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The potential applications of stem cell therapies for treating neurological disorders are enormous. Many
laboratories are focusing on stem cell treatments for CNS diseases, including spinal cord injury, Amyo-
trophic lateral sclerosis, Parkinson's disease, Huntington's disease, multiple sclerosis, stroke, traumatic
brain injury, and epilepsy. Among the many stem cell types under testing for neurological treatments, the
most common are fetal and adult brain stem cells, embryonic stem cells, induced pluripotent stem cells,
and mesenchymal stem cells. An expanding toolbox of molecular probes is now available to allow
analyses of neural stem cell fates prior to and after transplantation. Concomitantly, protocols are being
developed to direct the fates of stem cell-derived neural progenitors, and also to screen stem cells for
tumorigenicity and aneuploidy. The rapid progress in the field suggests that novel stem cell and gene
therapies for neurological disorders are in the pipeline.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Neural stem cell-based therapies are now being developed
to treat a spectrum of neurological conditions once thought to
be incurable. Because of their unique potential to repair neural
circuits, stem cell and gene therapies are attractive forms of inter-
vention (Kim and de Vellis, 2009). This review discusses some of
the well-studied neural stem cell types and treatments for neuronal
injury and neurological disorders, with an emphasis on stem
cell-based treatments for intractable epilepsy.

Several sources of neural stem cells and neural precursors
have been explored for treating neurological disorders including
ischemic stroke, Parkinson's disease, Huntington's disease, amyo-
trophic lateral sclerosis (ALS), spinal cord injury, and epilepsy
(Aubry et al., 2008; Bacigaluppi et al., 2008; Bjorklund and Lindvall,
2000; Carpentino et al., 2008; Hattiangady et al., 2008; Lindvall,
1994; Maisano et al., 2009; Raedt et al., 2007; Rao et al., 2007;
Ruschenschmidt et al., 2005; Turner and Shetty, 2003; Zaman
and Shetty, 2001). The first clinical trial of an embryonic stem
cell-based therapy was authorized in 2009. Based partly on
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landmark studies showing functional recovery in rats after spinal
cord grafts of oligodendrocyte precursors derived from human
embryonic stem cells (hESCs) (Keirstead et al., 2005), the U.S. Food
and Drug Administration gave approval to Geron Corporation to
begin the first clinical trial of hESC therapy aimed at regenerating
myelin in patients with spinal cord lesions (Alper, 2009; Barde,
2009). Subsequently, NeuralStem was approved to test a stem cell
therapy in patients with amyotrophic lateral sclerosis. Additional
stem cell therapies are focusing on resident adult neural stem cells
in the brain, mesenchymal stem cells, and induced pluripotent
stem cells.

Efforts to generate specific types of neural precursors benefit
from studies of the sequential stages of neural differentiation in
the embryonic brain (Scheffler et al., 2006). Researchers have also
mapped the stages of differentiation of adult-born neurons that
will help to evaluate neural repair therapies based on stem cell-
derived neural precursor grafts (Alvarez-Buylla et al, 2002;
Doetsch, 2003). Understanding how strokes, spinal cord injuries,
and epilepsy create an inhospitable environment for grafts of
neural precursors is another enormous challenge. Moreover, cell-
based therapies for these disorders must replace multiple types of
neurons that degenerate (Buhnemann et al., 2006).

Advances in the stem cell field are rapidly leading to the
production of genetic modifications to human stem cell lines that
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allow the transplanted cells to be tracked within the CNS. Routinely,
assessment of graft incorporation includes quantitative estimates
of graft size and dispersion, in situ hybridization, immunohisto-
chemistry, and electron microscopy to evaluate neurotransmitter
expression, patch-clamp electrophysiological recordings in brain
slices to characterize their functional properties, and intracellular
staining to visualize dendritic and axonal morphologies. Experi-
mental models of epilepsy now rely on electroencephalography as
the standard method for evaluating whether grafts ameliorate
seizures. Together with behavioral analyses, it is now possible
to determine whether transplanted neural stem cells successfully
survive, integrate, and provide functional recovery in different
models of neurological disease. However, therapeutic applications
require surmounting a number of additional technical hurdles and
safety issues associated with tumor formation and graft rejection
(Gruen and Grabel, 2006).

2. Definitions of stem cells and endogenous
populations of neural progenitors

Neural stem cells are defined by their potential to self-renew
and generate both neurons and glia by asymmetric divisions. When
grown individually in adherent cultures, neural stem cells are able
to form colonies that contain neurons and glia, or when grown in
three-dimensional cell cultures, they form structures called neu-
rospheres. Within the developing brain, neural stem cells are found
in the germinal zones, called the ventricular zone. Multipotent
stem cells are found within specialized stem cell niches in the adult
brain, including the subependymal zones, while other proliferative
cells located within the subgranular zone of the dentate gyrus are
defined as progenitors, because separate populations give rise to
neurons or glial cells and they show only limited self-renewal.
Classification systems to further distinguish these brain-specific
populations operationally are still evolving (Seaberg and van der
Kooy, 2003). Adult stem cells are difficult to find in other tissues
of the adult body, but they do exist.

Fetal neural precursor cells (NPCs), adult neural stem cells, and
embryonic stem (ES) cells have each been tested in experimental
models of neurodegenerative diseases and neurological disorders.
Fetal precursors harvested from different regions of the embryonic
brain can produce adrenergic, cholinergic, dopaminergic, and
GABAergic neurons. Alternatively, a mixture of different cell types
can be obtained from the fetal or neonatal hippocampus, striatum
or spinal cord for transplantation. A high percentage of fetal NPCs
adopt appropriate neurotransmitter phenotypes and become
electrophysiologically active after they are transplanted and lead to
recovery of function (Bjorklund and Lindvall, 2000). For example,
studies in the adult hippocampus after forebrain lesions showed
extensive axonal outgrowth, restoration of rhythmic brain activity
and improved spatial navigation after transplantation of different
types of fetal NPCs (Buzsaki et al., 1987, 1988; Dunnett et al., 1982,
1986; Kimble et al., 1986; Kromer et al., 1983; Low et al., 1982).

The limited supply of human fetal tissue and ethical concerns
about deriving neural progenitors from aborted fetuses, have
limited the use of fetal neurons in clinical applications. However
encouraging results have been obtained with fetal transplants in
rodent models of Parkinson's disease, epilepsy, spinal cord injury
and ALS. For example, prior studies demonstrated that human
neural progenitors from fetal spinal cord form functional connec-
tions when transplanted into injured adult rodent spinal cord
and improve motor performance (Koliatsos et al., 2008; Xu et al.,
2006, 2009).

Mouse or human neural progenitor cells (mNPCs and hNPCs)
derived from the fetal brain can be propagated as neurospheres to
increase yields of neural precursors. While studies indicate that

grafts of NPCs are rarely tumorigenic, a recent study found that in
vitro propagation of hNPCs may select for cells that show chro-
mosome 7 and 19 aneuploidy (Sareen et al., 2009). Trisomy of these
chromosomes enhances the expression of telomerase, and
increases proliferation, survival, and neuronal markers, but also
leads to premature senescence after 50—60 divisions. These
observations underscore the need for cytogenetic screening of
hNPCs prior to their use in clinical applications.

3. Other sources of stem cells — embryonic stem cells,
induced pluripotent stem cells and bone marrow stromal cells

Embryonic stem cells (ESCs) or induced pluripotent stem cells
(IPSCs) are attractive alternatives to fetal hNPCs. ESCs derived from
the inner cell mass of the blastocyst can generate all tissue types
that comprise the body. Under special in vitro conditions, it is
possible to direct their differentiation into neuronal and glial
progenitors (Maisano et al., 2009). Because they have the potential
to divide indefinitely in culture, producing large quantities for
research or therapy is considered a major advantage. However,
adaptive chromosomal changes occur that give some cells a growth
advantage; trisomy of chromosomes 12 and 17 is the most frequent
defect in hESCs and routine cytogenetic tests for aneuploidy are
recommended (Meisner and Johnson, 2008). In contrast to mouse
ESCs (mESCs), hESCs require more specialized cell culture proto-
cols. For clinical applications, hESCs must be grown in animal cell-
free and serum-free conditions and derivation of the first hESC line
with these properties was a major advance for clinical applications
of stem cell therapy (Klimanskaya et al., 2005).

Recently scientists discovered how to generate fibroblast-
derived induced pluripotent stem (IPS) cells by expressing four
genes in the cells (Takahashi et al.,, 2007a,b). This discovery is
fueling speculation that stem cell therapies of the future may use
the patient's own skin to generate neural stem cells for autologous
cell therapy. In an IPS cell-based therapy, there is little need for
immunosuppression, because IPS cells are obtained from a patient's
own skin or other tissues. Also, the need to destroy fertilized eggs
to obtain the stem cells is obviated. The IPS cells can be subjected
to genetic modifications to correct for genetic mutations, allow
fluorescence-activated cell sorting, and track the cells after trans-
plantation. Work on IPS cells is relatively new and fewer studies
have examined the ability of IPS cells to generate specific neuronal
types for treating neurodegenerative conditions.

4. Identifying regulatory mechanisms for neural
stem cell integration into damaged circuits

Some important insights into the critical variables for successful
transplants have emerged, such as: methods for preparing the cells
prior to transplanting them; the graft location in the host brain; the
age and type of donor cells and the host; the type of brain injury;
and the interval between acute injury and transplantation. Fetal
neural stem cell integration and dispersion is superior when they
are dissociated prior to transplantation, rather than maintained as
solid tissue grafts. The reasons are not entirely clear, but the
enhanced survival of dissociated cell grafts may be due to the
smaller diameter needles or pipettes that can be used to deliver
the cells, reducing mechanical damage as the cells are stereotaxi-
cally injected into the brain. Additionally, dissociation may increase
the interface between the host brain and the graft.

The region of the host brain receiving the transplant and the age
of the host are also important considerations. For example, fetal
neural precursors show enhanced survival in the white matter and
the lateral ventricles compared to the hippocampus (Shetty and
Turner, 1996). The local neighborhood of the graft also influences
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the types of cells that are generated by neural progenitors or
embryonic stem cell-derived progenitors. Acute injury transiently
stimulates the release of trophic factors and chemokines that may
promote survival, migration, and integration of transplanted fetal
neurons. Therefore, the most favorable therapeutic window for
transplantation may occur days or weeks after lesions (Shetty and
Turner, 1996). Younger animals typically show greater migration
and dispersion of transplanted fetal neural precursors, compared
with older animals, possibly due to migratory cues that are present
in the developing, but not adult brain. Definition of the molecular
signals regulating NPC survival and differentiation is just begin-
ning. NPC differentiation into GABAergic interneurons and inte-
gration into the mouse cerebral cortex are strongly influenced by
the neuronal lineage-specific protein BM88/Cend1. This protein
links exit from the cell cycle to programs for neural differentiation
(Makri et al., 2009). Additionally NPC integration into injured
regions of the adult brain is enhanced by multiple factors, including
polysialylated neural cell adhesion molecule (NCAM) (Glaser et al.,
2007), the adhesion molecule L1 (Bernreuther et al., 2006), nerve
growth factor (NGF) (Sinson et al., 1996), glial derived neurotrophic
factor (GDNF) (Bakshi et al., 2006), tenascin-R (Hargus et al., 2008)
and cytokines such as stromal cell-derived factor 1 alpha (SDF-1a.)
(Shyu et al., 2008).

5. Anti-inflammatory effects and neuroprotection
mediated by neural stem cells

In addition to replacing cells that have undergone neuro-
degeneration, transplants of fetal NPCs, human ESC-derived neural
progenitors, or mesenchymal stem cells may result in behavioral
recovery through direct anti-inflammatory and immunosuppres-
sive effects. For example, neural precursor grafts in the spinal cord
led to behavioral recovery of motor function in experimental
autoimmune encephalomyelitis, a rodent model of multiple scle-
rosis, although very few of the grafted precursors differentiated
into myelin-forming oligodendrocytes (Einstein et al., 2007). In
another example transplants of human mesenchymal stem cells
enhanced motor neuron survival, improved motor performance,
and reduced microglial activation in an experimental model of ALS
in mice (Vercelli et al.,, 2008). These studies suggest that neural
stem cell therapy may be beneficial in some situations because of
neuroprotection rather than neuronal replacement. Additional
positive effects may be due to the ability of stem cell grafts to
suppress inflammation or elicit trophic factor-mediated responses
in the host brain, or both.

6. Advances toward successful cell-based therapies
to treat epilepsy

Fetal NSC and ESC-derived neural progenitors have been tested
for their ability to integrate and restore function in rodent models
of epilepsy. A therapeutic goal in epilepsy is to restore the normal
balance between excitation and inhibition. Work on fetal neural
precursor grafts has shown that they can enhance neuronal inhi-
bition or cause hyperexcitability, depending upon the type of tissue
that is used for transplantation and the location of the grafted cells.
The two broad categories of epilepsy syndromes are generalized
and partial epilepsy. In generalized epilepsy, seizures are initiated
simultaneously in both hemispheres, whereas in partial epilepsies
the seizures arise from one or more localized foci, but may spread
throughout the brain. Many generalized epilepsies have a genetic
basis, involving mutations in ion channels or are caused by
neuronal migration disorders. These forms of epilepsy need treat-
ments that target large regions of the nervous system. Partial
epilepsies are often acquired following injury to a focal region of

the brain (Chang and Lowenstein, 2003) but are also prevalent
among patients suffering from strokes or Alzheimer's disease. The
most common form of partial epilepsy involves the temporal lobes
and the hippocampus.

Patients with temporal lobe epilepsy (TLE) resulting from an
acute brain injury frequently require high doses of anti-epileptic
drugs (AEDs) associated with cognitive impairments, depression or
dementia. Anti-convulsant medications fail to control the seizures
in many of these patients and only a minority of the patients with
epilepsy are candidates for surgical resection of the seizure focus.
With bilateral foci in the hippocampus, surgery is not feasible,
because removing both hippocampi destroys the ability to form
new declarative memories. TLE in young children is also associated
with cognitive impairments (Bjornaes et al., 2001) and it is
common for these patients to develop drug resistance. While the
majority of TLE patients are successfully treated with drugs that
decrease neuronal excitation or increase inhibition, one-third do
not experience seizure control with any available medication. Both
clinical and experimental animal data suggest that intense limbic
seizures can directly cause brain damage, although this is still under
debate. For those patients who fail to respond to these more
established procedures for seizure control, TLE can be life-threat-
ening and debilitating.

Head trauma or other traumatic brain injuries such as infection,
stroke, or prolonged status epilepticus (SE), often lead to TLE after
a latent period. This interval, consisting of a few weeks or as long as
several years, is when maladaptive plasticity begins, promoting
hyperexcitability and the emergence of spontaneous recurrent
seizures. Neuroplastic changes include atrophy of hilar neurons, the
birth of new ectopic granule neurons, and mossy fiber sprouting
(Mathern et al., 1995). The remarkable diversity of cellular and
molecular changes in the limbic system after seizures underscores
the special challenge of treating acquired chronic epilepsy and
suggests that multiple approaches will be necessary to reverse
hyperexcitability in this region of the brain.

Many of the pharmacological treatments for TLE enhance
inhibitory neural transmission. When cells genetically modified to
secrete GABA were transplanted into rodent models of epilepsy,
they were shown to reduce seizure severity, suggesting that cell-
based therapies that enhance inhibitory neural transmission could
be therapeutic in patients with TLE. Transplantation of fetal
neurons into the cerebral hemispheres of normal mice has been
shown to alter levels of excitation in cortical and hippocampal
neural circuits. For example, cortical neuron excitability was
decreased by grafts of neural progenitors from the ganglionic
eminence (GE), a source of forebrain GABAergic interneurons
(Alvarez-Dolado et al., 2006), whereas hippocampal seizure activity
was increased by grafts into the hippocampus of excitatory fetal
neurons (Buzsaki et al., 1991). The mechanism for these changes in
levels of neuronal excitation was synaptically mediated; when
transplanted into normal mouse cortex, GE-derived precursors
increased postsynaptic inhibitory currents in cortical pyramidal
neurons by approximately 25%. Moreover, when GE transplants
were made into the cerebral cortex of mice with spontaneous
seizures caused by a loss-of-function mutation of a Shaker-like
potassium channel (Kv1.1/Kcnal), the GE-derived cell grafts mark-
edly reduced the number of electrographic seizures (Baraban
et al., 2009).

To further test whether cell transplantation might be an effec-
tive approach for controlling seizures and cognitive deficits asso-
ciated with epilepsy, more studies are needed in additional animal
models that have been developed to study inherited forms of
human epilepsy (Noebels, 2001; Sarkisian, 2001). Ideally, the model
system and the assessment should closely mimic the conditions
used for particular types of human epilepsy patients. Seizure-
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induced effects on the brain are also age-dependent and several
excellent pediatric epilepsy models have been developed (Price
et al., 2009; Scantlebury et al., 2007).

In addition to heritable forms of epilepsy, stem cell treatments
are beginning to be studied for acquired forms of epilepsy. The
spontaneous recurrent seizures induced in mice and rats by
systemic injections of pilocarpine, a strong M1 muscarinic agonist,
closely resemble severe human TLE resulting from traumatic brain
injury or prolonged febrile seizures (Curia et al., 2008; Sarkisian,
2001; Scorza et al., 2009; Shibley and Smith, 2002; Turski et al.,
1984). These features include: 1) an initial precipitating event
such as SE; 2) a latent period; 3) a chronic seizure phase with
recurrent spontaneous seizures; 4) hippocampal sclerosis and
reorganization of connections.

In acquired epilepsy induced by focal or systemic injections of
kainate or pilocarpine, SE results in neuronal circuit reorganization
and inflammation that leads to the development of spontaneous
recurrent seizures. The latent period between the initial SE and the
appearance of spontaneous recurrent seizures is highly variable
and less distinct in mice than in humans. One important method-
ological issue for studies testing cell therapies in rodent models of
acquired epilepsy is that there may be high variability in the length
of the latent period between animals. A recent analysis of the latent
period in the systemic kainic acid model of TLE in rats has shown
that the development of spontaneous recurrent seizures is not
a step function of time, but rather the seizures occur in clusters
with variable inter-seizure intervals (Williams et al., 2009). While
the inter-seizure intervals are longer initially, the intervals between
seizures shorten over time as seizures increase in frequency, and
these progressive changes can continue over the first 3 months.
Because of the variability between animals, the progressive nature
of the seizures, and their tendency to occur in clusters, it is
important to use long-term continuous electrographic monitoring
to assess treatments.

Histological studies in rodents show that irreversible degener-
ation of GABAergic interneurons occurs within days after prolonged
SE induced by systemic injections of pilocarpine (Curia et al., 2008).
Bilateral hippocampal degeneration is also observed after focal
injections of kainic acid (Magloczky and Freund, 1993, 1995;
Represa et al., 1995). Seizures are often associated with alter-
ations in adult granule cell neurogenesis, granule neuron migra-
tion, gliosis (Hattiangady and Shetty, 2009; Parent, 2007), synaptic
plasticity (Morimoto et al., 2004), and neuroinflammation (Shapiro
et al,, 2008). Atrophy and death of GABAergic interneurons in the
hilus and CA1 regions also follows status epilepticus in several
rodent chemoconvulsant models (Obenaus et al., 1993). Alterations
in the functional properties of surviving interneurons may be
another form of neuroplastic changes caused by severe seizures. For
example, the somatostatin-positive interneurons in the hilus of the
dentate gyrus that survive SE hypertrophy and form more extensive
axonal arbors with granule cell dendrites in the molecular layer
(Zhang et al., 2009).

Changes in gene and protein expression include noteworthy
neuroplastic changes such as altered expression of nerve growth
factor and brain-derived neurotrophic factor mRNAs (Hunsberger
et al, 2005; Madsen et al., 2003; Newton et al., 2003), and
epigenetic changes in promoter regions of growth factor genes
(Ma et al., 2009). Whether GABA ergic stem cell transplants could
suppress these hypertrophic changes is an important issue for
further research.

Many TLE models have tested whether bilateral grafts of GABA-
releasing cells or matrices suppress seizures or prevent focal
seizures from generalizing. Kokaia et al. (1994) implanted GABA-
releasing polymers into kindled rats to show that it limited the
spread of focal limbic seizures (Kokaia et al., 1994). However, the

effects were short-lived, presumably due to depletion of the GABA
from the implants. In other studies, cell lines engineered to release
GABA were transplanted into the piriform cortex and shown to
reduce thresholds for kindling seizures (Gernert et al., 2002).
GABA-releasing neurons transplanted into the substantia nigra
transiently reduced spontaneous seizures in rats that were already
kindled (Nolte et al., 2008). Moreover, spontaneous recurrent
seizures were reduced when fetal striatal precursors are trans-
planted into the hippocampus in the rat kindling or the kainic acid
models (Hattiangady et al., 2008; Loscher et al., 1998). Several
studies have also shown the utility of fetal hippocampal cell grafts,
or transplants of cells engineered to release GABA in rodents that
had developed recurrent spontaneous seizures (Nolte et al., 2008;
Thompson, 2005; Thompson and Suchomelova, 2004). Taken
together, prior work suggests that augmenting GABAergic trans-
mission in several different experimental models of TLE suppresses
both the development of seizures and recurrent spontaneous
seizures.

Because TLE is often associated with memory impairments and
other cognitive deficits, it is interesting to note that grafts of fetal
neurons into the adult hippocampus improve cognitive deficits in
a spatial maze (Kimble et al., 1986; Low et al., 1982; Mickley et al.,
1990).

7. Interneuron diversity and vulnerability in epilepsy

Recent work demonstrates that GABAergic inhibitory inter-
neurons can be efficiently derived from mouse or human ES cells
and fetal cortical neural progenitors by different approaches (Aubry
etal., 2008; Bosch et al., 2004; Chatzi et al., 2009; Erceg et al., 2008;
Kallur et al., 2008; Kitazawa and Shimizu, 2007; Laeng et al., 2004;
Sarichelou et al., 2008; Spiliotopoulos et al., 2009). These promising
findings suggest that GABA cell therapy may be possible in patients
with neurodegenerative disorders or epilepsy; however, successful
cell replacement therapy for these patients may require replacing
specific types of GABAergic neurons. These cells are extremely
diverse anatomically, neurochemically, physiologically, and in
terms of their specific patterns of innervations (Gupta et al., 2000).
A better understanding is needed of how they develop. These
neurons express mRNAs for two isoforms of the GABA synthetic
enzymes glutamate decarboxylase (GAD65 and GAD67) and may
be either local circuit-forming neurons or projection neurons.
Their axonal terminals form distinctive stratifications within
particular regions of pyramidal neuron or granule neuron dendritic
arbors (Freund and Buzsaki, 1996; Houser, 2007). Because of their
tremendous diversity, multiple criteria are used to identify
subtypes, including morphology, neurochemical phenotype, and
electrophysiological properties.

The somatostatin and parvalbumin subclasses of GABAergic
interneurons in the hilus of the dentate gyrus in the hippocampus
serve critical roles in controlling granule cells excitability and
have been well-studied by immunohistochemistry as well as
intracellular recording and biocytin staining. A subset of somato-
statin-expressing interneurons in the hilar region of the dentate
gyrus terminate on the distal granule cell dendrites in the outer
molecular layer, where excitatory inputs comprising the perforant
pathway arrive from the entorhinal cortex (Freund and Buzsaki,
1996). Sometimes described as “gatekeepers” for the dentate
gyrus, these neurons exert feed-forward inhibition in the hippo-
campus. Subsets of these interneurons express neuropeptide
Y (NPY), which serves an important anti-epileptic role in dentate
gyrus neural circuits (Baraban et al., 1997). In both humans and
rodents, these neurons are highly vulnerable to head injury or
prolonged status epilepticus, whereas the parvalbumin-expressing
interneurons in this region are relatively resistant to cell death
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(Binaschi et al., 2003; Buckmaster and Dudek, 1997; Buckmaster
and Jongen-Relo, 1999; de Lanerolle et al., 1989; Kobayashi and
Buckmaster, 2003; Swartz et al., 2006). It is estimated that 16
percent of the GABAergic cells in the dentate gyrus express
somatostatin and they account for the majority of interneurons that
degenerate after SE (Freund and Buzsaki, 1996).

Basket cells are another type of interneuron in the dentate gyrus,
most of which are positive for the calcium binding protein parval-
bumin (Freund and Buzsaki, 1996). This GABAergic subtype inner-
vates the soma and proximal dendrites of excitatory cells, enabling
them to greatly influence the activity of their targets. Basket cells in
the dentate gyrus are located near the granule cell layer and the
hilus, and make connections with granule cells. However, other
parvalbumin interneurons make vast connections to pyramidal
neurons in the CA1 region of the hippocampus (Klausberger, 2009).
These interneurons are also critical modulators of cortical gamma
rhythms onto theta rhythms of the hippocampus (Wulff et al., 2009).
Although parvalbumin immunoreactivity is dramatically reduced in
temporal lobe epilepsy, these neurons are relatively resistant to
seizure-induced excitotoxic cell death compared to the more
vulnerable hilar mossy cells and somatostatin-positive interneurons
in the dentate gyrus (Sloviter et al., 2003).

Prior studies have applied three major strategies to generate
GABAergic progenitors from ES cells (Table 1). These include: the
conditioned medium (CM) approach, forcing gene expression using
viral vectors, or growing ES cells in chemically defined media
(Maisano et al., 2009; Naegele and Maisano, 2010). To determine
whether CM obtained from embryonic progenitors dissected from
specific regions in brain induces GABAergic cell fates in neural stem
cells, Trinh and colleagues (Trinh et al., 2006) exposed cere-
brocortical neural progenitors to media that had been conditioned
with a region of the embryonic ventricular zone called the medial
ganglionic eminence, the region of the forebrain where GABAergic
interneurons are specified (Anderson et al., 2002; Butt et al., 2007;
Wonders et al., 2008). In one study chick dorsal root ganglion
(DRG)-CM was found to promote differentiation of mouse ES cells
into neurons; approximately one-quarter became motor neurons,
whereas the GABAergic lineage only comprised 8.7 percent of the
total cells (Kitazawa and Shimizu, 2007). These results illustrate
several possible differences in the composition of CM from different
brain regions and the utility of using CM to direct neural stem cell
fates, but the molecular basis for these results remains unclear.

An alternative method is to induce expression of transcription
factor codes in stem cells to produce particular neuronal lineages
(Marquardt and Pfaff, 2001). This could be an effective strategy to
obtain homogenous neuronal populations from ESCs because much
information is available about neuronal specification. For example,
expression of neurogenin 2 (Ngn 2) specifies dorsal forebrain
(pallium) neurons whereas the expression of DIx1/2 and Mash1
transcription factors are required for specifying subpallial-derived

Table 1

populations (Cobos et al., 2007, 2005; Long et al., 2009). In addition,
Nkx2.1 serves a primary role in directing cortical interneuron fate
in medial ganglionic eminence (MGE) by activating the LIM-
homeodomain proteins Lhx6 and by suppressing more dorsally
expressed Pax6 (Butt et al., 2008). In cultures of NSCs from human
fetal striatum, Pax6 overexpression increases the percentage of
GABA-positive neurons to 50% of the total cells, suggesting an
important role for Pax6 in striatal interneuron specification (Kallur
et al., 2008).

A third method for enriching specific populations of neural stem
cells from ES cells is to propagate the neural stem cells in media
containing defined growth factors and signaling molecules. Some
important candidates for this approach include members of the
wingless (Wnt) family of signaling molecules, sonic hedgehog
(SHH), fibroblast growth factor (FGF), and brain-derived neuro-
trophic factor (BDNF). Wnt signaling has been implicated in
maintaining the self-renewal and pluripotent capacity of ES cells
(Ille and Sommer, 2005) and down-regulating Wnt signaling
induces neural differentiation. As shown in Table 1, several studies
report protocols for successfully generating GABAergic neurons by
adding SHH, FGF-2, BDNF, and/or RA to the culture medium for
varying lengths of time. BDNF promotes cell survival and neurite
outgrowth (Bernd, 2008) and is commonly added to the embryonic
stem cell-derived neural precursor (ESNP) cultures during neural
differentiation. Additionally small signaling molecules, such as
retinoic acid (RA), have been used to promote neural differentiation
(Chatzi et al., 2009). The Wnt inhibitor dickkopf-1 and SHH have
been used to obtain higher percentages of GABAergic neural
progenitors from hESCs (Aubry et al., 2008). Because of the ease of
this approach, it could be one of the more reliable strategies from
a pharmaceutical standpoint, but studies have not yet defined the
medium and the sequence of exposing the cells to signaling
molecules to provide a means for routinely generating functionally
distinct classes of mature GABAergic neurons.

8. Fetal neural precursors for GABAergic neurons
originate in the basal forebrain

One strategy discussed above for generating neural precursors
is to force the expression of transcription factors that will direct
ESCs them into specific progenitor cell types. This concept is still
untested, but recent work suggest that unique transcription factor
codes specify the functionally distinct cell types in the spinal cord
(Marquardt and Pfaff, 2001). All hippocampal and cerebral cortical
GABAergic interneurons are specified by combinatorial codes of
transcription factors expressed in a transient embryonic structure
called the ganglionic eminence (GE) (Wonders et al., 2008). The GE
can be subdivided into lateral (LGE), medial (MGE), and caudal
(CGE) regions, each of which expresses a unique transcriptional
code within progenitor populations that specifies functional

Protocols for producing GABAergic precursors from human and mouse Embryonic Stem cells, neural stem cells, and cerebrocortical neural precursors.

Cell Type Treatment Duration of Treatment Enrichment (%) Citation

Human ES cells BDNF, SHH, DKK-1 23—36 DIV 8% (Aubry et al., 2008)

Human ES cells RA, FGF-2 42 DIV 81% (of Tuj1-expressing neurons) (Erceg et al., 2008)

Human NS cells Pax6 overexpression 28 DIV 50% (Kallur et al., 2008)
ESC-derived mouse NSCs FGF-2, BDNF 21 DIV 85% (Spiliotopoulos et al., 2009)
Mouse ESCs DRG-CM 10 DIV 8.7% (Kitazawa and Shimizu, 2007)
Mouse ES cells-derived EB RA, FGF-2, EGF 14 DIV 96% (Chatzi et al., 2009)

Rat NS cells RA, KCl 15 DIV 74% (Bosch et al., 2004)

Rat NS cells FGF-2, VA 8 DIV 26% (Laeng et al., 2004)

Mouse NPCs GE 5 DIV 8% (Trinh et al., 2006)

Abbreviations: BDNF, brain-derived neurotrophic factor; CM, conditioned medium; DIV, days in vitro; DKK-1, dickkopf-1; DRG, dorsal root ganglion; EB, embryonic body; EGF,
epidermal growth factor; ESC, embryonic stem cell; FGF-2, fibroblast growth factor 2; GABA, y-aminobutyric acid; GE, ganglionic eminence; NSC, neural stem cell; NPC, neural

precursor cells; RA, retinoic acid; SHH, sonic hedgehog; VA, valproic acid.
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subclasses of GABAergic interneurons. The transcriptional codes
within the MGE have been deduced through knockout experi-
ments. This work suggests that the transcription factor Nkx2.1 is
required for specifying MGE-derived GABAergic interneurons
(Sussel et al., 1999).

GABAergic interneuron subclasses expressing parvalbumin or
somatostatin are generated within the MGE, and account for 60
percent of all hippocampal and neocortical GABAergic interneurons
(Wonders et al., 2008; Xu et al., 2004). In contrast, the progenitor
cells in the LGE are Nkx2.1-negative and give rise to striatal
GABAergic neurons (Wichterle et al., 2001). The CGE is partially
Nkx2.1-positive and has been implicated in the generation of
calretinin-expressing interneurons (Nery et al., 2002). CGE and the
MGE have been shown to be DIx1/2 positive (Xu et al., 2004). Fetal
neurons derived from the LGE and MGE can be readily harvested
from mouse or rat embryos on gestational days 11—13 and are
highly migratory. Moreover, they survive transplantation into
embryonic postnatal or adult rodent brains and differentiate into
a variety of cell types including interneurons, oligodendrocytes,
and astrocytes (Alvarez-Dolado et al., 2006; Eriksson et al., 2003;
Nery et al., 2002; Olsson et al.,, 1998; Valcanis and Tan, 2003;
Yozu et al., 2005).

Several studies have demonstrated the efficacy of fetal
GABAergic progenitor grafts for controlling seizures. In a recent
study by Baraban et al. (2009), MGE-derived neural precursors
transplanted into the postnatal neocortex of mice with generalized
epilepsy reduced the frequency of spontaneous seizures by 86
percent, compared to sham controls, as assessed by EEG recordings
(Baraban et al., 2009).

9. Growth factors, neurotrophic factors and anti-apoptotic
agents significantly enhance the survival of fetal neurons
after transplantation

A consistent observation from transplantation studies in the
adult brain is that fetal neurons have poor survival after trans-
plantation into the adult brain. To address this problem, cells are
pretreated with neurotrophic factors such as BDNF, fibroblast
growth factor 2 (FGF2) and caspase inhibitor (Rao et al., 2007).
Fibroblast growth factor (FGF) pretreatment increases the expres-
sion of neurogenin, a transcription factor required for neural
differentiation (Vergano-Vera et al., 2009) and enhances the
survival of GABAergic interneurons after they are transplanted
(Rao et al, 2007). In addition to pre-incubating cells prior to
transplantation, graft survival and integration is promoted by
intraventricular injections of erythropoietin at the time of trans-
plantation (Jing et al., 2009).

10. Host brain influences on the migration
and integration and transplanted cells

As discussed above, the extensive reorganization of temporal
lobe circuits after seizures suggests that understanding the
permissiveness of the host brain environment is an important
variable for successful stem cell therapies. Inflammation and
recruitment of microglia may make the brain less hospitable for
young neurons, although evidence from other models of injury
suggests that lesions provide signals that stimulate brain repair. For
example, lesions stimulate neurogenesis from endogenous neural
stem cell populations in the adult brain and spinal cord (Chen et al.,
2004; Magavi et al.,, 2000). In addition, some work suggests that
lesions caused by ischemic insults provide a chemotactic signal for
human and mouse embryonic stem cell-derived neural precursors
(Chu et al., 2004; Hoehn et al., 2002). Our understanding of
migratory signals for directing transplanted cells to sites of damage

is still developing, indicating an important area for future research
that is likely to have a large impact on the success of stem cell
therapies for neurodegenerative disorders, including epilepsy.

11. Immunosuppression and cell transplantation
into the brain

The possibility of graft rejection remains a major roadblock for
clinical applications of stem cell therapies. The CNS has been
regarded as an immune privileged site that is more hospitable for
tissue grafts due to the blood brain barrier (BBB) (Barker and
Billingham, 1977; Medawar, 1948). A tight seal of endothelial
cells lines the blood vessels and forms the BBB, hindering entry
of immune cells into the brain (Knopf et al, 1998; Risau and
Wolburg, 1990). However, the concept of immunologic privilege
in the brain has come into question because of evidence for brain-
specific phagocytes called microglia that trigger inflammation,
apoptosis, and phagocytosis of dying cells in response to neuronal
injury (Galea et al., 2007). But persistent microglia activation and
reactive gliosis after seizures and other injuries suggests that these
cells may also reduce graft survival. Due to differences in host vs.
graft expression of cell surface major histocompatibility complex
(MHC), microglia and other immune cells may recognize trans-
planted cells as “non-self’ and release cytokines, including inter-
leukin-1 (IL-1) and tumor necrosis factor-o. (TNF-a.). This can lead
to an inflammatory cascade and apoptosis. To avert graft rejection,
immunosuppression is required for patients receiving autologous
cell grafts and immunodeficient rodents are often used in research
involving neural stem cell grafts. Because the nonsteroidal drug
cyclosporine A (CsA) inhibits lymphokine production, interleukin
release without myelotoxicity, it is the preferred agent to induce
immunosuppression for transplantation studies. This drug is also
neuroprotective and has been shown to prevent mitochondrial
permeability transition, cytochrome c release, and caspase 3-
dependent apoptosis (Gieseler et al., 2009). However, CsA has
some adverse side effects including inducing high blood pressure
and toxicity to kidney and liver. Proper monitoring and dose
adjustment are used to reduce toxicity associated with immuno-
suppression strategies.

12. Diagnosing seizures in epilepsy models and evaluating
transplant efficacy with behavioral methods
and electroencephalography

Electroencephalography (EEG) is a key diagnostic tool for eval-
uating epilepsy patients and may also be used to monitor treatment
efficacy. Video-EEG monitoring may also be used to quantify
changes in seizure frequency, duration and intensity in experi-
mental epilepsy models. The spontaneous seizures in the chemo-
convulsant-induced seizure models in rodents often occur in
clusters, so that continuous and long-term video-EEG monitoring is
optimal for evaluating treatment-induced improvements in seizure
frequency, duration and intensity (Bertram et al., 1997). The kainate
model does not produce spontaneous seizures in most strains of
inbred mice, but it reliably produces them in rats, and the seizures
are clustered with variable intervals with increasing severity over
time (Williams et al., 2009).

Not all pilocarpine-injected rodents develop SE, but in those
that do, the resulting behavior is marked by repetitive and debili-
tating seizure events (Scorza et al., 2009). SE is frequently termi-
nated by injections of diazepam after 60—120 min. SE lasting
less than 30 min does not produce reliable hippocampal damage
sufficient enough to mimic human TLE and elicit spontaneous
recurrent seizures (SRS) (Curia et al., 2008). Based on the Racine
scale, Shibley and Smith (Shibley and Smith, 2002) developed
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a rating system to quantify seizure behavior either previously
recorded on video or by direct observation (Curia et al., 2008;
Shibley and Smith, 2002). While behavioral assessment is useful
for analyzing generalized seizures, partial seizures cannot always
be detected by observing the animal's behavior (Curia et al., 2008).
Therefore, behavioral assessment should be combined with EEG
recordings. Following the initial episode of SE, the latent period
may vary from several days to weeks, before SRS manifest. One
study in mice showed that the mean latent period is two weeks on
average, ranging from 4 day to 42 days after SE (Cavalheiro et al.,
1996). In another study in rats, video-EEG recordings showed
average latencies of approximately 7 days (ranging from 5.2 to
17.2 days) (Goffin et al., 2007). These discrepant findings may be
due to disparate methods for monitoring seizures as well as strain-
specific differences. During the chronic phase, seizure frequencies
of 2—3 per day (Scorza et al., 2009) or less have been reported
(Curia et al., 2008), with inter-seizure intervals of 7—10 days, and
a mean seizure duration of 40 s can be expected in mice (Goffin
et al., 2007). Because of the variable length of the seizure clusters,
it may be necessary to carry out extended EEG monitoring over
a period of 3—6 weeks to fully compare differences in experimental
and sham operates.

13. Gene therapy for temporal lobe epilepsy

In contrast to stem cell-based therapies for neurological disor-
ders and epilepsy, relatively few studies have examined gene
therapies (Boison, 2006; Loscher et al., 2008; Nolte et al., 2008). For
successful application of gene therapy in epilepsy, several hurdles
need to be overcome, including toxicity and selective tropism.
While progress has been made toward producing viral vectors such
as adeno-associated virus (AAV) with low toxicity, the nonselective
nature of these vectors poses a hurdle, because successful therapies
would ideally direct the transgene to particular cell types
(Haberman et al., 2002). The most well-studied gene therapies for
treating epilepsy target adenosine kinase (Li et al., 2007; Ren et al.,
2007), galanin (Haberman et al., 2003; Lin et al., 2003) and
neuropeptide Y (NPY) (Noe et al., 2007, 2008; Richichi et al., 2004).

13.1. Adenosine kinase

One theory of epileptogenesis is that astrogliosis rapidly occurs
after brain injury, increasing glial expression of an adenosine
metabolizing enzyme called adenosine kinase (ADK). ADK
decreases adenosine, an endogenous anti-convulsant, and this
deficiency promotes seizures (Boison, 2008). Gene therapy tar-
geting the adenosine system, either alone or in combination with
cell therapy, appears to have gained experimental support as
a rationale approach for seizure remediation. There is strong
experimental support for the adenosine kinase hypothesis of
epilepsy (Boison, 2008). Transplants of ES cells genetically engi-
neered to lack ADK into the rat hippocampus increase adenosine
secretion, delay the rate of kindling, and reduce after-discharges
(Li et al., 2007). Moreover, grafts of human mesenchymal stem
cells releasing adenosine reduce the duration of excitotoxic
seizures by 35% (Li et al., 2009). The effect is specific to adenosine
release because transplants of cell lines with ADK fail to disrupt
seizures and overexpression of ADK in CA3 can trigger seizures
(Li et al., 2008). Lentiviral RNA interference to reduce ADK has also
been tested and shown to prevent CA3 cell loss after KA-induced
seizures by more than 60% (Ren et al., 2007).

13.2. Galanin

This short neuropeptide has diverse functions including modu-
lating seizure sensitivity. When adeno-associated viral vectors
carrying the galanin gene as a secreted form are infused unilaterally
into the hilus region after focal injections of kainic acid (KA), hilar
cell death is reduced on the side of the AAV injection and seizures are
also attenuated (Haberman et al., 2003 ). Similarly, when the vector is
infused into the piriform cortex it greatly attenuated, or eliminated,
behavioral seizures induced by KA (McCown, 2006). The threshold
for electrical kindling of seizures in the same brain region is elevated
in rodents receiving AAV-delivery of galanin, demonstrating that
gene therapy facilitating the expression and secretion of galanin is
applicable for controlling seizures. Gene delivery of inhibitory
factors in a secreted form bypasses the problem of possibly targeting
the wrong cell population.

13.3. Neuropeptide Y

Neuropeptide Y (NPY) might serve an important anti-convul-
sant role by inhibiting synchronized glutamate release from active
synapses during seizures (Sorensen et al., 2008). NPY is expressed
in subsets of interneurons in the hilus and CA regions in physio-
logical conditions and in TLE models it increases and spreads to the
outer molecular layer of the dentate gyrus, marking the mossy fiber
sprouting (Nadler et al., 2007). NPY has multiple functions in the
normal brain, but AAV-mediated overexpression of NPY reduces
sensitivity to both electrical kindling induced seizures (Sorensen
et al.,, 2009) and kainic acid-induced seizures (Richichi et al.,
2004). Conversely, NPY-deficient mice have more kainate-induced
seizures and higher mortality (Baraban et al., 1997).

14. Summary and conclusions

Although efficient protocols for generating most of the neuronal
lineages in the nervous system are not yet developed, some types of
neuronal and glial precursors can now be routinely derived in vitro
from human and mouse ESC-derived neural progenitors. Testing
the efficacy of these neural precursors, as well as novel gene ther-
apies, is underway in a broad range of experimental animal models
for neurological disorders and epilepsy. Work in this area of
investigation may potentially lead to stem cell-based therapies that
facilitate regeneration of damaged neural circuits (Emsley et al.,
2004). Before these exciting clinical prospects can be realized, the
risks associated with stem cell and gene therapies will need to be
decreased. Challenges for future work are to determine how to
promote long-term survival and integration of neural precursor
transplants in the adult brain and to optimize modulation of neural
activity to reverse behavioral and cognitive deficits in neurode-
generative disorders and epilepsy.
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