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HIGHLIGHTS

® Cognitive impairment is a core feature of schizophrenia that is debilitating.

® Currently, there are no clinically effective treatments for these impairments.

® a7-nAChRs are considered viable therapeutic targets for cognition in schizophrenia.
® However, to date no a7-nAChR ligand has been approved for schizophrenia.

® This review discusses the relevant a7-nAChR literature and future directions.

ARTICLE INFO ABSTRACT

Keywords: Schizophrenia is a devastating mental illness and its effective treatment is among the most challenging issues in
Cholinergic psychiatry. The symptoms of schizophrenia are heterogeneous ranging from positive symptoms (e.g., delusions,
Pro'c"g‘_“tlve hallucinations) to negative symptoms (e.g., anhedonia, social withdrawal) to cognitive dysfunction.
Psychosis Antipsychotics are effective at ameliorating positive symptoms in some patients; however, they are not reliably
Cognition : : : . PRI : . o ies

Executive fumction effective at improving the negative symptoms or cognitive impairments. The inability to address the cognitive
Attention impairments is a particular concern since they have the greatest long-term impact on functional outcomes. While

decades of research have been devoted to the development of pro-cognitive agents for schizophrenia, to date, no
drug has been approved for clinical use. Converging behavioral, neurobiological, and genetic evidence led to the
identification of the a7-nicotinic acetylcholine receptor (a7-nAChR) as a therapeutic target several years ago
and there is now extensive preclinical evidence that a7-nAChR ligands have pro-cognitive effects and other
properties that should be beneficial to schizophrenia patients. However, like the other pro-cognitive strategies,
no a7-nAChR ligand has been approved for clinical use in schizophrenia thus far. In this review, several topics
are discussed that may impact the success of a7-nAChR ligands as pro-cognitive agents for schizophrenia in-
cluding the translational value of the animal models used, clinical trial design limitations, confounding effects of
polypharmacy, dose-effect relationships, and chronic versus intermittent dosing considerations. Determining the
most optimal pharmacologic strategy at a7-nAChRs: agonist, positive allosteric modulator, or potentially even
receptor antagonist is also discussed.
article is part of the special issue on ‘Contemporary Advances in Nicotine Neuropharmacology’.

these diverse symptoms, cognitive impairment is a core feature of
schizophrenia that often appears prior to the onset of psychotic symp-
toms, it persists throughout the course of the illness, and it has the

1. Introduction

Schizophrenia is a debilitating mental illness characterized by po-

sitive symptoms (e.g., hallucinations, delusions), negative symptoms
(e.g., depressed mood, anhedonia, social withdrawal) and cognitive
impairments (e.g., deficits in information processing, attention,
working memory, executive function, Green and Braff, 2001). Among

greatest long-term impact on functional outcomes (reviewed, Kahn and
Keefe, 2013; Green and Harvey, 2014, Kahn, 2019). Unfortunately, the
most commonly prescribed treatments for schizophrenia, the anti-
psychotics, while effective at improving positive symptoms in some

* Corresponding author. Department of Pharmacology & Toxicology, 1120 15th Street, CB-3545, Augusta University, Augusta, 30912, Georgia.

E-mail address: aterry@augusta.edu (A.V. Terry).

https://doi.org/10.1016/j.neuropharm.2020.108053

Received 22 January 2020; Received in revised form 10 March 2020; Accepted 11 March 2020

Available online 15 March 2020
0028-3908/ © 2020 Elsevier Ltd. All rights reserved.


http://www.sciencedirect.com/science/journal/00283908
https://www.elsevier.com/locate/neuropharm
https://doi.org/10.1016/j.neuropharm.2020.108053
https://doi.org/10.1016/j.neuropharm.2020.108053
mailto:aterry@augusta.edu
https://doi.org/10.1016/j.neuropharm.2020.108053
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuropharm.2020.108053&domain=pdf

A.V. Terry and P.M. Callahan

Working

Social
Cognition

patients, are not reliably effective at improving cognitive function. This
unmet medical need has been an important focus of drug discovery
efforts in both academia and the pharmaceutical industry for several
decades; however, to date no pro-cognitive agent has been approved for
clinical use in schizophrenia.

A key challenge to developing novel treatments for the cognitive
dysfunction in schizophrenia is the complex and poorly understood
etiology and pathophysiology of the illness. Multiple neurotransmitter
systems have been implicated in the illness (Goff and Wine, 1997;
Kapur and Mamo, 2003) including dopaminergic, serotoninergic, glu-
tamatergic, adrenergic, and cholinergic pathways and accordingly, new
compounds designed to target these various systems have been devel-
oped and evaluated. Cholinergic targets, particularly nicotinic acet-
ylcholine receptors (nAChRs) have been a focus of a number of drug
discovery programs over the last 20-25 years based on multiple lines of
behavioral, neurobiological, and genetic evidence. From the behavioral
perspective, a remarkable observation in schizophrenic patients is their
especially heavy abuse of tobacco products. According to the National
Institute on Drug Abuse (NIDA, 2020) tobacco smoking rates in schi-
zophrenia patients range as high as 70-85%, which is dramatically
higher than the general population (~19-20%) and significantly higher
than in any other mental illness (George and Krystal, 2000). Smokers
with schizophrenia have also been documented to extract more nicotine
per cigarette and to smoke a higher number of cigarettes per day
compared to smokers in the general population (Olincy et al., 1997;
Strand and Nybdack, 2005). It has been suggested that this high level of
nicotine consumption may represent an attempt of schizophrenia pa-
tients to self-medicate the cognitive symptoms, particularly deficits of
information processing and attention (Olincy et al., 1997; Leonard
et al., 2007).

2. Focus on o7-nAChRs

In drug discovery programs for neuropsychiatric illnesses, the het-
eromeric a4p2 and homomeric a7-nAChRs have been the most com-
monly targeted nAChR subtypes to date since they are the most pre-
dominant subtypes found in the mammalian brain. However, the a7-
nAChR has been more commonly targeted for the cognitive deficits in
schizophrenia. This is likely based, in part, on several factors including
postmortem evidence of a7-nAChR deficits in the frontal cortex and
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Sensory Gating
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Fig. 1. Diagram illustrating several domains of
cognition and other behaviors often targeted in
drug discovery programs for schizophrenia and
other neuropsychiatric disorders. The homomeric,
low affinity a7-nicotinic acetylcholine receptor
(a7-nAChR) is abundant in regions of the brain
(e.g., hippocampus, prefrontal cortex) that are
important for cognitive function. The receptor
consists of five subunits arranged around a central
channel that opens when endogenous ligands such
as acetylcholine or exogenous ligands (nicotine)
bind at the orthosteric site allowing cations (e.g.,
Ca™* ™) to flow through the channel into the neuron
causing depolarization. Allosteric sites are the
target of positive allosteric modulators (PAMs) and
they are located at a site which is distinct from the
orthosteric where they serve to indirectly influence
(modulate) the effects of the agonist.

hippocampus of schizophrenic patients (Guan et al., 1999) and linkage
analysis implicating chromosome 15q14 (the region that includes the
a7-nAChR gene). Polymorphisms in the core promoter of the a7-nAChR
gene (CHRNA7; GeneBank accession no. Z23141) have been associated
with reduced inhibition of the P50 evoked response to repeated audi-
tory stimuli in schizophrenic patients, which is indicative of sensory
gating abnormalities (reviewed, Freedman et al., 2003). a7-nAChR
deficits may also contribute to abnormalities of smooth pursuit eye
movements, sustained attention, and other domains of cognition in
schizophrenia (reviewed Martin et al., 2004). In addition to schizo-
phrenia, the CHRNA7 gene is also linked to multiple disorders where
cognitive deficits are present including bipolar disorder, autism spec-
trum disorders, attention deficit hyperactivity disorder, Alzheimer
disease, epilepsy, and sensory processing deficits (reviewed in Corradi
and Bouzat, 2016).

The information in the paragraph above regarding the importance
of a7-nAChR as a potential therapeutic target for the cognitive defects
in schizophrenia is also supported by extensive preclinical evidence.
From a neurobiological and neuropharmacological perspective, a7-
nAChRs modulate multiple (cognition-related) processes in neurons
that are calcium-dependent including neurotransmitter release
(McGehee et al., 1995; Gray et al., 1996), postsynaptic signaling (Chang
and Berg, 1999; Hefft et al., 1999) and neuronal survival (Messi et al.,
1997; Berger et al., 1998). Moreover, a7-nAChRs are also abundant in
regions of the brain that are important for learning and memory and
executive function such as the hippocampus and prefrontal cortex
(Gotti et al., 2007). In addition, agonists of a7-nAChRs have been
shown to increase the phosphorylation of ERK and CREB (signaling
pathways linked to long-term potentiation and memory formation) in
the rodent brain (Bitner et al., 2007, 2010). There is also extensive
evidence that a7-nAChR ligands improve behavioral processes that are
relevant to schizophrenia (see Fig. 1) such as auditory-evoked gating
and prepulse inhibition in rodents, as well as multiple domains of
cognition including attention, working memory, reference memory,
social cognition, and executive function in rodent models as well as
non-human primates (see reviews, Young and Geyer, 2013; Freedman,
2014; Bertrand and Terry, 2018). Table 1 provides a list of re-
presentative a7-nAChRs ligands that have been developed as pro-cog-
nitive agents for potential use in schizophrenia and other disorders of
cognition. Although not all-inclusive, Table 1 includes a7-nAChR
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Table 2

a7-nAChR ligands that have been evaluated in human clinical trials for pro-cognitive effects.

References

Clinical Endpoints

Clinical Stage

a7 nAChR activity & other actions

Compound Name

Haig et al., 2016a,b; Haig et al. (2018)

Barch et al. (2016)

Cognition, Negative Symptomology

Cognition, fMRI Brain Activation

Phase 11

Partial agonist
Partial agonist

PAM

ABT-126

Phase II

AQWO51

Gee et al. (2017); Kantrowitz et al. (2020)

Cognition, Auditory Sensory Gating, Negative Symptomology

Cognition, Auditory Sensory Gating

Phase Ib
Phase II

AVL-3288

Knott et al., 2015a,b; Aidelbaum et al. (2018); Choueiry et al. (2019)
Olincy et al. (2006); Freedman et al. (2008)

Keefe et al. (2015)

Full agonist

Cytidine 5’-diphosphocholine (CDP-choline)

DMXB-A (GTS-21)

Cognition, Auditory Sensory Gating, Negative Symptomology

Cognition, Negative Symptomology

Phase II

Partial agonist

Phase I1I

Partial agonist/5-HT3 antagonist

Encenicline (EVP-6124)

Galantamine

Choueiry et al. (2019); Buchanan et al. (2017)

Cognition, Auditory Sensory Gating, Negative Symptomology

Cognition, Auditory Sensory Gating, Smoking Cessation

Cognition, Negative Symptomology

Phase II

PAM/acetylcholinesterase inhibitor

PAM

Winterer et al. (2013); Perkins et al. (2018)

Umbricht et al. (2014)

Phase Ib
Phase 11

JNJ-39393406

RG3487

Partial agonist/5-HT3 antagonist

Shiina et al. (2010); Zhang et al. (2012); Noroozian et al. (2013)

Lieberman et al. (2013)

Cognition, Auditory Sensory Gating, Negative Symptomology

Cognition, Negative Symptomology

Phase II

Partial agonist/5-HT3 antagonist

Full agonist

Tropisetron
TC-5619

Phase II
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agonists, partial agonists, and positive allosteric modulators (PAMs), a
summary of some of the positive behavioral properties associated with
each compound, and representative references.

3. Clinical trial failures

Despite extensive preclinical evidence to support the pro-cognitive
effects of a7-nAChR ligands noted above (and summarized in Table 1)
and positive results in some early (Phase I and II) clinical trials, to date,
no compound has met the primary objective of cognitive improvement
in schizophrenic patients in a large phase III, double blind, placebo
controlled clinical trial or unanticipated side effects emerged (see re-
view, Tregellas and Wylie, 2019). The failure of pro-cognitive agents in
schizophrenia clinical trials have reduced the enthusiasm of pharma-
ceutical companies and, unfortunately, many have abandoned this line
of research. While it is possible that the lack of robust (pro-cognitive)
efficacy or side effect burden may represent real limitations of a7-
nAChR ligands, it should be noted, that given the number of compounds
that have been developed, only one agent have been evaluated in a
large scale Phase III clinical trial in schizophrenia patients (Encenicline-
EVP-6124, see Table 2). Moreover, there is an increasing amount of
discussion about possible limitations of both the preclinical and clinical
studies conducted to date that may have resulted in the so-called
“treatment failures” of pro-cognitive agents. Some of these potential
limitations are listed in Table 3. See also several recent reviews
(Bertrand and Terry, 2018; Terry and Callahan, 2019; Tregellas and
Wylie, 2019) on this subject.

4. Translational gaps and overreliance on rodent models

The unfavorable results of clinical trials for pro-cognitive agents in
schizophrenia described above have led to questions about the “trans-
lational validity” of animal models used in preclinical studies (see Lewis
et al., 2018). In drug discovery research for schizophrenia and other
neuropsychiatric disorders, addressing the translational elements, face,
construct, and predictive validity in animal models is particularly
challenging. In this context, multiple challenges include the subjective
nature of many of the human symptoms, the lack of biomarkers and
objective diagnostic tests, and our relatively poor understanding of the
neurobiology and genetics of neuropsychiatric disorders (see review
Nestler and Hyman, 2010; Monteggia et al., 2018). One of the goals of
the Research Domain Criteria (RDoC) paradigm launched in 2010 by
the National Institute of Mental Health (NIMH) was to improve trans-
lation between animal experiments and clinical studies in psychiatry
research. The basic concept in the preclinical realm was to encourage
basic scientists to identify molecular or neural mechanisms (or neural
circuitry) that contributes to specific domains of a mental function ra-
ther than creating animal models of diseases. In the clinical realm, re-
searchers were encouraged to conceptualize normal human behavior,
emotion, and cognition as dimensional, with mental illnesses as di-
mensional extremes as opposed to being restricted by DSM diagnostic
categories (see Morris and Cuthbert, 2012; Ross and Margolis, 2019).
However, more that 10 years after the introduction of the RDoC para-
digm, it is unclear if it has improved research progress in psychiatry
especially in the drug discovery arena and its clinical relevance is in-
creasingly being questioned (see Carpenter, 2016; Ross and Margolis,
2019).

Regarding translational validity, rodent models are undoubtedly
important in basic research for testing disease-related hypotheses and
the early evaluations of novel therapeutic agents, however, it is likely
they have been relied upon too much in neuropsychiatric drug dis-
covery especially at the later preclinical stages of drug development.
Compared to humans, the behavioral repertoire of rodents is quite
limited and, while debated (see, Laubach et al., 2018), there are major
anatomical differences in their brains, most notably, the development
of cortical regions of the forebrain, particularly the dorsolateral
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Table 3
Limitations of Preclinical and Clinical Studies of pro-cognitive agents to date.

Neuropharmacology 170 (2020) 108053

Preclinical

Clinical

Translational challenges due to the poor understanding of the etiology and
pathophysiology of schizophrenia

Overreliance on rodent models

Overreliance on acute dose-effect analyses

Pro-cognitive agents not evaluated in test subjects that have been chronically treated with

antipsychotic.

Pro-cognitive agents not evaluated in test subjects that have been chronically treated with

nicotine or nicotine plus antipsychotics

Studies often underpowered due to the inclusion of cognitively “normal” patients

Polypharmacy and drug exposure history not properly addressed

Unanticipated practice effects masking a positive outcomes

Chronicity of the illness not taken into account. Recently diagnosed and first
episode patients should be evaluated.

Inclusion of inexperienced trial sites and focus on volume of patients enrolled as
opposed to the quality of the recruitment sites

prefrontal cortex (DLPFC). This portion of the brain of humans and
more advanced non-human primates (e.g., macaques) has been im-
plicated specifically in the most complex cognitive processes such as
working memory, sustained attention, decision taking, and executive
function (reviewed, Barbey et al., 2013).

Regarding, a7-nAChRs, there are also significant differences in the
genetics, pharmacology, biophysical properties, and neuronal localiza-
tion of a7-nAChRs between rodents and humans that could underlie
different outcomes in preclinical and clinical trial evaluations of a7-
nAChRs ligands (reviewed Bertrand and Terry, 2018). From a genetics
standpoint, the recent findings of Yin et al. (2017) are particularly
notable. In humans with 15q13.3 microdeletion syndrome, caused by
heterozygous deletions involving the CHRNA7 gene, behavioral ab-
normalities often observed in neuropsychiatric conditions such as
schizophrenia and autism were observed, whereas Chrna7 knockout
mice did not exhibit similar neurobehavioral phenotypes. From a
pharmacological perspective, the effects of specific agonists in vitro
differ between human and rodent sequences coding for a7-nAChRs. For
example, the partial agonist DMXB-A (GTS-21) activates the rat a7-
nAChR to a maximal response greater than twice that of the human a7-
nAChR, and the Ki of GTS-21 at the rat receptor is roughly an order of
magnitude less than at the human receptor (Meyer et al., 1998), sug-
gesting that similar serum levels might have disparate effects between
the species. Finally, differences in the synaptic receptor expression
between rodents and humans may be relevant as suggested by a recent
study in nonhuman primates where postsynaptic localization of a7-
nAChRs on spines were demonstrated in glutamatergic synapses of
layer III dorsolateral prefrontal cortex (Yang et al., 2013). Most phy-
siological studies in rodent frontal cortex, in contrast, have demon-
strated presynaptic a7-nAChR actions and it has been suggested that
spine a7-nAChRs are not prevalent or only have subtle effects on
neuronal physiology in rodents compared to primates. Collectively, the
information discussed here would appear to justify a renewed interest
in the use of nonhuman primate species (see Monteggia et al., 2018) in
neuropsychiatry and drug discovery research, given their richer beha-
vioral repertoire and more homologous brain anatomy with humans
compared to rodents.

5. Polypharmacy and drug exposure history

In both preclinical and clinical evaluations of a7-nAChR ligands, it
is uncommon for the subject of polypharmacy and chronic anti-
psychotic drug history to be adequately addressed. Clearly, there are
practical limitations in clinical trials, but the patient's treatment history
(which in many cases consists of multiple years of antipsychotic treat-
ment) should be more carefully considered, not just concomitant anti-
psychotic treatment at the time of the clinical trial. Antipsychotics are
well documented to have a variety of chronic effects on the mammalian
brain including alterations of neurotransmitter receptor expression and
neural plasticity (reviewed, Morrison and Murray, 2018), i.e., effects
that could influence the response to a novel a7-nAChR ligand. Inter-
estingly, guidelines related to polypharmacy and concomitant drug
exposure have been developed for studies designed to evaluate

potential pro-cognitive agents in schizophrenia trials. For example, a
workshop on clinical trial design for evaluating cognitive enhancing
drugs for schizophrenia was held in 2004 and it included experts from
the FDA, NIMH, and scientists from academia and the pharmaceutical
industry (see Buchanan et al., 2005). Among the various guidelines
developed, it was recommended that polypharmacy (treatment with
multiple antipsychotics) and combining a putative cognitive-enhancing
agent with an antipsychotic with high affinity for the targeted receptor
be avoided. However, it is unclear how closely such policies have been
followed.

In preclinical evaluations of potential pro-cognitive agents for po-
tential use in schizophrenia, the concomitant administration of anti-
psychotics has only rarely been done and when it has, the antipsychotic
has most commonly been administered acutely (e.g., Marquis et al.,
2011). We recently conducted a series of experiments in rats where the
a7-nAChR partial agonist tropisetron was administered to rats that had
been exposed to either risperidone or quetiapine for 30 or 90 days then
tested them in a novel object recognition task (Poddar et al., 2018).
Tropisetron markedly improved NOR performance in rats treated with
either antipsychotic for 30 or 90 days indicating that in this particular
case, the antipsychotic treatment history did not interfere with the pro-
cognitive effect of tropisetron. Thus, a7-nAChR ligands like tropisetron
may have potential as adjunctive medications in schizophrenia since
the pro-cognitive effect was maintained in the presence of chronic an-
tipsychotic treatment. However, in this study, tropisetron was ad-
ministered acutely and future studies would need to be conducted to
determine if this pro-cognitive effect of tropisetron is lasting.

Other factors related to polypharmacy and drug exposure history
that have not been adequately addressed are how chronic nicotine ex-
posure or the combination of chronic nicotine exposure and anti-
psychotic treatment might affect the efficacy of a pro-cognitive agent.
Given the well-documented chronic effects of nicotine on nAChR ex-
pression (see Lewis and Picciotto, 2013 for review), and the afore-
mentioned high smoking rates in schizophrenia, this could certainly be
an important consideration when evaluating an a7-nAChR ligand for
pro-cognitive effects. Levin and colleagues (see review, Levin and
Rezvani, 2007) have performed some experiments in rodents to in-
vestigate nicotinic interactions with antipsychotic drugs and cognitive
function. For example, they have shown that nicotine and some nico-
tine agonists can reduce cognitive impairments caused by some anti-
psychotic drugs. In other studies, they have shown that nicotine-in-
duced cognitive improvements were attenuated by the some
antipsychotics (e.g., clozapine). However, the specific questions raised
above (i.e., how chronic nicotine exposure or the combination of
chronic nicotine exposure and antipsychotic treatment might affect the
efficacy of a pro-cognitive agent including an a7-nAChR ligand) have
not been rigorously investigated either in animal models or in clinical
studies.

6. Pro-cognitive drug dose, frequency of administration, and
duration of treatment

Another potential limitation of many clinical studies conducted to
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date to evaluate novel pro-cognitive agents was the choice of dose, the
frequency of administration, and the duration of treatment. Most of the
rodent studies (where robust cognitive effects were observed) have
employed acute or sub-acute dosing of a7-nAChR ligands, which con-
trasts with most of the clinical trials that were conducted over several
weeks or months. All neuronal nAChRs (including a7-nAChRs) become
temporarily inactive after prolonged exposure to an agonist (Quick and
Lester, 2002), thus the repeated administration of a7-nAChR agonists in
the clinical studies may have resulted in receptor desensitization, or
potentially even functional antagonism. To support this argument are
the disparate effects of the immediate and slow-release versions of
DMXB-A (GTS-21) observed in clinical trials. Whereas, the immediate
release formulation (which was rapidly absorbed, but quickly cleared)
improved cognition and P50 sensory gating in schizophrenic patients,
the slow-release version was not effective (Olincy et al., 2006;
Freedman et al., 2008; Kem et al., 2018). Another emerging hypothesis
is that low concentrations of a7-nAChR ligands may be more effective
than higher concentrations, as the latter will maintain receptors in a
desensitized and unresponsive state (see Tregellas and Wylie, 2019). In
many of the more recent animal studies, the greatest response to a
nAChR agonist was observed with a low drug dose and increasing the
dose often produced a decreasing effect, in an inverted U-shaped re-
sponse curve, which is thought to be due to receptor desensitization. A
particularly notable example was a non-human primate study where, a
low dose of an a7-nAChR agonist (PHA543613) facilitated neuronal
activity in the prefrontal cortex and improved performance of a spatial
working memory task, whereas higher doses were not effective (Yang
et al., 2013).

The ability to select the proper dose and frequency of administration
of an a7-nAChR ligand for optimal target engagement could possibly be
improved if functional biomarkers were identified for use in both pre-
clinical and clinical studies. Noninvasive neuroimaging methods such
as functional magnetic resonance imaging (fMRI) may be able to fa-
cilitate the identification of biomarkers since they can be used to in-
vestigate neural circuitry alterations that underlie symptoms of schi-
zophrenia as well as how medications affect this neural circuitry. Here,
a biomarker that can be linked to a disease mechanism is categorized as
a type I biomarker and a biomarker that can be linked to a treatment
response is categorized as a type II biomarker (see Wylie et al., 2016 for
review). Interestingly, Tregellas and colleagues, using fMRI, linked
hippocampal hyperactivity to smooth pursuit eye movement (SPEM)
deficits in schizophrenia patients. The findings revealed a link between
eye-tracking abnormalities and a hypothesized disease mechanism,
thereby potentially qualifying hippocampal hyperactivity during SPEM
as a type I biomarker. Additional studies in schizophrenia patients de-
monstrated that nicotine and the a7-nAChR partial agonist DMXB-A
could normalize hippocampal hyperactivity during SPEM, suggesting
that SPEM during fMRI could also represent a potential type II bio-
marker of treatment response (see Wylie et al., 2016; Tregellas and
Wylie, 2019). In summary, while the use of fMRI for the development of
biomarkers for schizophrenia and other neuropsychiatric disorders is in
the early stages, it has the potential to facilitate drug development by
improving the translation from animal models to the clinical realm as
well to inform investigators as to the best dosing strategies to optimize
target engagement.

7. Optimizing a7-nAChR activity

A large-scale effort to overcome the challenges related to nAChR
desensitization and the administration of orthosteric agonists and par-
tial agonists has been the development of positive allosteric modulators
(PAMs). PAMs are thought to bind to sites that are distinct from the
well-conserved (orthosteric) agonist binding domains and they require
the presence of the endogenous ligand to increase receptor activity.
Two date, two types of PAMs have been developed, designated Type I
and Type II. Type I PAMs are defined as molecules that predominately
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affect the apparent peak current, agonist sensitivity, and Hill coeffi-
cient, but not the receptor desensitization profile. Type Il PAMs possess
the aforementioned properties described for Type I PAMs as well as the
ability to modify the desensitization profile of agonist responses (see
Bertrand and Gopalakrishnan, 2007). It has been argued that Type II
PAMs (compared to Type I PAMs) are less likely to induce tolerance,
which may occur after the chronic administration of nAChR agonists,
whereas, Type I PAMs, may have the advantage (compared to Type II
PAMs) of minimizing the potential for calcium induced cytotoxicity (Ng
et al., 2007, see also Nikiforuk et al., 2015). A large number of PAMs
from both classes have been developed with pro-cognitive properties in
animal models (see Table 1); however, to date only a few clinical trials
have been conducted (or are underway) with a7-nAChR PAMs (i.e.,
AVL-3288, galantamine, JNJ-39393406).

Finally, the classical view that nAChR stimulation is the key action
responsible for the pro-cognitive effects of a7-nAChRs ligands may
require additional consideration given the observations that low doses
of the selective a7-nAChR antagonist methyllycaconitine (MLA) can (in
some cases) improve cognition in animal models (Hahn et al., 2011;
Burke et al., 2014). and facilitate LTP induction in hippocampal region
CAl in rats (Fujii et al., 2000). More recently, low concentrations/doses
of MLA exerted surprising (positive) effects in several model systems.
Specifically, in electrophysiological experiments, low concentrations of
MLA potentiated receptor responses to acetylcholine in human a7-
nAChR-transfected oocytes, enhanced long term potentiation (LTP) in
rat hippocampal slices, increased hippocampal glutamate efflux in mi-
crodialysis experiments in rats, and improved the acquisition of a novel
object recognition task in rats (van Goethem et al., 2019). Interestingly,
the nonselective nAChR antagonist mecamylamine (in some cases) has
also been found to exert pro-cognitive effects in working memory tasks
in both rodents and monkeys as well as a recognition memory task in
humans with attention deficit hyperactivity disorder (ADHD). For de-
tails of these studies, see Buccafusco et al. (2009); Bertrand and Terry
(2018).

8. Additional clinical trial design issues

There is growing evidence that schizophrenia patients whose cog-
nitive performance is comparable to healthy controls (i.e., up to 25% of
patients) may not benefit from pro-cognitive agents (Granger et al.,
2018; DeTore et al., 2019). Therefore, the inclusion of such individuals
in a clinical trial designed to determine a compound's pro-cognitive
efficacy may limit the power of the study. Unfortunately, a recent
analysis of 87 randomized, double-blind, placebo-controlled, clinical
trials listed on ClinicalTrials.gov indicated that the vast majority of
such clinical trials may have been underpowered due to the inclusion of
cognitively “normal” patients (Cotter et al., 2019).

The argument that pro-cognitive strategies (specifically a7-nAChR-
based approaches) should target subgroups of individuals who exhibit
lower levels of cognitive function is supported by recent clinical studies
with the selective a7-nAChR agonist CDP-choline in both healthy
subjects and patients with schizophrenia. In healthy study participants
showing relatively lower cognitive and sensory gating scores at base-
line, CDP-choline was found to enhance multiple domains of cognition
(Knott et al., 2015a, 2015b) and to improve sensory gating (Knott et al.,
2014b). The same laboratory also reported CDP-choline-mediated im-
provements of P50 sensory gating scores in schizophrenia patients who
exhibited impaired gating (Aidelbaum et al., 2018). They also demon-
strated that combining CDP-choline with galantamine (an acet-
ylcholinesterase inhibitor and nAChR PAM) improved sensory gating to
speech stimuli in schizophrenia patients who expressed low baseline
suppression (Choueiry et al., 2019).

Another factor that may be important to consider in the evaluation
of pro-cognitive agents in schizophrenia is the chronicity of the illness.
The duration of the disease and the efficacy of antipsychotics has been
the subject of several reviews (e.g., Leucht et al., 2008), but the concept
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could also certainly apply to pro-cognitive drug evaluations. Most
participants in antipsychotic clinical trials have been chronically ill
having experienced multiple episodes and hospitalizations. While these
patients may represent the “typical” cases of schizophrenia, there is
increasing interest in the effects of medications on patients who have
been recently diagnosed (e.g., first episode patients). As reviewed by
Leucht et al. (2008), there are multiple differences between recent onset
and chronic schizophrenic patients that could result in different out-
comes in clinical trials. These differences include the level of cognitive
impairment, the level of treatment compliance, the sensitivity to
treatment side effects, and changes in brain morphology (Molina et al.,
2005; Rabinowitz et al., 2006; Mori et al., 2007). Thus, studies ex-
plicitly recruiting recent onset or first episode patients should be con-
ducted and in large clinical trials, these patients could be included
along with chronically ill patients and the study outcomes stratified by
group.

Another observation that has been commonly made in failed studies
of pro-cognitive agents in neuropsychiatric patients is an improvement
in symptoms across all treatment arms once patients are randomized,
suggesting that being in a study itself may have a powerful therapeutic
effect. It has been suggested that efforts to simplify the studies by re-
ducing the number of interactions of patients with study staff prior to
the drug evaluation phase be considered. Alternatively, efforts to ensure
that all study procedures, staff interactions, and assessments are in-
cluded in any run-in period prior to actual randomization of patients
might also help to reduce this apparent practice or placebo effect
(Marder et al., 2017).

From a meta-analytic review of placebo-controlled trials of anti-
depressant drugs, Undurraga and Baldessarini (2012) argued that when
drug evaluations progress to Phase III and additional testing sites are
recruited to increase the number of study subjects, an unanticipated
result is that the quality of the sites diminish (a factor that may con-
tribute to the study failure). Thus, new policies should be developed for
neuropsychiatric drug evaluations to focus more on the quality of the
recruitment and site conduct rather than on the volume of patients
enrolled, which may result in fewer but more productive study sites.
Such policies would necessitate continual monitoring of the conduct of
the study sites and contract research organizations and the termination
of sites that do not perform properly (Marder et al., 2017).

9. Conclusions and future directions

There are now decades of preclinical evidence to support the ar-
gument that a7-nAChRs should be viable therapeutic targets for schi-
zophrenia and other disorders of cognition. A wide variety of molecules
developed to modulate a7-nAChRs exhibited pro-cognitive activity in
animals and some have shown positive effects in early (Phase I and II)
clinical trials. However, to date, there has been no large phase III
clinical trial in schizophrenia where an a7-nAChR ligand has shown
clear efficacy as pro-cognitive agent without untoward side effects. A
thorough review of the literature indicates that multiple factors can
potentially affect the success of pro-cognitive agents in schizophrenia
(including a,-nAChR ligands) such as the translational value of the
animal models used, clinical trial design limitations, confounding ef-
fects of polypharmacy, and complex dose-effect and dose frequency
considerations.

From the preclinical perspective, more studies should be conducted
where the pro-cognitive agent is evaluated in animals that have
chronically been treated with an antipsychotic drug. Moreover, the
number of chronic dosing paradigms in animal studies should be in-
creased to parallel chronic administration in clinical populations. In
both the preclinical and clinical evaluations of a7-nAChR ligands, a
wider dose range (to include low doses) and the frequency of admin-
istration (repeated versus intermittent administration) should be eval-
uated. In the later phases of preclinical drug discovery, a greater em-
phasis should be placed on non-human primates (as opposed to rodents)
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given their more complex behavioral repertoire and brain homology
with humans. From the clinical perspective, patients whose cognitive
performance is comparable to healthy controls should be excluded and
efforts should be made to reduce apparent practice or placebo effects
associated with multiple interactions of patients with study staff prior
to the drug evaluation. Recent onset or first episode patients should be
included along with chronically ill patients and the study outcomes
stratified by group. Finally, new policies should also be developed to
focus more on the quality of recruitment sites rather than on volume of
patients enrolled.
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