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Alcohol dependence/addiction is mediated by complex neural mechanisms that involve multiple brain
circuits and neuroadaptive changes in a variety of neurotransmitter and neuropeptide systems. Although
recent studies have provided substantial information on the neurobiological mechanisms that drive
alcohol drinking behavior, significant challenges remain in understanding how alcohol-induced neuro-
adaptations occur and how different neurocircuits and pathways cross-talk. This review article highlights
recent progress in understanding neural mechanisms of alcohol addiction from the perspectives of the
development and maintenance of alcohol dependence. It provides insights on cross talks of different
mechanisms and reviews the latest studies on metaplasticity, structural plasticity, interface of reward
and stress pathways, and cross-talk of different neural signaling systems involved in binge-like drinking
and alcohol dependence.

Published by Elsevier Ltd.
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1. Introduction

The development of alcohol dependence progresses from
impulsive to compulsive alcohol intake via repeated binging,
withdrawal, and craving. It is characterized by alcohol consumption
despite negative consequences and recurring episodes of
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abstinence and relapse (Koob, 2013). Recent studies have provided
substantial information on the brain circuits that mediate various
aspects of alcohol dependence. In particular, studies have shown
that alcohol has profound impacts on multiple brain pathways and
circuits related to reward, stress, habit formation, and decision-
making, which work in concert leading to alcohol dependence/
addiction. However, significant challenges remain in under-
standing, at the molecular and cellular level, how alcohol-induced
neuroplasticity and neuroadaptation occur and how different
neuropathways cross talk. In this article, we will discuss several
neurobiological mechanisms and provide insights on interactions
of different mechanisms in the vulnerability, development and
maintenance of alcohol dependence. This article is not intended to
be comprehensive but rather to focus on several areas that were
discussed at a minisymposium at the 2011 Society for Neuroscience
annual meeting. We will discuss metaplasticity of dopaminergic
neurons, reward and stress pathways in mediating binge-like
drinking, interaction of corticotropin-releasing factor (CRF) and
gical mechanisms underlying alcohol addiction, Neuropharmacology
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GABAergic systems, and structural and functional changes of
dendritic spines.

2. Mechanisms mediating the development of alcohol
dependence

Excessive alcohol exposure or binge-like drinking impacts
neuroplasticity and signaling associated with reward and stress
pathways, as well as their interface. Here, we highlight the role of
metaplasticity of the dopaminergic neurons in the ventral
tegmental area (VTA), glutamate signaling in the Nucleus Accum-
bens (NAC), the CRF system in the central amygdala (CeA) in
excessive or binge like alcohol exposure, and discuss the potential
role of the BNST, the interface of between stress circuits and clas-
sical reward centers, in the development of alcohol dependence.

2.1. Metaplasticity in mesolimbic dopamine neurons and addiction
vulnerability

Development of addiction involves a maladaptive form of
learning and memory in which drug-related experiences are
remembered powerfully, resulting in persistent and uncontrollable
drug seeking behavior (Hyman et al., 2006). Synaptic plasticity is
widely believed to be the key neural substrate underlying the
formation and storage of memory in the brain (Kim and Linden,
2007; Malenka and Bear, 2004). Here, activity-dependent alter-
ations in the efficacy of synaptic transmission are typically induced
in a manner in which only those subset of synapses that are active
in certain temporal proximity to the time of activity of postsynaptic
neurons eventually become potentiated (long-term potentiation:
LTP) or depressed (long-term depression: LTD). There is another
form of plasticity, termed metaplasticity, which affects synapses of
postsynaptic neurons in a global manner (Abraham, 2008;
Abraham and Bear, 1996; Mockett and Hulme, 2008). This repre-
sents higher-order plasticity (i.e., plasticity of synaptic plasticity)
in which previous life experiences, such as exposure to certain
environmental stimuli (stress, addictive drugs, etc.), or even
prior learning experience alter the “susceptibility” of synapses to
undergo activity-dependent LTP/LTD, and thus the ability of
animals/humans to learn new information in the future.

The mesolimbic dopaminergic system that originates in the VTA
is critically involved in the learning of information related to
rewards, including addictive drugs (Morikawa and Paladini, 2011;
Schultz, 1998). A growing body of evidence indicates that plasticity
and metaplasticity of synapses on dopamine neurons play impor-
tant roles in reward-based learning and the development of
addiction (Hyman et al., 2006; Kauer and Malenka, 2007). It is well
established that in vivo exposure to different classes of addictive
drugs or to stress produces rather global potentiation of AMPA
receptor (AMPAR)-mediated glutamatergic transmission onto VTA
dopamine neurons (Argilli et al., 2008; Bellone and Luscher, 2006;
Conrad et al., 2008; Faleiro et al., 2004; Saal et al., 2003; Ungless
et al., 2001). This is thought to saturate AMPAR potentiation and
occlude subsequent LTP induction. However, it has recently been
proposed that this metaplasticity is a consequence of down-
regulation of synaptic NMDA receptors (NMDARs), resulting in
suppression of LTP induction (Mameli et al., 2011). This study
further demonstrated the emergence of an anti-Hebbian form of
AMPAR LTP, confirming that AMPAR potentiation is not saturated. It
has also been reported that Hebbian AMPAR LTP may actually be
enhanced because of a global reduction in GABAergic inhibition
after in vivo cocaine exposure (Liu et al., 2005; Pan et al., 2011).
Therefore, glutamatergic synapses at dopamine neurons appear to
exhibit multiple forms of metaplasticity of AMPAR-mediated
transmission. Furthermore, in vivo exposure to addictive drugs
Please cite this article in press as: Cui, C., et al., New insights on neurobiolo
(2012), http://dx.doi.org/10.1016/j.neuropharm.2012.09.022
suppresses LTP of GABAA-mediated transmission via disruption of
the LTP induction mechanism (Guan and Ye, 2010; Niehaus et al.,
2010; Nugent et al., 2007), indicating that metaplasticity can be
induced at GABAergic synapses as well. In principle, various forms
of metaplasticity in dopamine neurons, and also in dopamine
projection areas [reviewed by Lee and Dong (2011)], should regu-
late how rapidly and efficiently drug-related events and actions are
remembered and, possibly, how long those memories persist, thus
affecting the vulnerability to develop addiction. Therefore, estab-
lishing the roles of metaplasticity would be an important area of
addiction research, which requires manipulating neuroadaptive
mechanisms underlying metaplasticity in behaving animals
without interfering with synaptic transmission or synaptic plas-
ticity per se.

NMDAR activation in the VTA is necessary for dopamine neuron
burst firing and phasic dopamine release in projection areas that
occur in response to rewards or reward-predicting stimuli
(Sombers et al., 2009; Zweifel et al., 2009). A previous study has
reported LTP of NMDAR-mediated transmission that is induced by
pairing sustained glutamatergic input stimulation with post-
synaptic bursts of action potentials (APs) (Harnett et al., 2009). LTP
induction requires amplification of AP-evoked Ca2þ signals by
preceding synaptic activation of metabotropic glutamate receptors
(mGluRs) coupled to the generation of inositol 1,4,5-trisphosphate
(IP3) (Cui et al., 2007). The synaptic stimulation-burst pairing
protocol used for LTP induction may resemble the neural activity
experienced during cue-reward conditioning in behaving animals,
in that cue presentation would give rise to working memory-type
sustained glutamatergic input activity, while the reward would
elicit dopamine neuron burst firing (Brown et al., 1999; Funahashi
et al., 1989). Therefore, this form of Hebbian NMDAR plasticity
might contribute to the acquisition of burst responses to environ-
mental stimuli paired with rewards during conditioning (Schultz,
1998).

Recent studies show that repeated in vivo exposure to
amphetamine or ethanol causes enhancement of NMDAR LTP
induction in VTA dopamine neurons (Ahn et al., 2010; Bernier et al.,
2011). This form of NMDAR metaplasticity results from an increase
in the potency of IP3 in producing amplification of AP-evoked Ca2þ

signals, most likely via increased protein kinase A (PKA)-mediated
phosphorylation of IP3 receptors (IP3Rs) causing enhanced IP3
sensitivity (Wagner et al., 2008). Importantly, intra-VTA infusion of
a PKA inhibitor attenuates amphetamine-induced contextual
learning assessed using a conditioned place preference (CPP)
paradigm and previous ethanol experience facilitates subsequent
acquisition of cocaine-induced CPP (Bernier et al., 2011). Interest-
ingly, CRF, which is increased in the VTA by stressful stimuli or
acute withdrawal from addictive drugs (Koob and Zorrilla, 2010;
Wise and Morales, 2009), is capable of further amplifying the PKA-
mediated increase in IP3 in ethanol-treated animals. These data
suggest that PKA-dependent regulation of IP3R sensitivity, which
gates the “inducibility” of NMDAR plasticity in VTA dopamine
neurons, may represent a common neural substrate by which
ethanol, other addictive drugs, and stress influence the capacity of
animals to learn reward- and drug-associated environmental
stimuli. Given that CRF neurons from the BNST and the CeA project
to the VTA (Rodaros et al., 2007; Swanson et al., 1983), the action of
CRF on NMDARmetaplasticity in the VTA represents a possible feed
forward mechanism mediating the cross-talk between stress and
reward pathways. Moreover, as discussed in a later section, PKA
plays an essential role in regulating CRF-induced GABA release in
the CeA (Ameri, 1999; Cruz et al., 2011a). Thus, PKA regulates two
important mechanisms, metaplasticity and CRF-induced GABA
release, which contribute to the vulnerability and the maintenance
of alcohol dependence.
gical mechanisms underlying alcohol addiction, Neuropharmacology
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2.2. A substrate for binge alcohol drinking in the nucleus
accumbens

As a key component of the brain reward circuitry, the nucleus
accumbens (NAC) receives robust glutamatergic innervations from
frontal cortex, hippocampus, amygdala, and the thalamus.
Considerable evidence supports that this glutamatergic component
is critical in the development of addiction (Gass and Olive, 2008;
Kalivas and Volkow, 2011). Glutamatergic signaling in the NAC
interacts with dopaminergic signaling and plays a role in reward,
reinforcement, and relapse. The Homer protein family, which is
known to regulate both pre- and post-synaptic aspects of glutamate
transmission, regulates behavior and neurochemical sensitivity to
alcohol (Szumlinski et al., 2008b, 2005). Homer2 expression was
found to be up-regulated within the NAC by alcohol intake under
continuous access conditions, as well as by repeated alcohol
injections, and the changes in Homer2 expression coincided with
increases in the expression of the NR2a/b subunit of the NMDA
receptor, mGluR1/5, as well as indices of phosphatidylionsitol 3-
kinase (PI3K) and protein kinase C epsilon (PKC 3) activity
(Goulding et al., 2011; Obara et al., 2009; Szumlinski et al., 2008b).
Recent studies have further established the interactions of Homer
and PI3K signaling with binge drinking (Cozzoli et al., 2012, 2009;
Neasta et al., 2010; Neasta et al., 2011). The contribution of Homer2-
dependent signaling through Group 1 mGluRs to certain down-
stream effectors to the maintenance of excessive alcohol intake has
been demonstrated under Scheduled High alcohol Consumption
(SHAC) and Drinking-in-the-Dark (DID) procedures (Finn et al.,
2005; Rhodes et al., 2005).

As observed in the earlier studies of rodents with a chronic
history (3e6 months) of alcohol drinking (Obara et al., 2009;
Szumlinski et al., 2008b), animals with a 6-day history of binge
drinking alcohol under SHAC procedures exhibited elevated
Homer2 protein expression, that was accompanied by increases in
NR2a/b expression (Cozzoli et al., 2009). The SHAC-induced rise in
NAC Homer2 levels co-occurred with increases in indices of both
PI3K and PKC 3activity, but no change in the levels of either mGluR1
or mGluR5 (Cozzoli et al., 2009). The lack of an effect of binge
drinking upon NAC Group 1 mGluR expression might relate to the
relatively short SHAC drinking history of the mice (6 presentations)
as a parallel immunoblotting study conducted on tissue from mice
with a 30-day history of binge drinking under DID procedures
revealed parallel increases in NAC levels of Homer2, mGluR1/5 and
NR2a/b, that coincided with increases in both PI3K and PKC 3

activity (Cozzoli et al., 2012, 2009). These immunoblotting data
were consistent with other results demonstrating the engagement
of PI3K and mGluR in binge drinking. For example, a meta-analysis
indicates a positive association between striatal levels of PI3K
mRNA and binge drinking under DID procedures (Mulligan et al.,
2011); the AKT pathway, which is at the downstream of PI3K
signaling, is activated by acute ethanol challenge (Bjork et al.,
2010); inhibition of AKT or PI3K within the NAC attenuates binge
drinking (Neasta et al., 2011); both non-selective and selective
mGluR5 antagonists exhibit the “anti-binge” efficacy in behavioral
pharmacological assessments (Blednov and Harris, 2008; Gupta
et al., 2008).

The functional relevance of mGluR/Homer2-mediated signaling
for the maintenance of binge drinking has been revealed using
a combination of neuropharmacological and transgenic approaches.
An infusion of small hairpin RNAs against Homer2b into the shell
subregion of the NAC significantly reduced alcohol drinking under
both SHAC andDID procedures (Cozzoli et al., 2012, 2009). Similarly,
intra-NAC infusion of the selective mGluR5 antagonists MPEP and
MTEP and the PI3K inhibitors wortmannin and/or LY 294002 low-
ered alcohol intake in both paradigms, as did the local infusion of
Please cite this article in press as: Cui, C., et al., New insights on neurobiolo
(2012), http://dx.doi.org/10.1016/j.neuropharm.2012.09.022
a Tat-eV1-2 peptide inhibitor of PKC 3(Cozzoli et al., 2012, 2009).
Interestingly, the “anti-binge” effects of inhibitingmGluR5 and PI3K
or mGluR5 and PKC 3were not additive, nor were they apparent in
Homer2 knock-outmice or inmicewith a pointmutation inmGluR5
that disrupts Homer binding (Cozzoli et al., 2012, 2009). Such data
point to a signaling pathway involving mGluR5-Homer2-PI3K/PKC 3

in the continued propensity to consume excessive amounts of
alcohol under limited access conditions. It is possible that mGluR5-
mediated stimulation of PI3K (via bg activation) and PKC 3(via aq
activation) have independent roles in the regulation of binge
drinking. However, co-infusion of PI3K and PKC 3inhibitors into the
NAC failed to reduce alcohol intake under DID procedures to
a greater degree than that produced byeither kinase inhibitor alone.
The apparent inter-dependency between PI3K and PKC 3is consis-
tent with an earlier indication that mGluR5-mediated activation of
PKC 3 is dependent upon PI3K activity (Olive et al., 2005) and
suggests that binge drinking-induced increases in mGluR5/
Homer2-mediated signaling through PI3K to PKC 3within the NAC is
an important intracellular pathway underpinning excessive alcohol
consumption.

Evidence also points out that mGluR1/5-Homer2 signaling may
also play an important role in genetic predisposition to binge
drinking. The basal protein expression of Homer2 and mGluR1 is
elevated within the NAC of mice selectively bred for high binge
drinking under either SHAC procedures (SHAC) or DID procedures
(HDID-1), yet neuropharmacological studies using the selective
mGluR1 antagonist CPCCOEt have revealed only modest reductions
in binge alcohol drinking under either procedure (Cozzoli et al.,
2012, 2009). However, more recent attempts to target mGluR1
within the NAC involved JNJ 16259685, an mGluR1 antagonist with
greater potency and higher solubility than CPCCOEt, and revealed
a significant reduction in alcohol intake under DID procedures that
was not additive with that produced by PKC 3inhibition. The data
for JNJ 16259685 provide novel evidence to support the relevance
of mGluR1/Homer2-mediated intracellular signaling pathways
within the NAC in not only the manifestation of binge drinking, but
also in the genetic predisposition to binge drinking.

It is noteworthy that, as scalfolding proteins, Homer proteins not
only interact with various signaling molecules at the postsynaptic
density but also regulate dendritic spine morphology (Sala et al.,
2001; Shiraishi-Yamaguchi et al., 2009). This property of Homer
proteins may contribute to the dendritic spine remodeling associ-
ated with chronic alcohol exposure.

2.3. Effects of binge-like ethanol exposure on extended amygdala
stress systems

In addition to the brain reward system, recent studies using the
DID model of binge-like drinking suggest that binge-like ethanol
exposure engages central stress systems, specifically CRF signaling
in the extended amygdala, which is similar to dependence-
induced alcohol drinking in the vapor exposure model. However,
despite the common pharmacology of alcohol drinking between
vapor exposure and DID, there appear to be different cellular
mechanisms engaged by alcohol experience in these distinct
exposure paradigms.

In addition to its critical role in anxiety and relapse, numerous
reports have suggested that the extended amygdala is selectively
involved in increased drinking behavior associated with chronic
alcohol exposure and withdrawal but not in basal drinking (Koob,
2008). Consistent with this, pharmacological manipulations in
both the BNST and CeA can reduce alcohol-drinking behavior (Eiler
et al., 2003; Finn et al., 2007; Funk et al., 2006; Hyytia and Koob,
1995; Roberts et al., 1996). However, recent results from several
groups have suggested that the extended amygdala is not limited to
gical mechanisms underlying alcohol addiction, Neuropharmacology
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‘dependence-induced drinking’, but can also gate excessive or
binge-like drinking behavior in rodents (Lowery-Gionta et al.,
2012). Recent studies found that CRFR1 antagonists also protect
against excessive ethanol intake in non-dependent animal models
of binge-like ethanol drinking but fail to reduce non-binge-like
ethanol intake (Argilli et al., 2008; Cippitelli et al., 2012; Lowery
et al., 2010; Sparta et al., 2008), observations similar to results
obtained with models of dependence. A study using gene knockout
mice demonstrated that mice with CRFR1 deletion exhibited
significant lower alcohol intake in the DID model of binge-like
drinking (Kaur et al., 2012). In addition, binge-like drinking
during adolescence significantly reduced the number of CRF
expressing neurons in the CeA in rats (Gilpin et al., 2012).
Furthermore, a recent study indicated the CeA as the site of action
for these anti-binge effects of CRF antagonists in C57BL/6J mice
(Lowery-Gionta et al., 2012). Specifically, binge-like ethanol
drinking increased CRFR1 in the CeA and VTA, consistent with the
idea that CRF signaling is upregulated during a binge-like drinking
episode. Importantly, administration of the selective CRF receptor 1
(CRFR1) antagonist Antalarmin into the CeA blunted binge-like
ethanol drinking, but failed to alter sucrose drinking. Injection of
the same dose of Antalarmin into the nearby basolateral amygdala
(BLA) failed to alter binge-like ethanol drinking, showing that the
effects of CRFR1 blockade on binge-like ethanol drinking are
specific to the CeA. Thus, as with dependence-induced ethanol
drinking, binge-like ethanol drinking is modulated by CRFR1
signaling in the CeA. Further, a history of binge-like ethanol
drinking functionally altered CRF receptor signaling as CRF failed to
augment GABAergic transmission in slice preparations from the
CeA, an effect evident in slice preparations from water drinking
control mice. These results obtained from animals with a history of
binge-like ethanol drinking are different from the results seen in
animals following alcohol vapor exposure procedure. In a series of
elegant studies, it was demonstrated that alcohol vapor exposure
lead to a CRFR1 dependent increase in GABAergic transmission in
the CeA (Roberto et al., 2010) (see the discussion in the next section).
The lack of effect of CRF on GABAergic transmission seen following
DID procedures may be due to a functional downregulation or
desensitization of CRFR1 receptors, as seen in the dorsal raphe
following stress (Waselus et al., 2009). Future experiments that
vary the length of withdrawal time should shed light on the nature
of these differences.

Thus, similar to the dependence models, repeated cycles of
binge-like ethanol exposure lead to enhanced activity of the CRF
neurons in the CeA, which underlies increased alcohol preference.
Despite the potentially critical importance of this CRF pathway, to
date there has been no work investigating either pathway or cell-
specific plasticity or the contribution of this specific pathway to
binge drinking behavior. This lack of direct evaluation of this
pathway and cell type specific neuroplasticity is likely due to the
complicated heterogeneous neurochemical nature of the extended
amygdala and the difficulty of examining long range GABA
projections. Future studies using genetic methods to manipulate
activity in vivo and ex vivo will shed light on this critical question.

2.4. Extended amygdala connectivity with ventral tegmental area:
the interface of stress and reward pathways

Development of alcohol dependence engages both brain
reward and stress systems. However, how these two systems
interact in mediating the transition to alcohol addiction remains
largely unknown. As part of extended amygdala, the BNST is an
important anatomical region that connects stress and reward
neuropathways. It interconnects with the CeA to form a structure
crucial for neural encoding of affective states related to stress,
Please cite this article in press as: Cui, C., et al., New insights on neurobiolo
(2012), http://dx.doi.org/10.1016/j.neuropharm.2012.09.022
anxiety, and reward (Davis et al., 2010; Koob, 2008). The BNST also
projects to the ventral midbrain, including the ventral tegmental
area (VTA) and substantia nigra pars compacta (SN) (Georges and
Aston-Jones, 2001, 2002; Jalabert et al., 2009; Lee and Dong, 2011;
Phillipson, 1979) which are important components of the brain
reward circuit. Studies suggest that one of the possible mecha-
nisms that the BNST mediates the interaction between stress and
reward pathways involves CRF and dopamine signaling. CRF
originating from the BNST modulates dopaminergic neuronal
function in the VTA (Rodaros et al., 2007; Ungless et al., 2003). As
discussed earlier, CRF amplifies the PKA-mediated increase in IP3
signaling in the VTA, which suggests that CRF regulates the met-
aplasticity of NMDARs in dopaminergic neurons. Conversely,
dopamine enhances glutamatergic transmission in the BNST via
the CRF signaling (Kash et al., 2008; McElligott and Winder, 2009).
Taken together, this suggests that the VTA and BNST may form
a feed-forward loop that leads to persistent changes in behavior.

Evidence suggests that the BNST is a key neuroanatomical
substrate underlying drug and alcohol abuse (Dumont et al., 2005;
Grueter et al., 2006, 2008; Wills et al., 2012). Ethanol exposure can
directly alter the neurophysiological properties of BNST neurons.
Chronic, intermittent ethanol leads to an increase in postsynaptic
NMDAR currents in BNST neurons (Kash et al., 2009; Wills et al.,
2012). Additionally, acute administration of ethanol alters
NMDAR-dependent long-term potentiation (Weitlauf et al., 2004).
These studies demonstrate that both acute and long-term ethanol
exposure can promote transient or long-lasting neuroadaptations
in postsynaptic excitatory synaptic transmission in the BNST. It is
also worth noting that GABA neurons in the juxtacapsular BNST
show decreased intrinsic excitability following withdrawal from
ethanol, although these cells are thought to project to the amyg-
dala, which may act to increase the negative affective state during
ethanol withdrawal (Francesconi et al., 2009). Because the BNST is
composed of a heterogeneous mix of different neuronal types (as
well as being made of up of many sub-nuclei), it remains unclear
how acute and repeated ethanol exposure alters the neurophysio-
logical properties of genetically defined and/or anatomically-
specific subpopulations of BNST neurons. In addition, it is not
known if there are input-specific alterations in presynaptic function
within the BNST following ethanol exposure. Studies addressing
these questionswill shed light on the cross talk of reward and stress
pathways in developing alcohol addiction.

The BNST sends a dense projection to the VTA as observed in
retrograde tracing studies (Georges and Aston-Jones, 2001, 2002;
Jalabert et al., 2009; Phillipson, 1979). Recently, BNST projection
neurons to the VTA were shown to exhibit increased c-fos activa-
tion following stress exposure (Briand et al., 2010). VTA-projecting
BNST neurons exhibit higher input resistance, lower capacitance, as
well as inward rectifying potassium currents when compared to
other non-VTA projecting BNST neurons (Dumont and Williams,
2004; Kash et al., 2008). These data indicate that these neurons
may be easily excited by synaptic input that may promote burst
firing (Egli and Winder, 2003). Interestingly, electrical stimulation
of the BNST results in heterogeneous firing patterns of VTA neurons
(Georges and Aston-Jones, 2001), which is consistent with the
heterogeneous nature of the BNST. Given that genetically targeted
control of neural activity within these neural circuits is now
possible (Nichols and Roth, 2009; Stuber et al., 2011; Yizhar et al.,
2011), it will be of great interest to determine how selective acti-
vation or inaction of genetically defined BNST neurons or their
efferent projections to themidbrain alter reward-related behaviors.
To accomplish this, optogenetic strategies, where light-gated
channels and pumps are expressed in a genetically and anatomi-
cally specific fashion, will likely provide powerful tools to further
elucidate the neural circuitry that underlie both stress and reward
gical mechanisms underlying alcohol addiction, Neuropharmacology
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seeking. The implementation and utility of these strategies has
recently been reviewed elsewhere (Yizhar et al., 2011). It is
important to point out that these techniques are rapidly evolving
and already allow for activation and inactivation of neural circuitry
function with subsecond temporal precision. Given that genetic
targeting strategies are also becoming more precise, and that the
implementation of these techniques with behavioral and electro-
physiological methods is now possible, a combined in vivo opto-
genetic and electrophysiological approach to study the interface of
stress and reward circuitry in alcohol drinking will likely produce
exciting results in the coming years.

3. Mechanisms underlying the maintenance of alcohol
dependence

The chronic consumption of large quantities of drugs, including
alcohol, promotes a transition from casual drug use to drug
dependence that is defined by the downregulation of dopamine
signaling in the mesocorticolimbic reward system, hyperactivity of
glutamate signaling, and dysregulation of brain stress systems
(Koob andVolkow, 2010). An important element in thedevelopment
of drug addiction is the brain’s attempt to chemically counteract the
influence of the repeated drug exposure (i.e., neuroadaptation).
Here, we will discuss neuroadaptation of the CRF stress system and
remodeling of dendritic spines, which play a critical role in the
maintenance of alcohol dependence and contribute to the long
lasting behavior changes associated with addiction.

3.1. Cellular mechanisms of CRF at the GABAergic synapses in the
central amygdala: role in ethanol dependence

The activation of brain stress systems is hypothesized to be a key
element of the negative emotional state produced by dependence
that drives drug seeking through negative reinforcement mecha-
nisms (Koob, 2013). To understand cellular mechanisms underlying
neuroadaptive changes of the brain stress system in this process,
ample studies have been conducted on the brain CRF system (Koob,
2008; Martin-Fardon et al., 2010; Sillaber et al., 2002). Recent
research has highlighted the role of the GABAergic and the CRF
system in the CeA in anxiety associated with ethanol dependence
(Gilpin and Roberto, 2012). CRF release in the CeA is increased
during withdrawal in alcohol-dependent animals and contributes
to withdrawal-related anxiety and to increased alcohol consump-
tion in dependent animals (Merlo Pich et al., 1995; Zorrilla et al.,
2001). Importantly CRFR1 antagonists and CRFR1 deletion both
reduced the increased ethanol self-administration in dependent
but not nondependent animals and blocked the anxiogenic effects
produced by stressors and alcohol withdrawal (Funk et al., 2007;
Gehlert et al., 2007; Hansson et al., 2006; Lowery et al., 2008;
Marinelli et al., 2007; Muller et al., 2003; Richardson et al., 2008).
In vivo microdialysis studies have further revealed a four-fold
increase of baseline dialysate GABA concentrations in the CeA of
alcohol-dependent rats relative to alcohol-naïve controls, as well as
lack of tolerance for alcohol-induced increases in dialysate GABA
levels in alcohol-dependent rats (Roberto et al., 2010). These results
strongly suggest that chronic alcohol alter pre-synaptic compo-
nents of GABAergic synapses in the CeA.

Further studies have shown that CRF produces robust increases
in GABAergic transmission in the CeA of rats and mice via CRFR1
activation at presynaptic level (Nie et al., 2004; Roberto et al., 2010).
GABA release is increased by CRF and decreased by antagonism of
CRFR1s. Moreover, alcohol-dependent rats exhibit heightened
sensitivity to the effects of CRF and CRFR1 antagonists on CeA GABA
release, suggesting an upregulation of the CRF-CRFR1 system.
These electrophysiological findings are further corroborated by
Please cite this article in press as: Cui, C., et al., New insights on neurobiolo
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increased CRF and CRFR1 mRNA levels in the CeA of alcohol-
dependent rats, indicating that neuroadaptation occurs in those
systems during the development of ethanol dependence. In addi-
tion, in vivo intra-CeA administration of a CRFR1 antagonist via
retro-microdialysis reverses dependence-related elevations in
extracellular GABA and blocks ethanol-induced increases in GABA
in both dependent and nondependent rats (Roberto et al., 2010).
Importantly, chronic treatment with CRFR1 antagonist protects
against the development of dependence-induced increases of
ethanol drinking (Roberto et al., 2010).

Although the precise mechanism(s) by which alcohol enhances
GABA release have yet to be identified, past studies have examined
the role of intracellular signaling pathways such as adenylyl cylase
(AC) or protein kinase C (PKC) in the facilitatory effect of acute
alcohol on GABAergic transmission. The ability of CRF and acute
alcohol to augment GABAergic transmission in the CeA is contin-
gent on the integrity of PKC 3intracellular signaling pathways (Bajo
et al., 2008). The ethanol- and CRF-induced increase of GABA
release is abolished in the CeA of mice that lack PKC 3(Bajo et al.,
2008), suggesting that PKC 3facilitates vesicular GABA release. The
role of PKC 3in regulating GABA release from CeA neurons was also
confirmed by using a PKC 3inhibitor peptide, Tat- 3V1e2 (Qi et al.,
2007). PKA, which is activated by CRFR1 activation (via Gs and Gq
proteins), also play an important role in ethanol and CRF modula-
tion of presynaptic CeA GABA release (Cruz et al., 2011a, 2011b). A
PKA antagonist blocked CRF from regulating spontaneous GABA
release, whereas a PKA antagonist limited to the postsynaptic
neuron did not alter CRF action on GABA release, suggesting that
the presynaptic PKA pathway plays an essential role in the CRF-
induced GABA release (Ameri, 1999; Cruz et al., 2011a). Further
studies are needed to shed light on a possible cross talk between
PKA and PKC 3in regulating the CeAGABA release. Interestingly, PKA
and PKC 3mediated signaling pathways have also been implicated
in the susceptibility of alcohol addiction and binge-like drinking. As
discussed earlier, PKA-mediated phosphorylation of IP3Rs plays
a critical role in NMDAR metaplasticity in the VTA, and increase in
indices of PKC 3activity coincides with increased Homer2 expres-
sion in the NAC in binge drinking animal models, and inhibition of
PKC 3activity within the NAC attenuates binge alcohol intake. Thus,
PKA and PKC 3mediated signaling pathways regulate both reward
and stress pathways during development and maintenance of
alcohol dependence.

Given the CRF system in the CeA is recruited during both
repetitive binge-like drinking and ethanol dependence, it suggests
that the CRF signaling may play a key role the development and
maintenance of ethanol dependence. CRFR1 antagonists may have
the potential in treating alcoholism by reversing a key cellular
process that drives transition to ethanol dependence.

3.2. Structural and functional plasticity of dendritic spines in
alcohol dependence

Alcohol-induced changes in molecular signaling and synaptic
activity are associated with alterations in the network connectivity,
which produce long lasting changes in behaviors. Dendritic spines,
as the structural and functional units of excitatory synapses (Yuste
and Denk, 1995), hold most of the crucial postsynaptic components
of the synapse. Spines are dynamically influenced by environ-
mental enrichment, stress, neuronal activity, and they are altered in
pathological states (Christoffel et al., 2011; Fiala et al., 2002; Irwin
et al., 2000; van Praag et al., 2000). Thus, plasticity of spines
reflects the neuroadaptive changes of the network connectivity at
the functional and structural level. Studies have demonstrated that
drugs of abuse affect dendrite and spine morphology (Robinson
and Kolb, 2004; Carpenter-Hyland and Chandler, 2007; Russo
gical mechanisms underlying alcohol addiction, Neuropharmacology
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et al., 2010). Chronic alcohol exposure regulatesmorphology and/or
densities of dendritic spines at brain regions that are implicated in
reward, learning, stress, executive function, and habit formation
(Carpenter-Hyland and Chandler, 2006; Lescaudron et al., 1989;
Pandey et al., 2008; Tarelo-Acuña et al., 2000; Zhou et al., 2007)
(See Table 1). Here, we discuss dendritic spine remodeling associ-
ated with chronic alcohol exposure and highlight recent advances
Table 1
Summary of morphological effects of alcohol. a. Selected studies are categorized by brain
findings for each particular study. The alcohol treatment column is typically presented as:
HIV ¼ hours in vitro; WIV ¼ weeks in vitro; DIV ¼ days in vitro; “[ ” ¼ increase; “Y” ¼ d
Findings summarized according to specific morphological perturbations. References appe
et al., 2010; 4e Carpenter-Hyland and Chandler, 2006; 5eGranato, 2003; 6e Lawrence e
et al., 2011; 10 e Shetty et al., 1993; 11 e Tavares et al., 1983; 12 e Wenisch et al., 1998;

a

Cell-type Species Alcohol treatment A

Hippocampus CA1 Pyramidal Rat 5 months liquid diet
(1e6 months old)

6e

Rat Prenatal and postnatal
drinking (E1eP21)

P1

Mouse Single i.p. injection 3

Primary cultures Rat 4 day in vitro (50 mM) 15

Cortex 2/3 pyramidal
(associative)

Rat 4 days vapor inhalation
(P2eP6; 3 h/day)

3

2/3 pyramidal
(mPFC)

Rat Prenatal and postnatal
intragastric (E1eP10;
3.0e4.5 g/kg/day)

3

Rat 5 days gavage (P4eP9;
5.25 g/kg/day)

1

Striatum MSN (NAc) Rat 14 weeks continuous vs.
intermittent drinking
(3e6 months old)

w

Rat Prenatal and postnatal
intragastric (E1eP10;
3.0e4.5 g/kg/day)

3

MSN (dorsal) Macaque 2.5 years intermittent
drinking (8e10 years old)

w

Subst. Nigra Fusiform/pyramidal Rat Prenatal liquid diet
(E0ebirth)

P1

Cerebellum Purkinje Rat 1, 3, 6, 12 and 18 months
drinking

1e

Rat 5 months alcohol in
sucrose drinking (20%
alcohol in 5% suc)

6

Primary cultures Rat 8e48 h in vitro
(50e200 mM)

8e

b

Cell density Soma size Branching Dendritic
length

Spine de

[ Y z [ Y z [ Y z [ Y z [ Y

10 13 10 6
7

6
1

1
5
6
10
11

7 5
11

7 4
9

6
7
8
11

Please cite this article in press as: Cui, C., et al., New insights on neurobiolo
(2012), http://dx.doi.org/10.1016/j.neuropharm.2012.09.022
in understanding structural and functional plasticity of dendritic
spines associated with alcohol dependence.

The brain stress systems, particularly the CRF system in the CeA,
play a crucial role in the maintenance of alcohol dependence.
Studies have shown that Long-term alcohol exposure alters the
density of dendritic spines in the amygdala (Moonat et al., 2011;
Pandey et al., 2008). Alcohol withdrawal after long-term exposure
region (left-most column). Subsequent columns describe other characteristics and
duration of treatment, type of treatment (age of exposure and/or ethanol concentration).
ecrease; “z” ¼ no significant difference; E ¼ embryonic day; P ¼ postnatal day. b.
ar as numbers: 1 eMcMullen et al., 1984; 2 e Tarelo-Acuña et al., 2000; 3 e Piechota
t al., 2011; 7eWhitcher and Klintsova, 2008; 8e Zhou et al., 2007; 9e Cuzon Carlson
13 e Zou et al., 1993. Q6

ge studied Method Main findings Ref.

8 months Golgi-Cox Y Basilar dendritic branching
[ Basilar dendritic branching after
2 months withdrawal

1

5e3 months Golgi Y Thin spines at P15e40
[ Wider spines (wide, mushroom,
or stubby) at P15e40
z Spine morphology at P90

2

WIV GFP labeling Altered spine shape and density by
2 alcohol-related genes

3

DIV F-actin and
PSD-95 staining

[ Synaptic PSD-95 and larger
F-actin clusters
[ Spine density

4

months Biotin retrograde
labeling

Y Dendritic length
Y Dendritic branching

5

months Golgi Y Apical dendritic branching
Y Spine density

6

months Golgi-Cox Y Spine density
z Dendritic length and branching

7

6 months Fluorescent dye
micro-injection

Y Spine density at 3rd order
dendrites
[ Spine head size (intermittent)
Altered dendritic morphology
(thickened, beaded, or curved)

8

months Golgi [ Dendritic branching (females)
z Spine density and soma size

6

10 years DiOlistics [ Spine density in putamen
(dorsolateral striatum)
z Spine density in caudate
(dorsomedial striatum)

9

5 Golgi-Cox and
TH labeling

Y Size of cell bodies (fusiform
neurons)
Y Dendritic branching (2nd, 3rd,
4th order)
z Number of TH-positive neurons

10

18 months Golgi Y Spine density after 3 months
Y Branching (1st and 2nd order;
progressive after 6 months)
Y Dendritic length

11

months Golgi [ Spine length 12

48 HIV Biotin filling [ Neurite outgrowth (branch
numbers and total length)
[ Soma size

13

nsity Spine size Wide spines Thin spines Spine length

z [ Y z [ Y z [ Y z [ Y z

6
9

4
8

2 2 2 2 12
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reduced dendritic spine densities in the CeA and medial amygdala
(MeA), while acute alcohol exposure had opposite effects. BDNF-
Arc signaling pathway was proposed to mediate the distinct spine
density changes associated with acute alcohol exposure and
withdrawal (Pandey et al., 2008). Furthermore, a study on
comparing P and NP rats suggests that the heightened innate
anxiety of P-rats, which also exhibit greater ethanol intake, is
associated with reduced dendritic spine density in the CeA and the
MeA (Moonat et al., 2011). Thus, these studies reveal the link of
long-term alcohol consumption and dendritic spine remodeling in
the brain region that is important for the maintenance of alcohol
dependence. Similarly, significant lines of evidence indicate that
the CRF signaling is also an important mediator for spine remod-
eling associated with stress (Chen et al., 2008; Pittenger and
Duman, 2008; Radley et al., 2008; Shansky et al., 2009; Treweek
et al., 2009). CRF receptors were detected in dendritic spines in
the amygdala (Treweek et al., 2009) and mice lacking the CRFR1
receptor showed augmented spine density (Chen et al., 2008).
Further evidence suggests that CRF-CRFR1 signaling induces spine
remodeling through destabilizing spine F-actin (Chen et al., 2008).
Altogether, these pieces of evidence support the role of CRF
mediated signaling in regulating dendritic spine changes associated
with stress. It remains to be found how CRF signaling changes
associated with alcohol exposure contribute to spine density
changes in the amygdala.

Chronic alcohol exposure also alters structure and density of
spines of medium spiny neurons in the NAC (Zhou et al., 2007).
Specifically, 14 weeks of alcohol exposure decreased spine density,
enlarged spine head size, and caused a variety of distinct
morphological changes (Zhou et al., 2007). These dendritic spine
changes in the NAC by chronic ethanol exposure may be associated
with changes in Homer proteins, as these proteins are not only
capable of dynamically interacting with glutamate-related
signaling molecules to regulate function of mGluRs and NMDARs
at spines, but this protein family also interacts with F-actin and
other cytoskeletal protein to regulate the size and shape of
dendritic spines at excitatory synapses (e.g., Sala et al., 2001;
Shiraishi-Yamaguchi et al., 2009; Szumlinski et al., 2008a). As dis-
cussed earlier, studies have shown that Homer2, group 1 mGluR
and NMDAR expression are in the NAC by repeated, binge alcohol
intake (Cozzoli et al., 2012, 2009) and chronic alcohol consumption
(Obara et al., 2009; Szumlinski et al., 2008b). Thus, changes in
Homer2 and NMDAR signaling by alcohol may be associated with
the structural and functional plasticity of spines, which in turn may
impact the network connectivity. Given Homer2/mGluR/NMDAR
signaling is altered by both binge and chronic ethanol exposure, it
may serve as another pathway that gates the transition to alcohol
dependence.

A recent study further revealed that chronic intermittent
ethanol exposure (CIE) selectively increased the density of mature
spines in the medial prefrontal cortex (mPFC) (Kroener et al., 2012),
a brain area that is implicated in the executive control of behaviors.
The change in dendritic spines was associated with the enhanced
NMDA receptor mediated plasticity and deficit in the cognitive
flexibility (Kroener et al., 2012). These results suggest that CIE-
induced changes of glutamatergic transmission in the mPFC may
contribute to the impairment of loss of behavior control associated
with alcohol dependence. Moreover, chronic alcohol induces
changes of dendritic spines in brain regions that is important for
the habit formation. After more than two years of intermittent
alcohol exposure, male cynomolgus monkeys showed increased
spine density and enhanced glutamatergic transmission in the
putamen, but no change in the caudate, regions equivalent to
dorsolateral and dorsomedial striatum in the rodent, respectively
(Cuzon Carlson et al., 2011). These structural and functional
Please cite this article in press as: Cui, C., et al., New insights on neurobiolo
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changes of spines may contribute to the alcohol consumption
associated habit learning, which is believed to play an important
role in the maintenance of drug use (Gerdeman et al., 2003; Tiffany
and Conklin, 2000; Tricomi et al., 2009).

Taken together, these results point out effects of chronic
alcohol exposure on the plasticity of dendritic spine in various
brain regions that are known to be important in alcohol depen-
dence. We are just beginning to understand the extent of the
dendritic spine changes induced by alcohol exposure. Future
studies are needed to uncover how the spine remodeling by the
long-term alcohol exposure may contribute to changes of neuronal
network connectivity.

4. Conclusion

In this article, we have focused on several exciting research
areas targeting mechanisms mediating susceptibility to alcohol
addiction, stress and reward pathways in binge-like drinking,
activation of the extrahypothalamic stress system, and structural
plasticity. Importantly, these seemingly independent mechanisms
exhibit significant interactions to drive the development and
maintenance of alcohol dependence. New insights presented here
also raise several challenging issues. Although metaplasticity dis-
cussed here focuses on synaptic activity mainly, it may also extend
to structural plasticity of dendritic spines, which has been
demonstrated to be true for other drugs of abuse (Shen et al.,
2009). Given the heterogeneity of neuronal cell types in a partic-
ular brain region, significant challenges exist in understanding cell
type or pathway specific changes associated with alcohol expo-
sure. Rapidly developing optogenetic techniques may offer an
effective strategy to overcome these challenges. It is clear that
studies addressing the cross talk of neural circuits involved in
reward, stress, habit formation, and decision-making will be crit-
ical for better understanding of neurobiological mechanisms
driving the development and maintenance of alcohol addiction.
Furthermore, the role of CRF, PKA, Homer2, and PKC 3mediated
signaling in binge-like drinking and alcohol dependence suggest
critical roles of these signaling pathways in the transition to
compulsive alcohol consumption. It remains to be determined
whether or not these signaling molecules function in some
universal manner to gate synaptic plasticity and morphology
within the neural circuitry subserving the transition to and
maintenance of alcohol dependence. Finally, studies using
different animal models often reveal distinct neurochemical and
neurophysiological changes. This could be due, in part, to intrinsic
differences in neuroplasticity associated with different alcohol
drinking paradigms. Therefore, cross-comparison of neuroadaptive
alterations associated with different ethanol exposure paradigms
may shed light on mechanisms underlying different types of
alcohol drinking behaviors.
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