modulate the
neurochemical identity and sensitivity of the nervous system to
various stimuli, including drugs of abuse.

7. Role of Lmo4 in cocaine-related behaviors in mice

Mammalian genomes encode four Lmo genes, Lmo1–4, which
have been studied primarily for their roles in oncogenesis. Lmo1
and 2 were first discovered as chromosomal translocations in T-cell
leukemias (Rabbitts, 1998). Moreover, high expression of Lmo3 is
correlated with unfavorable prognosis in neuroblastomas (Aoyama
et al., 2005b), while Lmo4 plays a role in a variety of cancers (Vis-
vader et al., 2001; Sum et al., 2005; Taniwaki et al., 2006; Murphy
et al., 2008). In addition, high levels of LMO proteins contribute to
increased cell proliferation, suggesting that the function of LMOs in
diverse tissues is to inhibit cellular differentiation. Lmo genes are
highly expressed during development, and their roles in
ous for the Lmo4Gt insertion (Gt/þ, gray bars) show increased locomotor activation
10 nor 30 mg/kg, of cocaine. Data show total activity for 15 min after injection. Asterisk

ereotypic counts in response to acute cocaine injections. Data were analyzed as in (A).



Fig. 8. Altered expression of Drd2 and Gria1 upon Lmo4 downregulation in mouse Acb. (A–C) Quantitative RT-PCR analysis of mRNA isolated from Acb infected with lentiviruses
expressing either an shRNA that targets Lmo4 (shLMO4) or a ‘‘scrambled’’ control shRNA (shSCR) that is predicted to be inert. Infected cells were laser capture microdissected from
brain sections taken 12 days after stereotaxic injection of virus into Acb. Expression of Drd2 (A) and Gria1 (B) are significantly different between shSCR- and shLMO4-infected
samples, in contrast to the neuronal marker Eno2 (C), which shows no difference. Error represents SEM (n¼ 5 in each group; *P< 0.05 by Student’s t-test).
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embryogenesis have been investigated using knockout mice
(Warren et al., 1994; Hahm et al., 2004; Tse et al., 2004). Mice
containing a homozygous null mutation in Lmo4 die just after birth,
and exhibit defective neural tube closure (Hahm et al., 2004; Tse
et al., 2004; Lee et al., 2005). Clues as to the function of Lmo4 in
neurons have come from cultured neuroblastoma cells, where its
overexpression prevents neurite outgrowth, while its down-
regulation promotes neurite formation (Vu et al., 2003), suggesting
an inhibitory role in neuritogenesis. Lmo4 is widely expressed in
the brain during early embryogenesis, and becomes more specifi-
cally localized during late embryogenesis, with particularly high
levels in the cortex, hippocampus, subthalamic nuclei, globus pal-
lidus, nucleus accumbens, and caudate putamen (Hermanson et al.,
1999). Expression of Lmo4 in the developing mouse cerebral cortex
is necessary for the organization of the barrel field in the somato-
sensory cortex and the proper patterning of thalamocortical
connections, as demonstrated in mice with conditional knockout of
Lmo4 in the cortex (Kashani et al., 2006). In addition, Lmo4 is
asymmetrically expressed in the right perisylvian cerebral cortex in
humans, suggesting a potential role in the development of human
brain asymmetry (Sun et al., 2005). Expression of Lmo genes in the
adult mouse central nervous system closely mimics expression
seen during development, with high expression in the cortex,
caudate putamen, amygdala, and hippocampus (Hinks et al., 1997;
Hermanson et al., 1999) (see below).

As in Drosophila, mammalian LMO proteins have been shown to
play a role in transcriptional regulation (Retaux and Bachy, 2002;
Matthews and Visvader, 2003). LMOs interact with the mammalian
homolog of Drosophila Chip, known as Ldb1 (Grutz et al., 1998;
Deane et al., 2003). Ldb proteins, in turn, interact with DNA-binding
LIM homeodomain (LIM–HD) proteins to regulate transcription.
Large multimeric transcriptional complexes containing LMOs, Ldbs,
and LIM–HD proteins are thought to specify neuronal cell fate, for
example the choice between motor neuron or interneuron in the
developing spinal cord (Thaler et al., 2002). In this context, high
levels of LMO proteins are hypothesized to repress transcription
mediated by LIM–HD factors by competing with LIM–HD factors for
Ldb binding (Fig. 2). However, mammalian LMO proteins also
interact with multiple other transcription factors, and can either
activate or inhibit their function (Visvader et al., 1997; Wadman
et al., 1997; Chan and Hong, 2001; Aoyama et al., 2005a; Singh et al.,
2005; Kashani et al., 2006). The promiscuous binding of LMO
proteins to many different types of transcription factors indicates
that these proteins can exist in large transcriptional complexes and,
depending on context, can promote transcriptional activation or
repression. Generally, however, the transcriptional modifying
property of LMO proteins tends to keep cells in an undifferentiated
state, and in neurons appears to negatively regulate dendrite
formation or axonal outgrowth. In addition, evidence showing that
expression and activity of LMOs are dynamically regulated within
the nervous system is growing. For instance, expression of the
murine Lmo1, Lmo2, and Lmo3 genes is differentially regulated by
seizure activity in specific regions of the hippocampus and fore-
brain of adult mice (Hinks et al., 1997). In addition, gene array
experiments have revealed that expression of mouse Lmo4 is under
circadian regulation in the SCN and increased in the cerebral cortex
during sleep deprivation (Cirelli and Tononi, 2000; Panda et al.,
2002), and Lmo3 was isolated as a transcript upregulated by
dopamine administration in cultured astrocytes (Shi et al., 2001).
Lastly, Lmo2 and Lmo4 were isolated in a screen for calcium-regu-
lated activators of transcription (Aizawa et al., 2004), suggesting
a role for LMOs in regulating gene expression changes induced by
neural activity.

As detailed above, experiments in Drosophila revealed a role for
dLmo in the acute response to cocaine, suggesting the possibility
that one or more mammalian Lmo genes may mediate behavioral
responses to cocaine. This possibility was tested by examining the
role of Lmo4 in behavioral responses to cocaine. A mouse strain,
Lmo4Gt, was generated from embryonic stem cells (Bay Genomics)
that contain a gene-trap insertion in the 4th intron of Lmo4 (Lasek
et al., submitted for publication). Consistent with the reported
lethality of null mutations in Lmo4, homozygous Lmo4Gt mice do
not survive, indicating the generation of a null (or strong hypo-
morphic) allele. Lmo4Gt/þ heterozygous mice are viable and fertile
with no obvious behavioral defects, despite expressing w50% of
wild-type Lmo4 transcript levels in the brain as determined by
quantitative RT-PCR (Lasek et al., submitted for publication). The
Lmo4Gt line produces an LMO4-b-galactosidase fusion protein,
whose expression is regulated by endogenous Lmo4 cis-regulatory
elements. Intense expression of b-galactosidase in adult Lmo4Gt/þ
mice is restricted to specific brain regions, including most regions
implicated in drug-related behaviors (Nestler, 2000), such as the
prefrontal cortex, nucleus accumbens (Acb), and ventral tegmental
area (Fig. 6A–C), data that is consistent with in situ hybridization
studies (Hermanson et al., 1999). Lmo4Gt/þ mice show a modest
but significant increase in the acute locomotor-stimulant and
stereotypic responses to a low dose of cocaine (5 mg/kg) (Fig. 7A,
B); however, no significant differences are observed upon exposure
to moderate or high cocaine doses (10, 15, or 30 mg/kg). A robust
enhancement in behavioral sensitization to repeated cocaine
exposures is also observed in Lmo4Gt/þ mice (Lasek et al.,
submitted for publication). The increase in acute cocaine sensitivity
observed in heterozygous Lmo4Gt mice parallels data on dLmo and
cocaine responses in Drosophila, as decreased dLmo levels lead to
enhanced acute cocaine sensitivity.

Identification of transcriptional targets of LMO4 will likely
provide relevant insights into its mechanisms of action in regulating
cocaine-induced behaviors. Since dopamine and glutamate systems
regulate the behavioral responses to cocaine (see, for example,
Ikegami and Duvauchelle, 2004; Kalivas et al., 2005; Haile et al.,
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2007; Kalivas, 2007; Kalivas and O’Brien, 2008), the expression of
dopamine and glutamate receptor mRNAs was examined in nucleus
accumbens (Acb) tissue expressing a small hairpin RNA targeting
Lmo4 (shLMO4) (Lasek et al., submitted for publication). Significant
reductions in mRNA levels for the dopamine D2 receptor (Drd2,
Fig. 8A) and the GluR1 subunit of the AMPA receptor (Gria1, Fig. 8B)
are observed in Acb tissue expressing shLMO4 (where Lmo4
expression is decreased by approximately 50%). Expression of
dopamine D1, D3 and D5 receptors and of the GluR2 subunit of the
AMPA receptor are not significantly altered upon Lmo4 down-
regulation (AWL, unpublished results). Interestingly, over-
expression of a dominant-negative pore-dead form of GluR1 in the
Acb of rats causes an enhanced acute response to cocaine (Bachtell
et al., 2008). This is consistent with a predicted enhanced behavioral
response to cocaine observed upon downregulation of GluR1 in the
Acb of mice with decreased Lmo4 expression. In contrast, Drd2
knockout mice exhibit reduced locomotor activity and responsive-
ness to acute cocaine administration (Chausmer et al., 2002) The
transcriptional activation of Drd2 by Lmo4 in Acb (implied by the
reduced expression of Drd2 upon Lmo4 downregulation) is there-
fore not consistent with the enhanced cocaine sensitivity seen upon
Lmo4 downregulation. Drd2 knockout mice, however, exhibit
increased cocaine self-administration at high cocaine doses, sug-
gesting a role for Drd2 in limiting drug intake (Caine and Koob,
1994). In addition, human cocaine addicts and non-human primates
chronically self-administering cocaine show decreased D2-receptor
levels in striatum (Volkow et al., 1993; Nader et al., 2002), and
polymorphisms of the D2 dopamine receptor resulting in reduced
receptor levels have been linked to cocaine addiction (Noble et al.,
1993; Persico et al., 1996). Thus, Lmo4 either directly or indirectly
regulates the profile of receptors expressed by Acb neurons, an
effect that likely alters the function of neural circuits that mediate
behavioral responses to cocaine and possibly other abused drugs. It
will be interesting to determine if the expression of Drosophila
dopamine and/or glutamate receptors is regulated by dLmo and
whether such potential regulation is responsible for the cocaine-
sensitivity defects observed in dLmo mutant flies.

8. Conclusions

It has now been well-established that drugs of abuse act in flies
and mammals by similar mechanisms. Behaviors are remarkably
similar, and some similarities and the molecular and neurochem-
ical levels have already emerged. Unbiased genetic screens in
Drosophila – aided by the ease, quickness, and low expense of fly
studies – have been used to identify novel potential candidate
genes regulating drug-related behaviors. These screens have now
implicated a variety of signaling pathways and biological processes
in drug-related behaviors, many of which appear to have evolu-
tionarily conserved roles in mammals. The role of dLmo and Lmo4 in
regulating cocaine-related behaviors in flies in mice, respectively,
provides an example of such conservation. Moreover, the obser-
vation that LMO4 regulates dopamine and glutamate receptor
expression in the nucleus accumbens provides a possible mecha-
nism through which LMOs may regulate cocaine-related behaviors.
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